• Aucun résultat trouvé

Annex 2 Discretization of the FdV variational principle for LEFM

N/A
N/A
Protected

Academic year: 2022

Partager "Annex 2 Discretization of the FdV variational principle for LEFM"

Copied!
8
0
0

Texte intégral

(1)

Annex 2

Discretization of the FdV variational principle for LEFM

Content

A2.1. Discretization of the FdV variational principle 210

A2.2. Recasting in matrix form 215

(2)

A2.1. Discretization of the FdV variational principle

The FdV variational equation writes:

6

0

5 4 3 2

1

+ Π + Π + Π + Π + Π =

Π

=

Π δ δ δ δ δ δ

δ (A2.1)

∑ ∫

=

=

Π

N

I A

I ij ij

I

dA

1

1

σ δε

δ (A2. 2)

∑ ∫ ⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

= ∂

= N

I I

A ij

i j j

ij i

) δε dA

X u δ X

u ( δ δ

1 I

2

2

Σ 1

Π (A2. 3)

∑ ∫ ⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

= ∂

= N

I I

A ij

i j j

ij i

) ε dA

X u X ( u δ

δ

1 I

3

2

Σ 1

Π (A2. 4)

∑ ∫

=

=

Π

N

I

I A

i

i

u dA

F

1 I

4

δ

δ (A2. 5)

∑ ∫

=

= K

t

S i i K

M

K

T δ u dS

Π δ

5 1

(A2. 6)

∑ ∫ ∫

=

⎥ ⎥

⎢ ⎢

⎡ δ − − δ

= Π

δ

u

K K

M K

K i S

i S

K i i

i

( u~ u ) dS r u dS r

1

6

(A2. 7)

From the assumption on the stresses and strains in LFMVC, we get successively:

{ }

J

{ }

O J

{ }

J

{ }

C

N J H

K H

K P

P = δ + δ

Σ1 Σ1

+ δ

Σ2 Σ2

, = 1 ,

δ (A2.8)

{ } { } [ ] { } [ ] { }

C

J J J J

J O

N J H

D K H

D

K

1 1

+

2 2

, = 1 , +

= δγ δ

Σ Σ

δ

Σ Σ

δγ (A2.9)

Development of δ Π

1

Introducing (A2.8) and (A2.9) in (A2.2), we get:

Π

1

δ

{ } [ ] { } [ ] { } ∑ { }

∑ ∫ ∫ ∫

+

=

=

Σ Σ

Σ

Σ

+

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + +

=

N

N I

I I I N

I A

I I I

I A

I I I

I A

I O I I

C C

I

A dA

H D K

dA H D K

dA

1 1

2 2

1 1

1 1

δε σ τ

δ τ

δ δγ

τ

∑ ∫ { } ∑ { } ∑ { }

+

=

= Σ

=

+ +

=

N

N I

I I I N

I

I I N

I A

I O I I

C C

C

I

A e

K dA

1 1

1

δε σ δ

δγ

τ (A2.10)

with

{ }

I I

K K K

⎭ ⎬

⎩ ⎨

= ⎧

Σ Σ Σ

2

1

; (A2.11)

(3)

{ }

[ ] { }

[ ] { } [ ] { }

I I

A

I A

I

A

I I I

A

I I I

I

I

D

dA H

dA H dA

H D

dA H D e

e e

I I

I

I

τ

τ τ

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎭ =

⎬ ⎫

⎩ ⎨

= ⎧

Σ Σ

Σ Σ

2 1

2 1

2

1

(A2.12)

Let

[ ]

C

A

I A

I I

I

I N

dA H

dA H IH

IH IH

I

I

1 ,

2 1

2

1

=

⎪ ⎪

⎪⎪ ⎬

⎪ ⎪

⎪⎪ ⎨

⎭ =

⎬ ⎫

⎩ ⎨

= ⎧

Σ Σ

(A2.13)

Hence

{ } e

I

= [ ] [ ] IH

I

D

I

{ } τ

I

(A2.14) e

1I

and e

2I

can be seen as a generalized strains in LFMVC n° I conjugated to the generalized stresses (or stress parameters) K

ΣI1

and K

ΣI2

Development of δ Π

2

∑ ∫ ⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

= ∂

= N

I I

A ij

i j j

ij i

) δε dA

X u δ X

u ( δ δ

1 I

2

2

Σ 1 Π

For I = 1 , N

C

(LFMVC’s), we have:

∑ ∫

=

⎪⎩ ⎪⎭

⎢ ⎢

⎡ −

∂ + ∂

C

I

N

I I

A

I ij i

j j

I i

ij

) dA

Y v Y

( v P

1

2

1 δ δ δγ

∑ ∫ ∑ ∑

= = =

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎥ ⎥

⎢ ⎢

⎡ −

∂ Φ + ∂

∂ Φ

=

C

I

N

I I

A

I ij N

J

N

J

J j i J J

i j I J

ij

v ) dA

v Y ( Y

P

1

2

1 1

1 δ δ δγ

[ ] { } ∑ ∫ { }

∑ ∑ ∫

=

= =

⎥ ⎥

⎢ ⎢

− ⎡

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎥ ⎥

⎢ ⎢

⎡ ∂ Φ

=

C

I C

I

N

I A

I I I

N

J N J I

I J A

I

dA v P dA

P

1

1 1

δγ δ

[ ] [ ] [ ] { }

∑ ∑ ∫ ∫ ∫

= =

Σ Σ

Σ

Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎥ ⎥

⎢ ⎢

⎡ ∂ Φ + ∂ Φ + ∂ Φ

=

N

J N J I

I J A

I I J A

I I J A

I

dA K H dA K H dA v

P

C

I I

1 1 I

2 2

1 1

0

δ

{ } [ ] { } [ ] { }

[ ]

I

N

I A

I I I I

O I J

I J

O

K H K H K D H K D H d A

C

P

I

∑ ∫

=

Σ Σ Σ Σ

Σ Σ

Σ Σ

⎥⎦ ⎤ + +

⎢⎣ ⎡ + +

1

2 2

1 1

2 2 1

1

δγ δ δ

[ ] { }

∑ ∑

= = Σ Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎥ ⎥

⎢ ⎢

⎡ + + ∂

=

N

J N J I

I A

I J I IJ

I

w

IJ

K w P dA v

K

C

1 1 I

0 2

2 1

1

φ δ

(4)

{ } [ { } { } ]

=

⎪⎩ +

Σ Σ

+

Σ Σ

⎪⎭

I I I

A

I I I

I I I

dA H K H

K A

P

1

2 2 1

1 0

0

0

δγ

δγ

{ } [ [ ] { } ]

=

⎪⎩

Σ

+

Σ Σ

⎪⎭

C

I I

N

I A

I I I I

A

I I I

dA K V K dA

e K

1

0

δ

δ

[ ] [ ] [ ] [ ] { }

∑ ∑ ∫

= = Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + ∂

=

N

J N

I

J I I A

I J I

T , I IJ

C

I

u dA R P

R W K

1 1

0

φ δ

{ } [ { } { } ]

=

⎪⎩ +

Σ Σ

+

Σ Σ

⎪⎭

C

I

N

I I

A

I I I

I I I

dA H K H

K A

P

1

2 2 1

1 0

0

0

δγ

δγ

{ } [ [ ] { } ]

=

⎪⎩

Σ

+

Σ Σ

⎪⎭

C

I I

N

I A

I I I I

A

I I I

dA K V K dA

e K

1

0

δ

δ

(A2.15)

with

{ } [ ]

I

{ }

J

J

J

R u

v

v v =

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

= ⎧

2

1

the displacements of node J expressed in the local reference frame attached to the LFMVC n° I

{ }

J J

[ ] R

I

{ } u

J

v

v v δ

δ δ δ

2

1

=

⎭ ⎬

⎩ ⎨

= ⎧

[ ]

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

⎢ ⎢

∂ ∂

∂ ∂

=

1 2

2 1

Φ Φ

0 Φ Φ 0 Φ

Y Y

Y Y

J J

J J

J

; [ ]

⎢ ⎤

= −

I I

I I

I

cos sin

sin R cos

α α

α α

{ } [ ] { }

I A

T J

IJ

H dA

w

I

, 1

1 Σ

Φ

= ; { } [ ] { }

I

A

T J

IJ

H dA

w

I

, 2

2 Σ

Φ

= (A2.16)

[ ] ⎥ ⎥

⎢ ⎢

= ⎡

IJ IJ IJ

w W w

2

1

(A2.17)

[ ]

[ ] { } [ ] { }

[ ] { } [ ] { }

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

=

Σ Σ

Σ Σ

Σ Σ

Σ Σ

I I

I I

A

I I

A

I I

A

I I

A

I I

I

dA H D H dA

H D H

dA H D H dA

H D H V

2 2

1 2

2 1

1 1

(A2.18) X

2

X

1

) ( X

c1

, X

c2

r θ Y

1

Y

2

α

(5)

{ }

[ ] { }

[ ] { } [ ]

I

{ }

I

A

I A

I

A

I I I

A

I I I

I

I

D P

dA H

dA H dA

H D P

dA H D P e

e e

I I

I

I 0

2 1

2 0

1 0

0 2 0 0 1

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎭ =

⎬ ⎫

⎩ ⎨

= ⎧

Σ Σ

Σ Σ

(A2.19)

For I = N

C

+ 1 , N (OVC’s), we have:

∑ ∫

⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

+

= N N

I I

A ij

i j j

ij i

C I

dA δε X )

u δ X

u ( δ

1

2

Σ 1

∑ ∫ ∑

+

= +

=

Σ

⎥⎦ −

⎢⎣ ⎤

⎡ +

Σ

=

N

N I

I I ij I ij I

N

N

I C

j I i i I j I

ij

C

C I

A dC

) u N u N (

1

1

2

1 δ δ δε (A2.20)

Taking account of = ∑

= N J

iJ J

i

δ u

u δ

1

Φ as well as of the symmetry of the Σ

ij

, this becomes :

∑ ∫

⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

+

= N N

I I

A ij

i j j

ij i

C I

dA δε X )

u δ X

u ( δ

1

2

Σ 1

[ ] { } ∑ { }

∑ ∑

+ = = + = + = = +

=

Σ

⎥ −

⎢ ⎤

⎣ Σ ⎡

= Σ

⎥ −

⎢ ⎤

⎣ Σ ⎡

=

N

N I

I I I

N

N I

N

J

J T , I IJ

N

N I

I I ij I ij N

J

J j IJ i N

N I

I ij

C C

C C

A u

A A

u A

1

1 1

1 1

1

δε δ

δε δ

(A2.21)

with

{ }

J J

u u u

⎭ ⎬

⎩ ⎨

= ⎧

2 1

δ

δ δ ; { }

I I

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

12 22 11

2 δε δε δε

δε ; { }

I I

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎧ Σ Σ Σ

= Σ

12 22 11

Development of δ Π

3

For I = 1 , N

C

(LFMVC’s), we have:

∑ ∫

=

⎪⎩ ⎪⎭

⎢ ⎢

⎡ −

∂ + ∂

C

I

N

I

I A

I ij i j j I i

ij

) dA

Y v Y ( v P

1

2

1 γ

δ

[ ] [ ] { } [ ] [ ] { }

∑ ∑

= = Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + ∂

=

N

J N

I

I J I A

I J J

I T , I IJ

C

I

dA u R P

u R W K

1 1

0

φ

δ δ

{ } [ [ ] { } [ ] { } ]

=

⎪⎩ +

Σ Σ

+

Σ Σ

⎪⎭

C

I

N

I

I A

I I I I

I I

I I

dA H D K H

D K P

A P

1

2 2

1 1

0 0

0

γ δ

δ

{ } [ [ ] { } ]

=

⎪⎩

Σ

+

Σ Σ

⎪⎭

C

I

N

I A

I I I I

I

I

e K V K dA

K

1

δ

δ

γ

(A2.22)

(6)

{ } { }

{ } [ ]

I

{ }

I

A I

A I

I

I

IH

dA H

dA H

e e e

I

I 0

0 2

0 1

γ 2 γ

γ 1

γ

γ γ

=

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎭ =

⎬ ⎫

⎩ ⎨

= ⎧ (A2.23)

For I = N

C

+ 1 , N (OVC’s), we have:

∑ ∫

⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

+

= N N

I I

A ij

i j j ij i

C I

dA ε X ) u X ( u δ

1

2

Σ 1 ⎥ − ∑

⎢ ⎤

⎡ ∑

= ∑

+

=

= +

=

N N

I I I

I ij ij N

J

Jj iIJ N

N I

ijI

C C

A ε δ u

A δ

1 1

1

Σ Σ

[ ] { } ∑ { }

∑ ∑

+

= +

= =

Σ

⎥ −

⎢ ⎤

⎣ Σ ⎡

=

N

N I

I I I N

N I

N

J

J T , I IJ

C C

A u

A

1

1 1

ε δ

δ (A2.24)

with

{ }

I I

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎧ Σ Σ Σ

= Σ

12 22 11

δ δ δ

δ

Development of δ Π

4

∑ ∑ ∫ ∑ { }

∑ ∫

= = = =

= Φ

=

=

Π

N

I

N

J

J J I

A J i N

J J i N

I

I A

i

i

F ~

u dA

F u dA

u F

I

I 1 1 1

1

4

δ δ δ

δ (A2.25)

Development of δ Π

5

∑ { }

∑ ∑ ∫

=

= =

Φ =

=

=

Π

N

J

J J M

K S

K J i N

J J i S

i

i

T ~

u dS

T u dS

u

T

t

K

t 1 1 1

5

δ δ δ

δ (A2.26)

Development of δ Π

6

∑ ⎥

⎢ ⎤

⎡ ∫ − − ∫

=

=

u

K K

M

K KS i K

S i i K i

K

i

( u~ u ) dS t u dS

t

6 1

δ δ

Π δ

We logically assume that none of the edges of the LFMVC’s is subjected to imposed displacements. So, they do not belong to S

u

.

Consequently, the result of the calculation of δ Π

6

is the same as in [5]:

Π

6

δ = ∑ ∑ ∑ ∑ { }

= =

= =

⎭ ⎬ ⎫

⎩ ⎨

− ⎧

⎭ ⎬

⎩ ⎨

⎧ −

N

J

M K K

KJ M J

K

N

J

KJ J i K

i K

i

U ~ u B u B t

t

u

u

1 1

1 1

δ δ

{ } { } { } {}

= =

= =

⎭ ⎬ ⎫

⎩ ⎨

− ⎧

⎭ ⎬

⎩ ⎨

⎧ −

=

N

J

M K K

KJ J

M

K

N J J K KJ

K

U ~ B u u B t

t

u

u

1 1

1 1

δ

δ (A2.27)

(7)

A2.2. Recasting in matrix form

In matrix form, these results can be summarized as follows:

{ } ∑ { } ∑ { }

∑ ∫

= Σ = +

=

+ +

=

Π

N

N I

I I I N

I

I I N

I A

I O I I

C C

C

I

A e

K dA

1 1

1

1

τ δγ δ σ δε

δ (A2.28)

[ ] [ ] [ ] [ ] { }

∑ ∑

= = Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + ∂

=

Π

N

J N

I

J I I A

I J I

T , I IJ

C

I

u dA R P

R W K

1 1

0

2

φ δ

δ (A2.29)

{ } [ { } { } ]

∑ ∫

=

Σ Σ Σ

Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + +

C

I

N

I

I A

I I I

I I I

dA H K H

K A

P

1

2 2 1

1 0

0

0

δγ

δγ

{ } [ [ ] { } ]

∑ ∫

= Σ Σ Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ +

C

I

N

I A

I I I I

I I

dA K V K e

K

1

0

δ

δ

[ ] { } ∑ { }

∑ ∑

+

= +

= =

Σ

⎥ −

⎢ ⎤

⎣ Σ ⎡

+

N

N

I I

I I N

N I

N

J

J T , I IJ

C C

A u

A

1

1 1

δε

δ (A2.30)

[ ] [ ] { } [ ] [ ] { }

∑ ∑ ∫

= = Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + ∂

=

Π

N

J N

I

I J I A

I J J

I T , I IJ

C

I

dA u R P

u R W K

1 1

0

3

δ δ φ

δ

{ } [ [ ] { } [ ] { } ]

=

⎪⎩ +

Σ Σ

+

Σ Σ

⎪⎭

C

I

N

I I

A

I I I I

I I

I I

dA H D K H

D K P

A P

1

2 2

1 1

0 0

0

γ δ

δ

{ } [ [ ] { } ]

=

⎪⎩

Σ

+

Σ Σ

⎪⎭

C

I

N

I A

I I I I

I I

dA K V K e

K

1

δ

δ

γ

[ ] { } ∑ { }

∑ ∑

+

= +

= =

Σ

⎥ −

⎢ ⎤

⎣ Σ ⎡

+

N

N I

I I I N

N I

N

J

J T , I IJ

C C

A u

A

1

1 1

ε δ

δ (A2.31)

∑ { }

=

=

Π

N

J

J J

F ~ u

1

4

δ

δ (A2.32)

∑ { }

=

=

Π

N

J

J J

T ~ u

1

5

δ

δ (A2.33)

{ } { } { } { }

∑ ∑

= =

= =

⎭ ⎬ ⎫

⎩ ⎨

− ⎧

⎭ ⎬

⎩ ⎨

⎧ −

=

Π

N

J

M K K

KJ J

M

K

N J J K KJ

K

U ~ B u u B t

t

u

u

1 1

1 1

6

δ δ

δ (A2.34)

Substitution in δ Π = 0 gives:

= Π

δ ∑ { } { } { } [ ] [ ] { } ∑ [ ] [ ] { }

= Σ Σ =

⎭ ⎬

⎩ ⎨

⎧ − − − + +

NC

I

J N I

J

T , IJ I

T , I I I

I I

I

e e e ( V V ) K W R u

K

1 1

0 γ

δ

(8)

+ { { } { } }

+

=

Σ

N I

I I

C

A A

1

σ δε

+ ∑ ∑ [ ] { } { }

+

= =

⎭ ⎬ ⎫

⎩ ⎨

⎧ −

N

Σ

N I

I N I

J

J T , I IJ

C

A u

A

1 1

ε

δ + ∑ { } { } ∑ { }

= =

⎭ ⎬ ⎫

⎩ ⎨

⎧ −

Mu

K

N J J K KJ

K

U ~ B u

t

1 1

δ

+ [ ] [ ] { } [ ] [ ]

⎪⎩

⎪ ⎨

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ + ∂

∑ ∫

= Σ

=

C

I

N

I

I A

J I T , I I

IJ T , N I

J

J

R W K R P dA

u

1

0 1

φ δ

[ ] { } { } { } { }

⎭ ⎬

− ⎫

− Σ

+ ∑ ∑

= +

=

M K K J KJ N J

N I

I

IJ

F ~ T ~ B t

A

u

C 1 1

[ { } { } { } { } ]

=

Σ Σ Σ

Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ − − −

+

C

I

N

I A

I I

I I I I

dA H K H

K P

1

1 2 1 1 0

0

τ

δγ

[ ] [ ] { } { } [ [ ] { } [ ] { } ]

= =

Σ Σ

Σ

Σ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ ∂ − − +

+

C

I I

N

I

N

J A

I I I

I I I

I A

I J I I J

dA H D K H

D K A

dA u R P

1 1

1 2

1 1

0

0

φ γ

δ

= 0 (A2.35)

with [ ] [ ] V

I

+ V

I,T

= 2 [ ] V

I

since [ ] V

I

is symmetric.

From (A2.35), all the equations (V.27) to (V.33) in chapter V can be deduced.

Références

Documents relatifs

Casas, An Extension of Pontryagin’s Principle for State Constrained Optimal Control of Semilinear Elliptic Equations and Variational Inequalities, SIAM Journal on Control

The present study extends this principle to the dynamics of large deformations for isentropic motions in thermo-elastic bodies: we use a new way of writing the equations of motion

(1986) Variational principles and two-fluid hydrodynamics of bubbly liquid / gas mixtures. (1990) Variational theory of mixtures in

Since the stresses in (VI.15) are given in the local frame (Y 1 ,Y 2 ) L attached to the crack tip L, they must be rotated to be expressed in the global frame (X 1 ,X 2 )

In the following we address these questions and we present a variational principle which satisfies the following properties: provided that the involved structure Lie group is

When a problem has a gradient flow structure, then its trajectories follow the steepest descent path, and one way to prove existence of solutions is by employing some implicit

For this case, we numerically verified that our variational discretization (i) preserves station- ary solutions of the shallow water equations, (ii) conserves very accurately

It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the