• Aucun résultat trouvé

Annex 5 Discretization of the FdV variational principle for XNEM

N/A
N/A
Protected

Academic year: 2022

Partager "Annex 5 Discretization of the FdV variational principle for XNEM"

Copied!
20
0
0

Texte intégral

(1)

Annex 5    Page 235 

Annex 5

Discretization of the FdV variational principle for XNEM

Content

A5.1. Discretization of the FdV variational principle 236 A5.2. Euler equations deduced from the FdV variational principle 250

A5.3. Calculation of { } K

ε L

253

A5.4. Calculation of { } γ

0 L

254

(2)

Annex 5    Page 236 

A5.1. Discretization of the FdV variational principle

+

⎢ ⎢

⎡ −

∂ + ∂

∂ Σ ∂

+

= Π

u

t

S

i i i S

i i A

i i A

i ij j j ij i

A

ij ) dA F u dA T u dS r ( u~ u ) dS

X u X ( u dA

) (

W ε ε

2

1

6

0

5 4 3 2

1

+ Π + Π + Π + Π + Π =

Π

=

Π δ δ δ δ δ δ

δ (A5.1)

∑ ∫ −

=

= N

I A ij ij ij I

I

dA ) (

1 1

σ Σ δε

Π

δ (A5.2)

∑ ∫ ⎥ ⎥

⎢ ⎢

∂ + ∂

= ∂

= N

I I

A i

j j

ij i

) dA

X u X

( u

1 I

2

δ δ 2 Σ 1 Π

δ (A5.3)

∑ ∫ ⎥ ⎥

⎢ ⎢

⎡ −

∂ + ∂

= ∂

= N

I I

A ij

i j j

ij i ) ε dA

X u X

( u δ

δ

1

I

3 2

Σ 1

Π (A5.4)

∑ ∫

=

=

Π

N

I

I A

i

i

u dA

F

1 I

4

δ

δ (A5.5)

∑ ∫

=

= K

t

S i i K

M

K

T δ u dS

Π δ

5 1

(A5.6)

∑ ∫ ∫

=

⎥ ⎥

⎢ ⎢

⎡ − −

=

Π

u

K K

M K

K i S

i S

K i i

i ( u~ u ) dS r u dS r

1

6

δ δ

δ (A5.7)

Development of δ Π

1

∑ ∫

∑ ∫

∑ ∫

=

Σ +

Σ +

Σ

= Π

C L

H J O

I L A

L ij ij ij

J A

J ij ij ij N

I A

I ij ij

ij

dA dA dA

λ λ

δε σ

δε σ

δε σ

δ ( ) ( ) ( )

1

1

(A5.8)

Let :

[ ]

[ ] { } [ ] { }

[ ] { } [ ] { }

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

=

L L

L L

A

L L L L

A

L L L L

A

L L L L

A

L L L L

L

dA H D H dA

H D H

dA H D H dA

H D H HDH

2 2

1 2

2 1

1 1

(A5.9)

[ ] { } { }

⎥ ⎥

⎢ ⎢

= ⎡ ∫ ∫

L

L A

L L A

L L

L

H dA H dA

IH

1 2

; { } [ ] { }

[ ] { }

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

= ∫

L L

A

L L L L

A

L L L L

L

dA D

H

dA D

H

H τ

τ

τ

2 1

(A5.10)

{ } ⎭ ⎬ ⎫

⎩ ⎨

= ⎧

Σ Σ

Σ L

L L

K K K

2

1

; { }

⎭ ⎬

⎩ ⎨

= ⎧

LL

L

K K K

2 1 ε

ε ε

; { }

⎭ ⎬

⎩ ⎨

= ⎧

L

U L L U

U

K

K K

2

1

(A5.11)

(3)

Annex 5    Page 237 

The rotation into the global frame of the last term of (A5.8) gives:

{ }

{ } [ ] { } [ ] { }

{ }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

∑ ∫ ∫

∑ ∫ ∫

∑ ∫ ∫ ∫

∑ ∫

∑ ∫

∑ ∫

λ

∈ ε

Σ Σ

λ

∈ ε

Σ Σ

λ

∈ Σ Σ

λ

∈ Σ Σ ε ε

λ

∈ λ

δ

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

− τ

+

δ

⎥ ⎥

⎥ ⎥

⎢ ⎢

⎢ ⎢

− τ

+

γ

⎥ δ

⎢ ⎢

⎡ τ − − −

=

δ + δ

+ γ δ

− τ

=

γ δ

− τ

= δε

Σ

− σ

C

L L

L L

C

L L

L L

C L L L

C L

C L

C L

L

L

A A

L L L L

L L L L L

L

A L L L L

A

L L L L

L

L

A A

L L L L

L L L L L

L

A L L L L

A

L L L L

L

L

A A

L L L L

L L L L A

L L

L A

L L L L

L L L L

L L L L

L

L A

L L L L

L A

I ij ij ij

K dA H D H K

dA H D H K

dA H D P dA H D

K dA H D H K

dA H D H K

dA H D P dA H D

dA H K

dA H K

P A dA

dA ) H D K H

D K (

) H K H

K P

(

dA )

P (

dA ) (

2 1

2 2 1

2 1

0 2 2

1 1

2 2 1

1 1

0 1 1

2 0 2 1

0 1

2 2

1 0 1

2 2 1

0 1

or, using the notations (A5.9,A5.10,A5.11):

{ } { } [ ] { } { } [ ] [ ] { }

[ ]

[ ] { }

∑ ∫

∑ ∫

∈ Σ

∈ Σ

− +

⎥ ⎥

⎢ ⎢

⎡ − −

= Σ

C C

C L

C L

L

L L L

L

L L T L L L

L

L L L

L A

L L L

L A

I ij ij ij

K HDH K

P D IH H

K

K IH P

A dA dA

λ ε

λ ε τ

λ λ

δ δ

τ δγ

δε σ

, 0 0 0

) (

(A5.12)

Recalling (II.34):

ij ij

ij

ε

ε σ W

= ∂ ( )

(II.34)

On the other hand, in cells of type O, as a consequence of (II.34) and (VI.7), the constitutive stresses are constant.

Similarly, in cells of type H, as a consequence of (II.34) and (VI.10), the constitutive stresses are constant in parts A and B.

Consequently, the discretized form of δ Π

1

is:

(4)

Annex 5    Page 238 

{ } { }

[ ]

{ } { }

[ ] [ { } { } ]

{ }

{ } { } [ ] { } { } [ ] [ ] { } [ ] { }

[ ]

∑ ∫

∈ Σ

∈ Σ

=

− +

⎥ ⎥

⎢ ⎢

⎡ − −

+

Σ

− +

Σ

− +

Σ

= Π

C

C L

H O

L

L L L

L T L L L

L

L L L

L A

L L L

J

J B J B I B J J B

A J A J A J A N

I

I I I I

K HDH P

D IH H

K

K IH P

A dA

A A

A

λ ε τ

λ λ

δ

τ δγ

σ δε

σ δε

σ δε

δ

, 0 0 0

, ,

, , ,

, , , 1 1

(A5.13)

with the notations:

{ } ⎪

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

I I I I

12 22 11

Σ Σ Σ

Σ ; { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

I I I I

12 22 11

σ σ σ

σ ; { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

I I I I

12 22 11

ε 2

ε ε

ε (in global frame) (A5.14)

{ } ⎪

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

L L L L

12 22 11

γε γ γ

γ ; { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

L L L L

0 12 0 22 0 11 0

2 γ γ γ

γ ; { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

=

L L L L

P P P P

0 12 0 22 0 11

0

(in local frame) (A5.15)

Development of δ Π

2

∑ ∫

∑ ∫ ∑ ∫

∑ ∫

∈ ∈

=

⎥ ⎥

⎢ ⎢

∂ + ∂

∂ Σ ∂

+

⎥ ⎥

⎢ ⎢

∂ + ∂

∂ Σ ∂

⎥ +

⎥ ⎦

⎢ ⎢

∂ + ∂

∂ Σ ∂

+

⎥ ⎥

⎢ ⎢

∂ + ∂

∂ Σ ∂

= Π

C L

H J H J

O

I

L L

A i

j j

L i ij

J J

J

A i

j j

J i B ij J

A i

j j

J i A ij N

I

I

A i

j j

i I

ij

X dA u X

u

X dA u X

dA u X

u X

u X dA

u X

u

λ

λ λ

δ δ

δ δ δ δ

δ δ δ

) 2 (

1

) 2 (

) 1 2 (

1

) 2 (

1

, ,

1 2

(A5.16)

where the Σ

ijL

of the last term are given by (VI.15). Since the stresses in (VI.15) are given in the local frame (Y

1

,Y

2

)

L

attached to the crack tip L, they must be rotated to be expressed in the global frame (X

1

,X

2

) because the displacements are expressed in this global frame.

Another approach consists in using the local frame (Y

1

,Y

2

)

L

to express the displacements in the last term of (A5.13).

Let v

iL

be the components of the displacements in the local frame.

Integrating by part, the last term of (A5.16) becomes:

(5)

Annex 5    Page 239 

L A

L L i j

L ij L

C

L i L ij L j

L A

L i

L j L

j L L i

ij L

A i

j j

L i ij

dA Y v

dC P v P M

Y dA v Y

P v X dA

u X

u

L L

L L

∂ + ∂

=

⎥ ⎥

⎢ ⎢

∂ + ∂

= ∂

⎥ ⎥

⎢ ⎢

∂ + ∂

∂ Σ ∂

δ δ

δ δ δ δ

) 2 (

) 1 2 (

1

(A5.17)

where C

L

is the contour of the cell and M

Lj

are the components of the outward normal to C

L

expressed in the local frame (Y

1

,Y

2

)

L

However, since { } P

L

= { } { } P

O L

+ P

Σ L

where { } P

O L

is constant and { } P

Σ L

is an exact solution of the Theory of Elasticity, which satisfy the equilibrium equations, we have, in absence of body force,

= 0

L j

L ij

Y P

so that the last term of (A5.17) vanishes.

The other terms of (A5.16) are also integrated by parts. This gives:

V H

2 2 2

2

= Π + Π + Π

Π δ

Φ

δ δ

δ (A5.18)

with

∑ ∫

=

=

O

I

N

I I

C I i

I j

ij

N u dC

1

Φ2

Σ δ

Π

δ (A5.19)

∑ ∫ ∑ ∫

∈ ∈

Σ + Σ

= Π

H AJ H BI

J J

J B C

i J B j J B ij J

A C

i J A j J A ij

H

N u dC N u dC

λ λ

δ δ

δ

2 , , , , , ,

, ,

(A5.20)

L C

i L ij L j L

V

M P v dC

C L

∑ ∫

=

Π δ

δ

2 λ

(A5.21)

The assumed displacements are given by (VI.22):

J i J J

N

J

J i J

i

u C X a

u = ∑ Φ + ∑ Φ

Λ

=

) (

1

Their variations are given in the global frame ( X

1

, X

2

) by:

C i i

i

u u

u δ δ

δ =

Φ

+ (A5.22)

with

= Φ

=

N

Φ

J

J i J

i

u

u

1

δ

δ (A5.23-a)

J i J J

C

i

C X a

u δ

δ = ∑ Φ

Λ

)

( (A5.23-b)

They can also be expressed in a local frame ( Y

1

, Y

2

) by:

C i i

i

v v

v δ δ

δ =

Φ

+ (A5.24)

with

(6)

Annex 5    Page 240 

= Φ

=

N

Φ

J

J i J

i

v

v

1

δ

δ (A5.25-a)

J i J J

C

i

C X b

v δ

δ = ∑ Φ

Λ

)

( (A5.25-b)

For the calculation of δ Π

Φ2

, we have:

[ ]

IJ

{ }

I

N I

N J J N

I I

C I i

j I

ij

N u dC

O

u A

O

I

Σ δ

δ Σ

1 1

1

Φ

= ∑ ∑

∑ ∫

= =

=

(A5.26-a)

[ ] C IJ { } I

N I

J J

N

I I

C

i C I j

ij I N u dC

O

a A

O

I

Σ

=

Σ ∑ ∑

∑ ∫

=1 =1 ∈Λ

δ

δ (A5.26-b)

where

{ }

⎪ ⎪

⎪⎪ ⎬

⎪ ⎪

⎪⎪ ⎨

=

I I I I

12 22 11

Σ Σ Σ

Σ ; { }

⎭ ⎬

⎩ ⎨

= ⎧

II

I

u u u

2

1

; { }

⎭ ⎬

⎩ ⎨

= ⎧

II

I

a a a

2

1

; (A5.27)

[ ]

⎢ ⎤

= ⎡

IJ IJ IJIJ

IJ

A A

A A A

1 2

2 1

0

0 ; [ ]

⎥ ⎥

⎢ ⎢

= ⎡

IJ

C IJ C

IJ C IJ

IJ C

C

A A

A A A

1 2

2 1

0

0 (A5.28)

= ∫

C

I

I J I

IJ j

j N dC

A Φ ; =Φ

CI

I J I

j IJ

j

C

N C X dC

A ( ) (A5.29)

Finally, δ Π

Φ2

becomes:

[ ] { } N [ ] C IJ { } I

I

J J

I N IJ

I N J J

A a A

u

O

O

δ Σ + δ Σ

= Π

δ ∑ ∑ ∑ ∑

= ∈Λ

= = Φ

1

1 1

2

(A5.30)

H

Π

2

δ is calculated in the same way:

[ ] { } [ ] { }

[ ] { } [ C , B ] IJ { } B I,

I

J J

I , A A IJ

, C I

J J

I , B B IJ

I N J J I,

A A IJ

I N J J H

A a A

a

A u A

u

H H

H H

Σ δ

+ Σ δ

+

Σ δ

+ Σ δ

= Π δ

∑ ∑

∑ ∑

∑ ∑

∑ ∑

λ

∈ ∈Λ λ

∈ ∈Λ

λ

∈ =

λ

∈ =1 1

2

(A5.31)

where the subcripts A and B refer to the 2 parts of the cell of type H.

In the calculation of contour integrals of the type ∫ •

I ,

CA

dC

A,I

or ∫ •

I ,

CB

dC

B,I

, the contours

include the crack lips (figure A5.1).

(7)

Annex 5    Page 241 

Figure A5.1. Cell of type H

For δ Π

V2

, we have:

L C

L j L ij C i i L

L C

L j L ij i L

V

v P M dC v v P M dC

C L C L

∑ ∫

∑ ∫ = +

=

Π

Φ

)

2

δ ( δ δ

δ

λ λ

(A5.32) with P

ijL

given by:

{ } P

L

= { } { } { } P

O L

+ P

Σ L

= P

O L

+ K

ΣL1

{ } H

1 L

+ K

ΣL2

{ } H

2 L

, L ∈ λ

C

(A5.33) The 1

st

term of δ Π

V2

writes:

L C

L j L ij J J i L

N

J L

C

L j L ij i L

dC M P v

dC M P v

C L C L

∑∑ ∫

∑ ∫ = Φ

∈ =

Φ

δ δ

λ

λ 1

(A5.34) Let

[ ]

⎢ ⎤

= ⎡

L L LL

L

M M

M M M

1 2

2 1

0

0 (A5.35)

[ ]

JL J L L LL J

[ ] M

L

M

M M

M ⎥ = Φ

⎢ ⎤

⎣ Φ ⎡

=

1 2

2 1

0

η 0 ; [ ] = ∫ [ ]

CL

L JL

JL

dC

W η (A5.36)

{ } = Φ [ ] { } { } = ∫ { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎥ ⎦

⎢ ⎤

⎣ Φ ⎡

=

CL

L JL JL

L L J L

L L

L L

J

JL

M H V dC

H H H M M

M M

1 1

1 3

1 2 1 1 1

1 2

2 1

1

;

0

0 η

η (A5.37)

{ } = Φ [ ] { } { } = ∫ { }

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎥ ⎦

⎢ ⎤

⎣ Φ ⎡

=

CL

L JL JL

L L L J

L L L

J

JL

M H V dC

H H H M M

M M

2 2

2 3

2 2 2 1 2

1 2

2 1

2

;

0

0 η

η (A5.38)

X

1

X

2

Contour of part A

Contour

of part B

(8)

Annex 5    Page 242 

[ ] V

JL

= [ { } { } V

1JL

V

2JL

] ; { }

⎭ ⎬

⎩ ⎨

= ⎧

JJLL

L J

v v v

,

2 ,

, 1

(A5.39)

Then, the term δ v

iJ,L

Φ

J

P

ijL

M

Lj

can be written in matrix form

[ ] { } [ ] [ { } { } { } ]

[ ] { } [ ] { } [ ] { }

[ ]

[ ] { } { } { }

[

JL L L JL L JL

]

L J

L L J L L

L J L L

L J L J

L L L L

L L J L J

L L J L J L

L J

L J L J L j L ij J L J i

K K

P v

H M K

H M K

P M v

H K H K P M v

P M v

P P P M

M M v M

v M

P v

1 2 1

1 , 0

2 2

1 1

, 0

2 2 1

1 , 0

,

12 22 11

1 2

2 , 1

2 , 1 ,

0 0

η η

η δ δ δ

δ δ

δ δ

Σ Σ

Σ Σ

Σ Σ

+ +

=

Φ + Φ

+ Φ

=

+ +

Φ

=

Φ

⎪ =

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎥ ⎦

⎢ ⎤

⎣ Φ ⎡

= Φ

(A5.40)

so that:

[ ] { } { } { }

[ ]

[ ] { } [ ] { }

[

JL L JL L

]

L J L

N

J

L JL L JL

JL L L J L

N

J L

C

L j L ij L i L

K V P

W v

V K V

K P

W v dC

M P v

C L C C

Σ

∈ =

Σ Σ

∈ =

Φ

+

=

+ +

=

∑ ∑

∫ ∑ ∑

, 0 1

2 2 1 1

, 0 1

,

δ

δ δ

λ

λ

λ

(A5.41)

In a similar way, we have, for the 2

nd

term of δ Π

V2

:

L C

L j L ij J L

J i

L J

L C

L j L ij L C i L

dC M P X C b dC

M P v

C L C L

∑ ∑ ∫

∑ ∫ = Φ

∈ ∈Λ

)

,

(

,

δ

δ

λ λ

(A5.42) which can be written in the following matrix form:

[ ] { } { } { }

[ ]

[ ] { } [ ] { }

[

C JL L

]

JL L C L J

L J

JL C JL L

C L L

JL C L J

L J

L C

L j L ij L i L

K V P

W b

V K V

K P

W b dC

M P v

C L C C

Σ

∈ ∈Λ

Σ

∈ ∈Λ Σ Φ

+

=

+ +

=

∑ ∑

∫ ∑ ∑

, 0

2 2 1 1

, 0 ,

δ

δ δ

λ

λ

λ

(A5.43)

with

[ ]

C JL J L

C X

J

[ ] M

L

M M

M X M

C ⎥ = Φ

⎢ ⎤

⎣ Φ ⎡

= ( )

0 ) 0

(

1 2

2

η

1

; [ ] = ∫ [ ]

CL

L JL JL

C

dC

W η (A5.44)

{ }

J

[ ]

L

{ }

L

L L

J JL

C

C X M H

H H H M

M M X M

C

1

3 1

2 1

1 1

1 2

2 1

1

( )

0 ) 0

( = Φ

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎥ ⎦

⎢ ⎤

⎣ Φ ⎡

η = (A5.45)

(9)

Annex 5    Page 243 

{ }

J

[ ]

L

{ }

L

L L

J JL

C

C X M H

H H H M M

M X M

C

2

3 2 2 2 1 2

1 2

2 1

2

( )

0 ) 0

( = Φ

⎪ ⎭

⎪ ⎬

⎪ ⎩

⎪ ⎨

⎥ ⎦

⎢ ⎤

⎣ Φ ⎡

η = (A5.46)

{ } = ∫ { }

CL

L JL C JL

C

dC

V

1

η

1

; { } = ∫ { }

CL

L JL C JL

C

dC

V

2

η

2

; [ ] [ { } { }

JL C JL

]

C JL

C

V V

V =

1 2

(A5.47)

{ } ⎭ ⎬ ⎫

⎩ ⎨

= ⎧

JJLL

L J

b b b

,

2 , , 1

(A5.48) Finally,

[ ] { } [ ] { }

[ ]

[ ] { } [ ] { }

[

C JL L

]

JL L C L J

L J

L L JL

L JL J L

N

J V

K V P

W b

K V P

W v

C C

Σ

∈ ∈Λ

Σ

∈ =

+ +

+

= Π

∑∑

∑∑

, 0 , 0 1

2

δ δ δ

λ λ

(A5.49)

Summarizing, we get:

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ]

[ ] { } [ ] { }

[

C JL L

]

JL L C L J

L J

L L JL

L JL J L

N

J

I B IJ B C I

J J

I A IJ A C I

J J

I B IJ B I

N J J I

A IJ A I

N J J

I IJ C N

I

J J

I N IJ

I N J J

K V P

W b

K V P

W v

A a A

a

A u A

u

A a A

u

C C H H

O O

Σ

∈ ∈Λ

Σ

∈ =

Λ

∈ ∈Λ

∈ ∈Λ

Λ

∈ =

∈ =

= ∈Λ

= =

+ +

+ +

Σ +

Σ +

Σ +

Σ +

Σ +

Σ

= Π

∑∑

∑∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

, 0 , 0 1

, ,

, ,

, 1

, 1

1

1 1

2

δ δ

δ δ

δ δ

δ δ

δ

λ λ λ λ

(A5.50)

Development of δ Π

3

∑ ∫

∑ ∫

=

=

Σ

⎢ ⎢

∂ + ∂

∂ Σ ∂

=

Π

N

I

I A

ij ij N

I

I

A i

j j

ij i

dA dA

X u X

u

I

I 1

1

3

( )

2

1 δ ε

δ δ

The first term is obtained by a calculation that is perfectly similar to that of δ Π

2

. For the second term, we have:

∑ ∫

∑ ∫

∑ ∫

∑ ∫

= = ∈ ∈

Σ +

Σ +

Σ

= Σ

C L

H J O

I

I L A

L ij ij

J A

J ij ij N

I A

I ij ij N

I

I A

ij

ij

dA dA dA dA

λ λ

ε δ ε

δ ε

δ ε

δ

1 1

(A5.51)

∑ { }

∑ ∫

= =

Σ

=

Σ

O

O

I

N

I

I I I N

I A

I ij

ij

dA A

1 1

δ ε ε

δ (A5.52)

(10)

Annex 5    Page 244 

{ } { }

{ }

∑ ∫ ∑

Σ +

Σ

= Σ

H

H J J

J J B

B J B J J A

A J A

J A

J ij

ij

dA A A

λ λ

δ ε δ

ε ε

δ

, , , , , ,

(A5.53)

{ }

[ ] [ ] { { } { } { } }

∑ ∫

∑ ∫

∑ ∫

∑ ∫

∈ Σ Σ

+ +

+ +

=

=

= Σ

C L

C L

C L

C L

L A

L L L

L L L L

L L L L

L A

L L L

L A

L ij ij

L A

L ij ij

dA H K H

K P

D H K H

K

dA P dA

P dA

λ ε ε

λ λ

λ

δ δ

δ γ

δ γ γ

δ ε

δ

2 2 1

1 0

2 2 1

1 0

(A5.54)

Using the notations [ HDH ]

L

and [ ] IH

L

introduced in (A5.9) and (A5.10), we get

{ }

[ ] { } [ ] [ ] { } [ ] { }

∑ ∫ ∑

∈ Σ

∈ Σ

+

+ +

= Σ

C

C C

C

C L

L

L L L

L

L L L L

L L L

L L

L L L

L A

L ij ij

K HDH K

K IH D P K

IH P A

dA

λ ε

λ ε

λ λ λ

δ

δ δ

γ

δ γ ε

δ

0 0

0 0

(A5.55)

Finally, we obtain:

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ] { } [ ] { }

[ ]

[ ] { } [ ] { }

[ ]

{ } { { } { } }

{ }

[ ] { } [ ] [ ] { } [ ] { }

∑∑

∑∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∈ Σ

∈ Σ

=

Σ

∈ ∈Λ

Σ

∈ =

Λ

∈ ∈Λ

∈ ∈Λ

Λ

∈ =

∈ =

= ∈Λ

= =

Σ +

Σ

− Σ

+ +

+ +

Σ +

Σ +

Σ +

Σ +

Σ +

Σ

= Π

C

C C

C

H O

C C H H

O O

L

L L L

L

L L L L

L L L

L L

L L L

J

J J B B J B J J A A J A N

I

I I I

L JL C JL L

C L J

L J

L L JL

L JL J L

N

J

I B IJ B C I

J J

I A IJ A C I

J J

I B IJ B I

N J J I

A IJ A I

N J J

I IJ C N

I

J J

I N IJ

I N J J

K HDH K

K IH D P K

IH P A

A A

A

K V

P W

b

K V P

W v

A a A

a

A u A

u

A a A

u

λ ε

λ ε

λ λ

λ λ

λ λ λ

δ

δ δ

γ

δ γ

δ ε δ

ε δ

ε

δ δ

δ δ

δ δ

δ δ

δ δ

δ

0 0

0 0

, , , , ,

, 1

, 0 , 0 1

, ,

, ,

, 1

, 1

1

1 1

3

(A5.56)

(11)

Annex 5    Page 245 

Development of δ Π

4

∑ ∫

∑ ∫

∑ ∫

= =

Φ

=

=

=

Π

N

I

I A

C i i N

I

I A

i i N

I

I A

i

i

u dA F u dA F u dA

F

I I

I 1 1

1

4

δ δ δ

δ (A5.57)

∑ ∫ ∑

∑ ∫ ∑

= ∈Λ

= =

⎥ ⎥

⎢ ⎢

⎡ Φ

⎥ −

⎢ ⎤

⎡ Φ

=

Π

N

I

I A

J i J J

i N

I

I A

N

J

J i J

i

u dA F C X a dA

F

I

I 1

1 1

4

δ ) ( ) δ

δ (A5.58)

Let

I A i J IJ

i

F dA

F ~

I

∫ Φ

= ; { }

⎭ ⎬

⎩ ⎨

= ⎧

IJIJ

IJ

F F F

2

~

1

~ ~

(A5.59)

I J A

i IJ

i

C

C X F dA

F

I

Φ

= ∫ ( )

~

,

; { }

⎭ ⎬

⎩ ⎨

= ⎧

IJ

C IJ IJ C

C

F

F F

2

~

1

~ ~

(A5.60)

We get:

{ } { }

C IJ N

I J N J

I N IJ J

J

F a F

u ~ ~

1

1 1

4

∑∑ ∑∑

= ∈Λ

= =

=

Π δ δ

δ (A5.61)

Development of δ Π

5

∑ ∫

∑ ∫

∑ ∫

= Φ

=

=

=

= Π

K t

K t

K t

S

K C i i M

S K

K i i M

S K

K i i M

K

dS u T dS

u T dS

u

T δ δ δ

δ

1 1

1

5

(A5.62)

Let

K J S

i KJ

i

T dS

T

K

Φ

= ∫

~ ; { }

⎭ ⎬

⎩ ⎨

= ⎧

KJKJ

KJ

T T T

2

~

1

~ ~

(A5.63)

K J S

i KJ

i

C

C X T dS

T

K

Φ

= ∫ ( )

~

,

; { }

⎭ ⎬

⎩ ⎨

= ⎧

KJ

C KJ KJ C

C

T

T T

2

~

1

~ ~

(A5.64)

We get:

{ } { }

C KJ M

K J M J

K N KJ J

J

T a T

u

t

t

~ ~

1

1 1

5

∑ ∑ ∑∑

= ∈Λ

= =

=

Π δ δ

δ (A5.65)

Development of δ Π

6

∑ ∫ ∫

=

⎥ ⎥

⎢ ⎢

⎡ − −

=

Π

u

K K

M K

K i S

i S

K i i

i ( u~ u ) dS r u dS r

1

6

δ δ

δ

(12)

Annex 5    Page 246 

∑ ∫ ∑ ∫

∑ ∫

= =

=

+ +

= Π

A u

B u

K i K

i O

u

K

M K

M

K S

) K K ( B ) K ( i B S

) K K ( A ) K ( i A M

K S

K K i

i u~ dS r u~ dS r u~ dS

r

1 1

1

6

δ δ δ

δ

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ Φ + Φ

δ

O u

K K

M

K J s

K J J

i N

J s

K J J

K i

i u dS a C ( X ) dS

r

1 1

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ Φ + Φ

δ

A u

K K

M

K J s

K J J

i N

J s

K J J

) i K (

i A u dS a C ( X ) dS

r

1 1

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ Φ + Φ

δ

B u

K K

M

K J s

K J J

i N

J s

K J J

) i K (

i B u dS a C ( X ) dS

r

1 1

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ δ Φ + δ Φ

O u

K K

M

K J s

K J J

i N

J s

K J J

K i

i u dS a C ( X ) dS

r

1 1

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ δ Φ + δ Φ

A u

K K

M

K J s

K J J

i N

J s

K J J

) i K (

i A u dS a C ( X ) dS

r

1 1

∑ ∑ ∫ ∑ ∫

= = ∈Λ

⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

⎧ δ Φ + δ Φ

B u

K K

M

K J s

K J J

i N

J s

K J J

) i K (

i B u dS a C ( X ) dS

r

1 1

(A5.66)

where A ( K ) and B ( K ) are the parts A and B of an edge K cut by the crack.

O

M

u

is the number of edges not cut by the crack on which displacements are imposed.

A

M

u

and M

uB

are the numbers of parts A and B of edges cut by the crack on which displacements are imposed.

Let

=

SK

K i K

i

u dS

U ~ ~

; =

K i

S

K A K

A

i

u dS

U ~

( )

~

; =

K

S iB(K) K )

K ( B

i

u~ dS

U ~

(A5.67)

{ } ⎭ ⎬ ⎫

⎩ ⎨

= ⎧

KK

K

U ~ U ~ U ~

2

1

; { }

⎭ ⎬

⎩ ⎨

= ⎧

AA((KK))

) K ( A

U ~ U ~ U ~

2

1

; { }

⎭ ⎬

⎩ ⎨

= ⎧

BB((KK))

) K ( B

U ~ U ~ U ~

2

1

(A5.68)

= ∫

S

K

J K

KJ dS

B Φ ; =

SK J K

CKJ

C ( X ) dS

B Φ (A5.69)

{ } ⎪⎭

⎪ ⎬

⎪⎩

⎪ ⎨

= ⎧ K K

K

r r r

2

1

(A5.70)

Références

Documents relatifs

Computer-Driven & Computer-Assisted Music Systems Microprogrammable Microprocessors for Hobbyists Speech Synthesis Using Home Computers Optical Scanning for

Solution by the Missouri State University Problem Solving Group Department of Mathematics. Missouri State University

According to the result stated above, the solution in F( p ) of ( Eq. It appears that there are two different structures for the pattern of the continued fraction expansion of

The proposal allows the algorithmic resolution of unknown objects in the directory and in the absence of 1993 X.500 Directory Standard implementations provides an interim

It is clear that none of them takes into account any cosmological effect, like for instance the cosmological redshifts: g Schw is the solution (of the Einstein equation) for an

Newton-Okounkov body is an efficient tool to study the volume function on the group of Cartier divisors over a projective variety. We remind briefly its construction. Let d be the

Compute, relative to this basis, the matrix of the linear transformation of that space which maps every complex number z to (3 −

A two-dimensional representation is either irreducible or has an invariant one-dimensional subspace, which corresponds to a common eigenvector of all transformations representing