• Aucun résultat trouvé

K n of the form 1 + 2 + 4 + 8 + . . . + 2 n don'tneed to be

N/A
N/A
Protected

Academic year: 2022

Partager "K n of the form 1 + 2 + 4 + 8 + . . . + 2 n don'tneed to be "

Copied!
1
0
0

Texte intégral

(1)

Épreuve de setion européenne

Perfet numbers

Aperfetnumberisanaturalnumberthatisthesumofitsproperdivisors(alldivisorsexept

thenumberitself). Forexample,28is perfet. InTheElements,bookIX,proposition36,Eulid

wrote:

If asmanynumbersas weplease, beginningfrom a unit,are set outontinuously in

double proportion,untilthesumofallbeomesprime,andifthesummultipliedinto

thelastmakessomenumber,theprodutwillbeperfet.

With theadvantages of modernnotation, we anexpresswhat Eulid meantmorepreisely:

ifwebeginwith 1andadd toitsuessivelyhigherpowersof2sotheresultingsum

1 + 2 + 4 + 8 + . . . + 2 n

is aprime number,thenthe number

N n = 2 n (1 + 2 + 4 + 8 + . . . + 2 n )

, formed by

multiplyingthesum

1 + 2 + 4 + 8 + . . . + 2 n

byitslast summand

2 n

,mustbeperfet.

Notein passingthat the numbers

K n

of the form

1 + 2 + 4 + 8 + . . . + 2 n

don'tneed to be

primeat all. Eulid'sperfetnumbertheorem appliedonlytothosespeialaseswherethissum

indeedturnsouttobeaprime.

WeshallnotlookatEulid'sproofofthisresultbutshallinsteadonsideraspeiexample.

Forinstane,

1 + 2 + 4 + 8 + 16 = 31

,aprime. Then,

N = 16 × 31 = 496

should beperfet. To

seethat itis, welistalltheproperdivisorsof496namely, 1,2,4,8,16, 31,62, 124and248

andaddthemtoget496,aspromised.

AdaptedfromJourney through genius, thegreattheoremsof mathematis,byWilliamDunham

Questions

1. Usethetexttoexplainthefollowingwords: primenumber,properdivisor,perfetnumber.

2. Chekthat28is perfet.

3. Find asimplerformulafor

K n

anddeduethegeneralexpressionof

N n

.

4. In orderto hekthat numbers

K n

of theform

1 + 2 + 4 + 8 + . . . + 2 n

don't needto be

prime atall',ompleteatable ofvaluesof

K n

,for

n

rangingfrom1to5.

5. Chekthat

N 3

isnotperfet.

6. ProofofEulid'stheorem: Wesupposethat

n

isanaturalnumber.

(a) Listallthedivisorsof

2 n

.

(b) Henededuealltheproperdivisorsof

N n = 2 n × K n

,where

K n = 2 n+1 − 1

isprime.

() Add up all the properdivisors found in the previous question and provethat

N n

is perfet.

Références

Documents relatifs

b) It is clear that the automorphism groups of elementary abelian 2-subgroups of rank 1 are trivial.. The notation used is analogous to that of Section 1.2.. This implies that

Hudson is much smaller than Moscow, but it is a nice town to live in. I study at the Hudson Middle School. At school we study Maths, Science, History, Spanish, German,

The use of domain-specific languages (DSLs) has become a successful technique in the development of complex systems. Neverthe- less, the construction of this type of languages

He also raised the following question : does there exists an arithmetic progression consisting only of odd numbers, no term of which is of the form p+ 2 k.. Erd˝ os [E] found such

On the standard odd-dimensional spheres, the Hopf vector fields – that is, unit vector fields tangent to the fiber of any Hopf fibration – are critical for the volume functional,

In this refinement, the magnetic structure factors are calculated from the spin density, which is modeled as a superposition of the spin densities of titanium, oxygen, and yttrium

Moreover, we use gestures and facial expressions in order to lay emphasis on what we say and to show its importance. Interlocutors can then either check or nod their heads

Fleischner and Stiebitz [3] proved that in every ( Cycle and triangles' graph there is an odd number of Eulerian orientations. They used this result and the 'Graph polynomial

The number of words to be eliminated being equal to 3 i−1 is, as in previous section, very lesser that the total number of words and we are so ensured to find between to

In [1], Ambroˇ z, Frid, Mas´ akov´ a and Pelantov´ a estimated the number of all words arising from three- interval exchange, which continues the same line since Sturmian words

If three distinct full squares have their last compatible occurrences in a partial word with one hole starting at the same position, then the longest square is at least twice as long

We propose various strategies for improving the computation of discrete logarithms in non-prime fields of medium to large characteristic using the Number Field Sieve.. This includes

101 - 54602 Villers lès Nancy Cedex France Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex France Unité de recherche INRIA Rhône-Alpes

In contrast, extracts prepared from 2.5-17.5 g of crushed root and containing a polyphenols rate equal or higher than (07.21 Gallic Acid Equivalents (GAE) mg/100 mL of

En moyenne, il faut 3 à 4 mois pour qu’un mégot de cigarette sans filtre se décompose totalement dans l’eau de mer, et entre 1 et 2 ans pour un mégot avec filtre,

De plus, dans les conditions physiologiques, on observe une asymétrie du mode d’apport en lipides entre le compartiment basal et le compartiment apical des entérocytes : au

Je fais entrer dans l’étude des œuvres qui, certes, sont publiées par des maisons d’édition militantes comme Les Éditions des Femmes ou Les Éditions de la Pleine Lune, mais

Plus généralement, les individus sont amenés à fréquen ter plusieurs villes selon leurs besoins économiques, culturels, de consommation, [...] Il en résulte un besoin croissant

On croit communement que ces [le] mouvement des eaux suitvent le mouvement de la lune, et que quand la lune est à une certaine distance du méridien d’un lieu la mer s est

Il propose une théorie équivoque de la liberté : il accorde à tous un mouvement adapté à leur forme et donc une certaine liberté mais il accorde à l’homme seul

To do so we draw on concepts from information theory, robust system design and, indirectly, robust statistics to define a measure of the robustness of production, and apply the

In [1], Ambroˇz, Frid, Mas´akov´ a and Pelantov´ a estimated the number of all words arising from three- interval exchange, which continues the same line since Sturmian words

Zhang, The abstract prime number theorem for algebraic function fields, in: B. Berndt,