• Aucun résultat trouvé

Ice forces on the Nanisivik wharf

N/A
N/A
Protected

Academic year: 2021

Partager "Ice forces on the Nanisivik wharf"

Copied!
14
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Ice forces on the Nanisivik wharf

Frederking, R. M. W.; Sayed, M.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=d0f29cde-bdc0-4f3f-88d8-e0cc69f57463 https://publications-cnrc.canada.ca/fra/voir/objet/?id=d0f29cde-bdc0-4f3f-88d8-e0cc69f57463

(2)

S e r T H 1

N 2 1 d

I

National Research

Conseil national

c. 2

1610*1

~ o u n c ~ ~ a n a d a

de recherches Canada

BLDG

-

Institute for

lnstitut de

Research in

recherche en

Construction

construction

Ice Forces on the Nanisivik Wharf

by R.M.W. Frederking and M. Sayed

Appeared in

Proceedings of the 9th International Symposium on Ice

Sapporo, Japan, August 23

-

27,1988

IAHR Committee on Ice Problems, Vol. 1

p. 463-472

(IRC Paper No. 1610)

Reprinted with permission

NRCC 30754

N R C

-

C4STI

I

R

C

L I B R A R Y

o l

r

24 1289

-

-

B I B L I O T H ~ Q U E

I R C

CNRC

-

ICiST -I

(3)

Le present document examine les contraintes exerc6es par la glace et les facteurs

environnementaux au quai de Nanisivik en bordure du dktroit de Strathcona, dans

1'Arctique canadien, pendant l'hiver de

1985-

1986.

Le

&@me

glaciaire

tst

caractkrisi

par

la formation de glace de rive de premibre

annke

qui atteint une 6paisseur maximale de

1,6

m

en mai. Le mecanisme premier de 1'apparitj.on de charges engendrees par la glace

i

cet

endroit semble

Stre

les deformations de la couvertute de glace attribuables

aux

variations de

temphture. Une analyse thermique basCe sut le comportement du fluage secondah p+&t

des contraintes therrniques inferieures

i

celles mesurees.

(4)

IAHR Ice

Symposium 1988

Sapporo

ICE FORCES ON THE NANISIVIK WHARF

R. Frederking and M. Sayed Research O f f i c e r s

Geotechnical Section I n s t i t u t e f o r Research i n Construction

National Research Counci 1 Canada CANADA

ABSTRACT

I c e stresses and environmental f a c t o r s a t N a n i s i v i k wharf on Strathcona Sound i n t h e Canadian A r c t i c are reported f o r t h e w i n t e r 1985/86. The i c e regime i s t h a t o f l a n d f a s t f i r s t - y e a r sea i c e t h a t a t t a i n s a maximum t h i c k n e s s o f 1.6 m i n May. The primary mechanism of generating i c e 1 oads a t t h i s 1 o c a t i o n appears t o be temperature-i nduced s t r a i n s i n t h e i c e cover. A thermal a n a l y s i s based on secondary creep behaviour p r e d i c t s thermal s t r e s s e s lower than those measured.

INTRODUCTION

I c e pressure measurements a t l o c a t i o n s i n t h e A r c t i c , g e n e r a l l y a t o f f s h o r e s t r u c t u r e s , a r e u s u a l l y designed t o generate i n f o r m a t i o n r e g a r d i n g t h e s a f e t y o f o f f s h o r e d r i l l i n g a c t i v i t i e s - ( H a w k i ns e t al., 1983,

P i l k i n g t o n e t al., 1983). The primary concern was w i t h t h e extreme o r maximum loads. I n t h i s study i n t e r e s t i s focused on a near shore

s t r u c t u r e , a sheet p i l e c e l l wharf constructed a t Nani s i v i k on Strathcona Sound (Girgrah and Shah, 1978). E f f o r t was focused on o b t a i n i n g a r e c o r d o f loads and associated environmental f a c t o r s over a complete w i n t e r season. This paper w i l l p r e s e n t t h e r e s u l t s o f measurements made by NRC over t h e w i n t e r 1985-86, p r o v i d e an i n t e r p r e t a t i o n o f t o t a l l o a d on t h e wharf, and discuss t h e i c e loads i n r e l a t i o n t o environmental factors. A

more complete record of t h e r e s u l t s i s a v a i l a b l e (Frederking and Sayed, 1987).

(5)

SITE

IAHR Ice Symposium

1988

Sapporo

The Nanisivik Wharf i s located on t h e south shore o f Strathcona Sound (73'04'N-84'33'W) about 20 km from i t s o u t l e t . Strathcona Sound i s a f j o r d - l i k e f e a t u r e a t t h e n o r t h end o f B a f f i n I s l a n d i n the eastern Canadian Arctic. The width o f t h e Sound a t t h e wharf s i t e i s about 5 km; maximum t i d a l range i s 2.5 m. The wharf comprises t h r e e sheet p i l e c e l l s 21 m i n diameter, 38 m on centres, about 50 m offshore (Fig. 1). The t h r e e c e l l s are joined by an apron on the shore side, w i t h a causeway t o t h e shore. Maximum water depth a t the outer edge o f t h e c e l l s i s 13.5 m.

-0 0 0 -

f

, NO. 5

/e-

-

N0.4 No. l

-

-

N0.3

\

'No. 2 -0- o-o- I C E MOVEMENT POINTS . \ - 0

- -

0 - W H A R F 0

-

m ? O J O i O S C ~ L I - m

FIGURE 1 Schematic showing l o c a t i o n s o f i c e s t r e s s measuring instruments . i n s t a l l e d adjacent t o N a n i s i v i k wharf, w i n t e r 1985-86.-

MEASUREMENT PROGRAM

The f o l l o w i n g elements were measured: i n s i t u stresses i n t h e i c e cover adjacent t o t h e wharf, h o r i z o n t a l movements of t h e i c e cover, i c e temperatures, and meteor01 ogical data. I c e conditions were observed by means of a series o f s i t e v i s i t s and t h e use o f unattended data loggers.

Instruments were i n s t a l le d i n November, t h e i r operation v e r i f i e d i n March, and they were recovered i n May.

I n e a r l y November, f i v e panel -type transducers were i n s t a l l e d i n t h e l e v e l i c e cover adjacent t o t h e wharf t o measure i n s i t u stresses. Four panels were aligned p a r a l l e l t o t h e dock and one was placed normal t o i t

(6)

IAHR Ice

Symposium

1988

Sapporo

.

1 ). Panels No. 1 t o 4 were 1 m x 1 m, sectioned h o r i z o n t a l l y so t h a t t h e average s t r e s s i n t h e upper 0.5 m and lower 0.5 m c o u l d be measured independently. Panel 5, 1

m

x 2 m, was h o r i z o n t a l l y sectioned i n f o u r s e c t i o n s each 0.5 m high. This allowed v e r t i c a l d i s t r i b u t i o n o f s t r e s s i n t h e i c e cover t o be measured. The f i v e panels provided a t o t a l o f 12 channels o f data. Output was recorded a t 15-minute i n t e r v a l s u s i n g a programmable battery-powered data l o g g e r able t o operate a t temperatures down t o -40'C. As problems were encountered i n i t i a l l y w i t h t h e logger, no

re1 i able recordings were obtained u n t i 1 January 1986.

An e l e c t r o n i c distance-measuring

(EDM) instrument coupled t o a

t h e o d o l i t e ' w a s used t o measure movements o f reference p o i n t s on t h e i c e cover a t a number o f s e l e c t l o c a t i o n s . One a r r a y comprised n i n e reference p o i n t s arranged i n t h r e e l i n e s p a r a l l e l t o t h e face o f t h e wharf and 5, 25 and 55 m from i t (Fig. 1 ) t o determine h o r i z o n t a l movements . r e l a t i v e t o t h e wharf. A second a r r a y was e s t a b l i s h e d about 200 m t o t h e west o f t h e wharf and about 100 m from shore where t h e water depth was 5 m. This area was considered t o be r e p r e s e n t a t i v e o f a n a t u r a l beach and served as a b a s i s o f comparison w i t h h o r i z o n t a l i c e cover movements adjacent t o t h e wharf.

I n November an automatic meteorological s t a t i o n was s e t up on t h e i c e s u r f a c e half-way across t h e Sound t o measure wind speed and d i r e c t i o n , a i r temperature, and temperatures i n t h e i c e . Data were recorded a t half-hour

i n t e r v a l s on a b a t t e r y powered logger. The thermocouple probe f o r measuring i c e temperatures had i n d i v i d u a l sensors a t depths o f 0.0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 m i n t h e ice.

RESULTS

AND

DISCUSSION

Results from i c e s t r e s s panel No. 3 f o r t h e p e r f o d 20 January t o 16 May, 1986 are shown i n Fig. 2. The r e s u l t s f o r a l l t h e panels were s i m i l a r . Panel No. 2, which was normal t o t h e face o f t h e wharf, showed stresses s u b s t a n t i a l l y l e s s than 100 kPa, except f o r a s h o r t p e r i o d a t t h e end o f March when they s l i g h t l y exceeded 100 kPa. The zero s t r e s s l e v e l e s t a b l i s h e d f o r these readings was taken i n November j u s t a f t e r t h e panels had been placed i n t h e i c e cover. I n e a r l y March s l o t s were c u t around t h e panels t o r e l i e v e t h e s t r e s s on them, thereby checking t h e zeros. A f i n a l s e t o f zero readings was obtained i n May when t h e panels were removed. The

(7)

IAHR Ice

Symposium

1988

Sapporo

w x i m u m v a r i a t i o n i n the 'zero' stress l e v e l s was l e s s than 40 kPa, i n d i c a t i n g t h a t t h e panels were r e l a t i v e l y f r e e from zero d r i f t . The

concentration o f t h e l a r g e s t i c e stresses i n t h e t o p 0.5

m

o f the i c e cover was t y p i c a l f o r a l l panels. The maximum measured pressure was about

425 kPa on 18 February, 1986 and occurred on t h e upper 0.5 m sector of panel 3.

500

-

LEGCNO

PANEL NO. 3 (EAST)

UPPEP 0.5 r

..CO!tZ il:?.I!--

100

-

500

-

-1W ,

ao 27 1 1 0 1 7 2 I ID 17 n 31 r 1 4 21 a s 1 1 13

JANUARY FEBRUARY RARCH RPRIL MAY

1986

Figure 2 Results o f i c e pressure panel No. 3 f o r t h e period 1986 January

20 t o May 16.

Horizontal movements o f a l l nine reference p o i n t s next t o the wharf and t h e array o f p o i n t s 200 m t o the west o f i t were remarkably s i m i l a r , i n d i c a t i n g t h a t t h e i c e cover i n t h i s area e s s e n t i a l l y moved as a body. The movement r a t e averaged over the f i r s t h a l f of t h e w i n t e r was 40 mnlday; f o r t h e l a t t e r h a l f o f t h e winter i t had slowed t o 20 mnlday. The

d i r e c t i o n was n o r t h e r l y . Such movements have been measured previously a t t h i s l o c a t i o n (Frederki ng and Nakawo, 1984).

Close examination of two l i n e s o f reference p o i n t s 25 and 55 m n o r t h of the outer face o f the wharf showed t h e i c e cover t o be undergoing

(8)

fve s t r a f fis f n a d i r e c t i o n normal t o

the

outer face o f t h e wharf. For the f i r s t h a l f o f t h e w i n t e r the t o t a l s t r a i n change i n a n o r t h e r l y d i r e c t i o n was -1.6 x o r a s t r a i n r a t e o f 1.7 x 10 l"sl. That. i n t h e second h a l f of t h e winter, was -2.0 x o r a s t r a i n r a t e o f 2.9 x 10 -los-1

.

A i r temperature and i c e temperatures a t various depths measured a t t h e centre o f the Sound f o r t h e period 20 January t o 21 May, 1986 are p l o t t e d i n Fig. 3. This time i n t e r v a l was selected t o f a c i l i t a t e comparison o f meteorological data w i t h i c e stress results.

10

AIR AND ICE TEMPERATURE

A I R

-sc J

XI n 1 10 I? 24 1 10 17 n 11 7 1 4 ZI n 5 11 19

JANUARY FEBRUARY IlARCH APR 1 L MAY

! 986

Figure 3 A i r temperature and teniperature a t various depths i n t h e i c e cover f o r the period 1986 January 20 t o May 21.

The i c e conditions on t h e Sound could be characterized as landfast f i r s t - y e a r sea i c e having a very l e v e l surface.

In

November i c e thickness was 0.3 m. By t h e beginning o f March i t was 1.2 m, increasing t o 1.5 m by May. Ice cores taken i n March indicated an average s a l i n i t y o f 5.5

*/..

3

(9)

IAHR Ice

Symposium 1988

Sapporo

t u r e t o be columnar over t h e e n t i r e thickness o f t h e i c e cover. A zone o f i c e about 4 m t h i c k and 8 m wide and hinged t o t h e l e v e l fi rst-year i c e accomodated r e l a t i v e v e r t i c a l movements o f t h e i c e and the wharf due t o tide. This feature, termed t h e ' a c t i v e zone' has been observed previously a t the s i t e (Frederking and Sinha, 1978; Frederking and Nakawo, 1984).

LOAD INTERPRETATION

The r e s u l t s f o r t h e f o u r s t r e s s panels aligned p a r a l l e l t o the wharf were combined t o determine an average e f f e c t i v e l i n e a r load a c t i n g on the wharf. For each panel t h e stress was m u l t i p l i e d by t h e area of the sector on which i t was acting. These loads were summed t o get t h e t o t a l load a c t i n g through t h e depth o f the i c e cover f o r t h e panel width, i n a l l cases 1 m. These r e s u l t s were then averaged t o o b t a i n an average i c e force per u n i t width o f t h e structure. The r e s u l t s o f t h i s c a l c u l a t i o n f o r the period 20 January t o 16 May, 1986 are p l o t t e d i n Fig. 4. The maximum i c e load (averaged over t h e width o f t h e wharf) was 175 kN/m and the average 1 oad was 50 kN/m.

300

-

AVERAGE FORCE

P U 1 10 17 24 1 10 17 24 11 7 I4 21 71 1 I I 13

JANUARY FEBRUARY MRRCH APR I L IlRY

1 9 8 6

- Figure 4 Average i c e f o r c e per meter o f width a c t i n g on Nanisivik wharf f o r p e r i o d 1986 January 20 t o May 16.

(10)

The ave temperature

IAHR Ice

Symposium 1988

Sapporo

'rage i c e l o a d appears t o be r e l a t e d t o changes i n a i r (compare Fig. 3 and 4). There i s a general correspondence between a i r temperature and i c e load; i.e., an increase i n a i r temperature leads t o an increase i n i c e load and v i c e versa. There i s not, however, a d i r e c t correspondence between t h e magnitude o f t h e a i r temperature change and t h e magnitude o f t h e average i c e l o a d change. For example, t h e a i r temperature increase i n l a t e January was much l a r g e r than t h a t i n l a t e February, b u t t h e i c e l o a d increase i n l a t e February was more than t w i c e t h a t f o r January.

Sanderson (1984a) has provided suggestions f o r d e a l i n g w i t h thermal stresses i n f i r s t y e a r sea i c e covers. Stress, temperature, and time r a t e o f temperature change have a l l been p l o t t e d f o r t h e p e r i o d 16-23 February t o show t h e r e l a t i o n between s t r e s s and i c e temperature (Fig. 5). Time r a t e o f temperature change has been included, s i n c e i c e can behave as a v i s c o - e l a s t i c m a t e r i a l . I t i s t h e r e f o r e reasonable t o examine i c e stress v a r i a t i o n s i n terms o f i c e deformation r a t e also. Only t h e surface and 0.25 m temperatures have been included; Sanderson (1984a) states, and t h e s t r e s s measurements o f t h i s paper i n d i c a t e , t h a t t h e m a j o r i t y o f stress i s c a r r i e d i n t h e t o p 0.5 m o f t h e i c e cover. Taking a c o e f f i c i e n t o f thermal expansion o f 50 x 10 -60c-1 f o r sea i c e (Cox, 1983), s t r a i n changes and s t r a i n r a t e s I n t h e i c e cover can be calculated. The i c e surface

temperature increased by 4'C i n 2 days, which would correspond t o a s t r a i n increase o f

2

x 10'~. The maximum temperature r a t e s o f 4'C/day and P0C/day a t t h e i c e surface and 0.25 m depth correspond t o maximum s t r a i n rates o f 2.3 x 1 0 - ~ s - ' and 1.2 x 1 0 - ~ s - ~ . Taking an i c e temperature o f -12.C. a s a l i n i t y o f 5

'/..,

and applying Sanderson's (1984b) a n a l y s i s f o r columnar- grained ice, secondary creep stresses o f 110 and 90 kPa are obtained f o r each rate. These p r e d i c t e d stresses are much lower than those measured here. The t o t a l s t r a i n change, 2 x and time (about one day) are much smaller i n t h i s case than would be a p p l i c a b l e f o r t h e secondary creep behavi our assumed i n Sanderson's (1984b) analysis. A much more thorough treatment o f thermal stresses i s required.

The c r o s s - c o r r e l a t i o n between t h e s t r e s s from panel No. 3 versus t h e i c e surface temperature and r a t e o f change o f temperature i n t h e i c e cover a t a depth o f 0.25

rn

f o r t h e p e r i o d 16-23 February was determined (Fig. 6).

(11)

IAHR Ice

Symposium 1988

Sapporo

- - - - - - - ..-.( O.25m DEPTH

0

F E B . 16 F E B . 2 3 TIME

Figure 5 I c e temperature and time r a t e o f i c e temperature change a t surface and 0.25 m depth and panel No. 3 stress f o r t h e period 1986 February 16-23.

There i s a high c o r r e l a t i o n c o e f f i c i e n t (about 0.8) f o r stress, lagging t h e 0.25

m

temperature r a t e by about 20 h. There i s a l s o a p o s i t i v e

c o r r e l a t i o n o f 0.6 between s t r e s s and i c e surface temperature, w i t h no phase lag. I n both cases t h e peaks are q u i t e broad, suggesting t h a t t h e r e may be several processes involved. It appears t h a t s t r e s s i s p r i m a r i l y a f u n c t i o n o f both surface temperature and i c e temperature r a t e a t a depth of 0.25 m.

(12)

IAHR

Ice Symposium 1988

Sapporo

-

1

-

80

-

4

0

0

4 0

8

0

P H A S E

L A G ,

h o u r s

F i g u r e 6 R e s u l t s o f c r o s s - c o r r e l a t i o n o f i c e s t r e s s from panel No. 3 versus i c e surface temperature and 0.25 m i c e temperature and r a t e f o r t h e p e r i o d 1986 February 16-23.

CONCLUSION

The g l o b a l i c e loads a c t i n g on t h e wharf a t N a n i s i v i k are r e l a t i v e l y small, l e s s than 175 kN/m. Such low loads were expected, since t h e wharf i s l o c a t e d i n an area w i t h a s t a b l e l a n d f a s t i c e cover. There i s no evidence o f non-simultaneous i c e f a i l u r e i n t h i s instance, since a l l t h e l o a d panels gave s i m i l a r ( i n phase b u t various amplitudes) outputs. This i s n o t s u r p r i s i n g given t h e i ce behaviour o f re1 a t i v e l y u n i f o r m d u c t i l e deformation w i t h no cracks. The primary mechanism o f i c e load generation on t h e N a n i s i v i k wharf appears t o be temperature-induced s t r a i n s i n the i c e cover. A thermal a n a l y s i s based on secondary creep o f t h e i c e p r e d i c t s stresses s u b s t a n t i a l l y lower than those measured. An improved a n a l y t i c a l model i s required.

ACKNOWLEDGEMENTS

F i n a n c i a l support o f Pub1 i c Works Canada i s g r a t e f u l l y acknowledged, as i s t h e t e c h n i c a l assistance o f J.D. Neil, NRCC, and

J.

Egan, PWC.

F i n a l l y , t h e cooperation o f t h e management and s t a f f of N a n i s i v i k Mines Ltd. g r e a t l y f a c i l i t a t e d t h e f i e l d work.

(13)

RENCES

IAHR Ice

Symposium 1988

Sapporo

Cox, G.F.N., 1983. Thermal expansion o f sea ice. Journal o f Glaciology, Vol. 29,

No.

103, pp. 425-432

Frederking, R.M.W. and Nakawo, M., 1984. I c e Action on N a n i s i v i k Wharf, Winter 1979-1980. Can, Geotech. J., Vol. 11, pp. 996-1003

Frederking, R. and Sinha, N.K., 1978. I c e a c t i o n on wharf a t Strathcona Sound. Proc. 4th I n t e r n a t i onal Conference on Port and Ocean Engineering under A r c t i c Conditions, St. John's, Nfld., Vo1. 2, pp. 707-717

Frederking R. and Sayed, M., 1987. N a n i s i v i k i c e pressure measurements

-

Winter 1985-86, Report G9, Geotechnical Section, I n s t i t u t e f o r Research i n Construction, National Research Council o f Canada. December, 1987

Girgrah, M. and Shah, V.K., 1978. Constructton o f a deep-sea dock i n t h e A r c t i c . Proc. 4th I n t e r n a t i o n a l Conference on Port and Ocean Engineering under A r c t i c Conditions, S t . John's, Nfld., Vol. 1, pp. 370-381

Hawkins, J.R., James, D.A., and Der, C.Y., 1983. Design, c o n s t r u c t i o n and i n s t a l l a t i o n o f a system t o measure environmental forces on a caisson r e t a i n e d i s 1 and. VTT Symposium 38, 7th I n t e r n a t i o n a l Conference on Port and Ocean Engineering under A r c t i c Conditions, H e l s i n k i , Finland, Vo1.4, pp. 770-779

P i l k i n g t o n , G.R., Blanchet, D, and Metge, M., 1983. F u l l s c a l e

miasurements o f i c e f o r c e s on an a r t i f i c i a l island. VTT Symposium 38, 7 t h I n t e r n a t i o n a l Conference on Port and Ocean Engineering under A r c t i c

Conditions, H e l s i n k i , Finland, Vol. 4, pp. 818-934

Sanderson, T.J.O., 1984a. Thermal i c e forces against i s o l a t e d structures. Proc IAHR Symposium on Ice, Hamburg, Germany, 27-31 August, 1984, Vol. 4,

pp. 289-299

Sanderson, T.J.O., 1984b. Theoretical and measured i c e f o r c e s on wide structures. Proc IAHR Symposium on Ice, Hamburg, Germany. 27-31 August, 1984, Vol. 4, pp. 151-207

(14)

This paper is being distributed in reprint form by the Institute for

Research in Consuuction. A list of building practice and research

publications available

from

the Institute may be obtained by writing

to

the Publications Section, Institute for Research in Construction,

National Research Council of Canada, Ottawa, Ontario, KIA 0R6.

Ce document est diskbut5 sous forme de tirC-&-part par 1'Institut de

recherche en construction. On peut obtenir une liste des publications de

1'Institut portant sur les techniques ou les recherches en matikre de

bitiment en Ccrivant la Section des publications, Institut de recherche

en construction. Conseil national de recherches du Canada, Ottawa

(Ontario),

K I A

OR6.

Figure

FIGURE  1  Schematic  showing  l o c a t i o n s   o f   i c e  s t r e s s   measuring  instruments
Figure  2  Results  o f   i c e  pressure  panel  No.  3  f o r   t h e   period  1986  January  20  t o  May  16
Figure  3  A i r   temperature  and  teniperature  a t   various  depths  i n  t h e   i c e   cover  f o r   the  period  1986  January  20  t o   May  21
Figure  5  I c e   temperature  and  time  r a t e   o f   i c e  temperature  change  a t   surface  and  0.25  m  depth  and  panel  No

Références

Documents relatifs

The following considerations are drawn from two cases-studies: the negotiation of the European ecolabelling criteria for ‘Indoor paints and varnishes’ (Nadaï, 1996a) and the

Paisajes Agrarios deI Ecuador En la Sierra, mientras que las plantaciones de piretro y de guantug fueron abandonadas, se debe evocar el éxito de la agroindustria lechera y de los

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity