• Aucun résultat trouvé

A new methodology for early BMP assessment using a mathematical model

N/A
N/A
Protected

Academic year: 2022

Partager "A new methodology for early BMP assessment using a mathematical model"

Copied!
1
0
0

Texte intégral

(1)

,

A new methodology for early BMP assessment using a mathematical model

St ´ephane Mottelet 1 Sabrina Gu ´erin 2 Sam Azimi 2 Jean Bernier 2 Vincent Rocher 2 Andr ´e Pauss 1 Thierry Ribeiro 3

1

Universit ´e de Technologie de Compi `egne, FRANCE

2

SIAAP Direction D ´eveloppement et Prospective, Colombes, FRANCE

3

UniLaSalle Beauvais, FRANCE

,

Context

Besides the classical measure of BMP can need as long as 15 days, the dynamics of the

production can be identified during the first few days if rigorous test methodology is respected and a biologically inspired mathematical model is used. This approach can provide accurate predictions of BMP value with shortened experimentation duration.

But finding mathematical models that are simple enough to be used for process control and

prevision is particularly important. In this study we have used the modified AM2 model, calibrated and then validated with 90 different experiments as triplicates of 30 different substrate/inoculum mixes of sludge coming from the Paris’ conurbation WWTP.

The obtained model allows a good prediction after only 4 days with an acceptable error and at the same time gives the possibility to understand the influence of the initial proportion of substrates on the production profile.

Experimental protocol

I 500 ml reactors,I/S ratio=3 I CO

2

trapping

I Mean flow measurement by ≈ 10ml throttles I Full compliance with experts

recommendations [1]

I 36 batchs in triplicates

I VSS, TSS, COD, BOD measurements I BMP obtained after 20 days

AMPTS

Modified AM2 model

Reaction scheme [2, 3, 4] :

S

0

−−−−→

r0

S

1

, (Hydrolysis)

S

1

−−−−→

r1

Y

X1

X

1

+ (1 − Y

X1

)S

2

+ k

4

CO

2

, (Acidification) S

2

−−−−→

r2

Y

X2

X

2

+ (1 − Y

X2

)CH

4

+ k

5

CO

2

, (Methanogenesis) S

0

: insoluble organic molecules, S

1

: simple compounds (fatty acids, peptides, amino acids, . . .), S

2

: volatile fatty acids

Differential equations system :

I Perfectly mixed batch reactor, states of the sytem : S

0

, S

1

, S

2

, X

1

, X

2

S

00

= −r

0

, S

10

= r

0

− r

1

, S

20

= (1 − Y

X1

)r

1

− r

2

, X

10

= Y

X1

r

1

, X

20

= Y

X2

r

2

, CH

40

= (1 − Y

X2

)r

2

I initial conditions : S

0

(0) = S

00

, S

1

(0) = S

10

, X

1

(0) = X

10

, X

2

(0) = X

20

. I reaction rates :

r

0

= µ

0

S

0

, r

1

= µ

max1

S

1

X

1

S

1

+ K

S1

, r

2

= µ

max2

S

2

X

2

S

2

+ K

S2

+ S

22

/K

I

· I Parameters θ = (Y

X1

, Y

X2

, µ

0

, µ

max1

, µ

max2

, K

S1

, K

S2

, K

I

| {z }

θc : kinetic parameters

, X

10

, X

20

, S

00

, S

10

, S

20

| {z }

θb : batch parameters

)

Identification of parameters

I Goals

Obtain a mathematical model allowing to reproduce the methane rate of all experiences,

without necessarily uniquely describe state variables (X

1

, X

2

, S

1

, S

2

, S

0

) and being able to use this model to predict the BMP from new data measured after only 4 days

I Available measurements For each batch #i we have

I (t

ki

)

k=1...mi

the times of throttle switchs

I (D

ki

)

k=2...mi

the mean CH

4

flow rate measured at t = t

ki

, k = 1 . . .

I Simulations

For θ = (θ

c

, θ

b

) we can simulate the mean flow of CH

4

: d

ki

c

, θ

b

) =

CH

4

(t

ki

) − CH

4

(t

ki −1

)

/(t

ki

− t

ki −1

), The function

J

i

c

, θ

b

, T ) = X

k=2

tki ≤T

(t

ki

− t

ki −1

)(D

ki

− d

ki

c

, θ

b

))

2

evaluates the misfit between measurements of batch #i and the simulation with parameters θ = (θ

c

, θ

b

) at horizon T

I Learning phase T = ∞, batchs #1 . . .#69

Minimize with respect to ξ = (θ

c

, θ

b1

. . . , θ

b69

) ∈ R

353

ξ ˆ = arg min

ξ

J (ξ ) = X

i=1...69

J

i

c

, θ

bi

, ∞) + λkξ k

2

,

We only keep θ ˆ

c

∈ R

8

which is used for the prediction.

Optimization is done with interior points method (fminc, MATLAB) and computation time is small despite problem size (computer with 20 processors Xeon E5-2660-v2).

I Prediction/validation phase T = 4 days, batchs #70 . . .#108 Independently minimize with respect to θ

bi

∈ R

5

θ ˆ

bi

= arg min

θb

J

i

( θ ˆ

c

, θ

b

, 4), i = 70 . . . 108

Results

I Learning on batchs #1 to #69 Kinetic parameters θ ˆ

c

Y

X1

0, 58 Y

X2

0, 12 µ

0

0, 29 µ

max1

3, 63 µ

max2

2, 67 K

S1

1, 02 K

S2

3, 45

K

I

1, 44

0 200 400true BMP (NmL)600 800 1000 1200 1400

0 200 400 600 800 1000 1200

predicted BMP (NmL)

Model-3

I Prediction/validation on batchs #70 to #108 at T = 4 days

0 200 400 600 800 1000 1200 1400

true BMP (NmL) 0

200 400 600 800 1000 1200

predicted BMP (NmL)

Model-3

I Prediction at T = 4 days, floated sludge

0 5 10 15

t (days)

0 100 200 300 400

flow (NmL/d)

Model-3 - batch n°92 (Manip 20140305, cell=11)

0 5 10 15

t (days)

0 500 1000

Vol (NmL))

Model-3 - batch n°92 (Manip 20140305, cell=11)

0 5 10 15

t (days) 0

5 10

g.COD/L

Model-3 - batch n°92 (Manip 20140305, cell=11)

S0

S1

S2

0 5 10 15

t (days) 0

5 10

g.COD/L

Model-3 - batch n°92 (Manip 20140305, cell=11)

X1

X2

I Prediction at T = 4 days, thickened sludge

0 5 10 15

t (days)

0 100 200 300 400

flow (NmL/d)

Model-3 - batch n°106 (Manip 20140407, cell=13)

0 5 10 15

t (days)

0 500 1000

Vol (NmL))

Model-3 - batch n°106 (Manip 20140407, cell=13)

0 5 10 15

t (days) 0

5 10

g.COD/L

Model-3 - batch n°106 (Manip 20140407, cell=13)

S0

S1

S2

0 5 10 15

t (days) 0

5 10

g.COD/L

Model-3 - batch n°106 (Manip 20140407, cell=13)

X1

X2

Trends and conclusions

I Results :

I Well fitted kinetics in learning phase and good prediction of BMP at 4 days I Ratios of S 0 , S 1 , S 2 seem to be interpretable

I Planned improvements :

I Theoretical study of identifiability of parameters in learning phase I BOD and VSS measurements should be taken into account

I Coupling between triplicates has to be considered

I Confidence intervals should be computed for the predicted BMP

I Actual model should be simplified and compared with other models

References

[1] C. Holliger et al. (2016), Towards a standardization of biomethane potential tests, Water Science &Technology

[2] O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi, J. P. Steyer (2001), Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and bioengineering

[3] R. Fekih Salem, N. Abdellatif, T. Sari, and J. Harmand (2012), On a three step model of anaerobic digestion including the hydrolysis of particulate matter, MATHMOD 2012

[4] A. Donoso-Bravo, S. P ´erez-Elvira and F. Fdz-Polanco (2014), Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge, Environmental Technology

Références

Documents relatifs

Since in our model mesenchymal cells were instructed to move toward the bone following the orientation of fibres, the self-organisation of the mesenchymal collagen in response

We model this phenomena by a non linear diffusion- transport equation coupling the effect of transportation of sand due to the wind and the avalanches due to the gravity and the

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Bien que les statistiques indiquent que les réseaux d'extincteurs automatiques soient très fiables, leur fiabilité peut être améliorée par l'utilisation des techniques existantes

En effet, quand la vitesse de croissance est rapide, la phase de nucléation et la phase de croissance sont aussi rapide, en d’autre termes, quand la vitesse de croissance est

2 Symptoms of blast disease in spikes, leaves, and seeds of wheat in a farmer ’s field in Jhenaidah in Bangladesh, and a micrograph showing two conidia of Magnaporthe oryzae.. a

and glial cells die by necrosis or apoptosis. 2) These dead cells trigger the activation of the resident microglia and, due to the toxic substances in the environment, also to the

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334