• Aucun résultat trouvé

Eigenvalues for a Schrodinger operator on a closed Riemannian manifold with holes

N/A
N/A
Protected

Academic year: 2021

Partager "Eigenvalues for a Schrodinger operator on a closed Riemannian manifold with holes"

Copied!
18
0
0

Texte intégral

(1)

HAL Id: hal-00782066

https://hal.archives-ouvertes.fr/hal-00782066

Preprint submitted on 29 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

Eigenvalues for a Schrodinger operator on a closed Riemannian manifold with holes

Olivier Lablée

To cite this version:

Olivier Lablée. Eigenvalues for a Schrodinger operator on a closed Riemannian manifold with holes.

2013. �hal-00782066�

(2)

Eigenvalues for a Schrödinger operator on a closed Riemannian manifold with holes

Olivier Lablée January 28, 2013

Abstract

In this article we consider a closed Riemannian manifold(M,g)andA a subset ofM. The purpose of this article is the comparison between the eigenvalues(λk(M))k1of a Schrödinger operatorP := −g+Von the manifold(M,g)and the eigenvalues(λk(MA))k≥1ofPon the manifold (MA,g)with Dirichlet boundary conditions.

1 Introduction

The behaviour of the spectrum of a Riemannian manifold(M,g)under topo- logical perturbation has been the subject of many research. The most famous exemple is the crushed ice problem[Kac], see also[Ann]. This problem consists to understand the behaviour of Laplacian eigenvalues with Dirichlet boundary on a domain with small holes. This subject was first studied by M. Kac[Kac]in 1974. Then, J. Rauch and M. Taylor[RT]studied the case of Euclidian Laplacian in a compact setMofRn: they showed that the spectrum of∆Rnis invariant by a topological excision of aMby a compact subsetAwith a Newtonian capac- ity zero. Later, S. Osawa, I. Chavel and E. Feldman[Ca-Fe1],[Ca-Fe2]treated the Riemmannian manifold case. They used complex probalistic techniques based on Brownian motion. In 1995, in a nice article[Cou]G . Courtois stud- ied the case of Laplace Beltrami operator on closed Riemannian manifold. He used very simple techniques of analysis. In[Be-Co]J. Bertrand and B. Colbois explained also the case of Laplace Beltrami operator on compact Riemannian manifold. In this article we focus on the the Schrödinger operator−g+V case on a closed Riemannian manifold.

Assumption. The manifold is closed (ie compact without boundary); the function V is bounded on M andminMV>0.

In this work we show that under “little” topological excision of a part A from the manifold, the spectrum of−g+VonM−Ais close of the spectrum onM. More precisely, the “good” parameter for measuring the littleness ofA is a type of electrostatic capacity defined by :

cap(A):=inf

Q(u),u∈H1(M),Z

Mu dVg=0,u−e1H01(M−A)

(3)

wheree1denotes the first eigenfunction of the operator−g+Von the mani- foldM, andQis the following quadradic form :

Q(ϕ):= Z

M|dϕ|2 dVg+ Z

MV|ϕ|2dVg

andH01(M−A)is the Sobolev space defined by :

H01(M−A):={gH1(M), g=0 on a open neighborhood ofA} the closure is for the normk.kH1(M),H1(M)is the usual Sobolev space onM.

Indeed, more cap(A) is small, more the spectrum−g+V on M−Ais close of the spectrum onMin the following sense :

Theorem. Let(M,g)a closed Riemannian manifold. For all integer k ≥ 1, there exists a constant Ck depending on the manifold(M,g)and on the potential V such that for all subset A of M we have :

0≤λk(M−A)−λk(M)≤Ck

q cap(A).

The organization of this paper is the following : in the part 2 we start by recall some classicals results in spectral theory, we define our Sobolev space H01(M−A)and the notion of Schrödinger capacity. In particular, we explain the link between the functionnal Hilbert space H01(M−A)and Schrödinger capacity cap(A). The last part of this paper is a detailed proof of the main theorem.

2 Spectral problem background

2.1 Schrödinger operator on a Riemannian manifold

We recall here some generality on spectral geometry, for a more detailed survey see for example[Lab]. In Riemannian geometry, the Laplace Beltrami operator is the generalisation of Laplacian∆=

n

j=1

2

∂x2j onRn. For aC2real valued func- tion f on a Riemannian manifold and for a local chartφ : U⊂ MRof the manifoldM, the Laplace Beltrami operator is given by the local expression :

gf = √1g

n

j,k=1

∂xj

ggjk(f◦φ1)

∂xk

whereg=det(gij)andgjk= (gjk)1.

The spectrum of this operator is a nice geometric invariant, see Berger, Gauduchon and Mazet[BGM]and[Be-Be]. The spectrum of Laplace Beltrami operator has many applications in geometry topology, physics ,etc ...

For every Riemannian manifold(M,g)with dimensionn≥1 we have the

“natural” Hilbert space L2(M) = L2(M,dVg),Vg is the Riemannian volume form associated to the metricg. ForVa function fromMtoR, we define the Schrödinger operator on the manifold(M,g)by the linear unbounded opera- tor on the set of smooth compact supports real valued functionsCc(M,R)⊂ L2(M)by :−g+V.

(4)

2.2 Spectral problem

The spectral problem is the following : find all pairs(λ,u) withλRand u∈L2(M)such that :

gu+Vu=λu

(withu∈L2(M)in the non-compact case).

In the case of manifold with boundary, we need boundary conditions on the functionsu, for example the Dirichlet conditions : u= 0 on the boundary ofM, or Neumann conditions : ∂u∂n = 0 on the boundary of M. In the case of closed manifolds (compact without boundary) we don’t have conditions.

For our context (the closed case) the natural space to look here is the Sobolev spaceH1(M,g)define by

H1(M,g):=C(M) where the closure is for the normk.kH1 :kukH1 :=

q

kuk2L2+kduk2H1. An other point of view to define the spaceH1(M,g)is the following :

H1(M,g):=nu∈ L2(M);du∈ L2(M)o where the derivation is the sense of distribution.

The spaceH1(M,g)is a Hilbert space for the inner product : hu,viH1 :=hu,viL2+hdu,dviL2.

Recall here a classical theorem of spectral theory (see for example[Re-Si]) : Theorem. For the above problems, the operator−g+V is self-adjoint, the spectrum of the operator−g+V consists of a sequence of increasing eigenvalues with finite multiplicity :

λ1(M)≤λ2(M)≤ · · · ≤λk(M)≤ · · · →+.

Moreover, the associate eigenfunctions (ek)k≥0 is a orthonormal basis of the space L2(M).

Definition. We define the quadradic formQwith domainD(Q):= H1(M)by :

Q(ϕ):= Z

M|dϕ|2 dVg+ Z

MV|ϕ|2dVg.

Recall also (see for example[Co-Hi]) the minimax variational characteriza- tion for eigenvalues : for allk≥1

λk(M) = min

EH1(M)

dim(E)=k

maxϕE

ϕ6=0

R(ϕ)

whereR(ϕ)is the Rayleigh quotient of the functionϕ:

(5)

R(ϕ):= Q(ϕ) R

Mϕ2dVg.

In our context, a consequence of the minimax principle is :

Proposition 2.1. The first eigenvalue λ1(M)and e1 the first eigenfunction of the operator−g+V on the manifold(M,g) satisfyλ1(M)≥minMV >0and e1>

0or e1<0in M.

Proof. It’s clear that Z

M|de1|2 dVg+ Z

MV|e1|2 dVgmin

M Vke1k2L2(M)

and on the other hand Z

M|de1|2dVg+ Z

MV|e1|2 dVg=− Z

M

ge1e1dVg+ Z

MV|e1|2 dVg

= Z

Mg+V

e1e1dVg=λ1(M)ke1k2L2(M)

soλ1(M)≥minMV. Next, suppose the functione1changes sign intoM, since e1H1(M), the function f :=|e1|belongs to H1(M)and|d f|=|de1|(see for example[GT]), henceR(f) =R(e1). So, the function f is a first eigenfunction of−g+Von the manifoldMwhich satisfiesf ≥0 onM,f vanish intoMand

g+V

f =λ1(M)f ≥0 onM. Using the maximum principle[Pr-We], the function fcan not achieved it minimum in an interior point of the manifoldM, hence f does not vanish onM, so we obtain a contradiction.

3 Proof of the main theorem

3.1 Somes usefull spaces

We define on the spaceH1(M)the⋆-norm by : kuk2:=

Z

M|du|2dVg+ Z

MV|u|2 dVg

so, without difficulty we have :

Proposition. The application k.k is a norm on the space H1(M); moreover this norm is equivalent to the Sobolev norm k.kH1(M). In particular H1(M),k.k is a Banach space.

Now, for a compact subset Aof the manifold M the usual Sobolev space H01(M−A)is defined by the closure of test functions space on M−Afor the normk.kH1(M):

H01(M−A):=D(M−A).

What happens when the set Ais not compact ? For example if Ais a dense and countable subset of points of the manifold M, the space of test functions D(M−A)is reduced to{0}. Therefore we cannot define the spaceH01(M−A). In this case, we propose a definition ofH10(M−A)for any subsetAofM.

(6)

Definition. We define the Sobolev spacesH10(M−A)andH10(M−A)by : H10(M−A):=ng∈ H1(M),g=0 on a open neighborhood ofAo

; H01(M−A):=H10(M−A)

where the closure is for the normk.kH1(M). We have the :

Proposition. If the set A is compact, the previous definition of the space H10(M−A) coincides with the usal ones.

Proof. Let f ∈ H01(M−A), then by definition : for allε ≥ 0 there exists g ∈ H10(M−A)such that kfgkH1(M)ε. So, we will show that we can write g as a limit of sequence from the space D(M−A) and conclude. Since g ∈ H10(M−A)there exists an open setU ⊃ Asuch thatg|U = 0. Consider two open setsU1andU2of the manifoldMsuch that :

A⊂U1, M−UU2,U1U2=; and consider also a functionϕ∈ D(M)such that :

ϕ|U1 =0, ϕ|U2 =1.

Of course, the function ϕ belongs to the space D(M−A). Next, since g ∈ H10(M−A) ⊂ H1(M)and as the set of smooth functionsC(M)is dense in H1(M): there exists a sequence(gn)ninC(M)such that lim

n+gn=gfor the normk.kH1(M). Therefore we claim that : lim

n+ϕgn =gfor the normk.kH1(M). Indeed, start by, for all integern:

kϕgngk2H1(M)≤ kgngk2H1(MU)+kϕgngk2H1(U)

≤ kgngk2H1(M)+kϕgngk2H1(U). Next, we observe that, for all integern:

kϕgngk2H1(U)=kϕgnk2H1(U)

= Z

U|ϕgn|2 dVg+ Z

U|dϕgn+ϕdgn|2dVg

Z

U|ϕgn|2 dVg+ Z

U|dϕgn|2 dVg+ Z

U|ϕdgn|2dVg+2Z

U|dϕgnϕdgn|dVg

≤ kϕk2kgnk2L2(U)+kdϕk2L(M)kgnk2L2(U)

+kϕk2kdgnk2L2(U)+2kkkϕk Z

U|gndgn| dVg

≤ kϕk2kgnk2L2(U)+kdϕk2kgnk2L2(U)

+kϕk2kdgnk2L2(U)+2kdϕkkϕkL(M)kgnkL2(U)kdgnkL2(U),

(7)

by Cauchy-Schwarz inequality.

Finally we get for all integern: kϕgngk2H1(U)≤ kgnk2H1(U)

2kϕk2+kdϕk2+2kkkϕk

. As a consequence, we have for all integern:

kϕgngk2H1(M)≤ kgngk2H1(MU)

+kgnk2H1(U)

2kϕk2+kdϕk2+2kdϕkkϕk

.

Now, it suffices to note that kgnk2H1(U) = kgngk2H1(U) ≤ kgngk2H1(M) (sinceg=0 on the open setU) and we have finally :

kϕgngk2H1(M)≤ kgngk2H1(M)

1+2kϕk2+kk2+2kkkϕk

. The sequence (ϕgn)n belong toD(M−A)N,and since lim

n+∞gn = g for the norm k.kH1(M) the previous inequality implies lim

n+ϕgn = g for the norm k.kH1(M).

So we have shown that every function f ∈ H01(M−A)is a limit (for the normk.kH1(M)) of a sequence ofD(M−A).

Let us also denote the spacesH1(M)andSA(M)by : H1(M):=

f ∈H1(M),Z

Mf dVg=0

; and

SA(M):=nu∈ H1(M),u−e1H01(M−A)o. In the definition of the spaceH1(M)the conditionR

Mf dVg = 0 is analog to a boundary condition. We observe that the spaceH1(M)is a Hilbert space for the norm :

kuk:= Z

M|du|2 dVg+ Z

MV|u|2 dVg; andSA(M)is just an affine closed subset ofH1(M).

3.2 Schrödinger capacity

Next, we introduce the Schrödinger capacity of the setA;

Definition. Let us consider the Schrödinger capacity cap(A)of the set Ade- fined by

cap(A):=inf Z

M|du|2dVg+ Z

MV|u|2dVg,uSA(M)

.

(8)

Let us remark that : there exists an unique functionuASA(M)such that cap(A) =

Z

M|duA|2dVg+ Z

MV|uA|2dVg.

Indeed : here the capacity cap(A)is just the distance between the function 0 and the closed spaceSA(M). This distance is equal tokuAkwhereuAis the orthogonal projection of 0 onSA(M):

cap(A) =d(0,SA(M)):=inf{kuk,u∈SA(M)}=kuAk.

In the following lemma we give the relationships between the capacity cap(A), the functionsuA,e1and the Sobolev spacesH01(M−A), H1(M).

Lemma. For all subset A of the manifold M, the following properties are equivalent : (i) cap(A) =0;

(ii) uA=0;

(iii) e1H01(M−A); (iv) H01(M−A) =H1(M).

Proof. It is clear from the formula (3.1) that(i)⇔ (ii) ⇔ (iii). Next, suppose the property (iii) holds : so there exists a sequence (vn)n ∈ H10(M−A)N such that lim

n+vn = e1 for the norm k.kH1(M). So, for all smooth function ϕ∈ C(M)we have lim

n+(ϕvn)/e1 =ϕfor the normk.kH1(M), indeed for all integern:

ϕvn

e1ϕ

2 H1(M)

= Z

M

ϕvn

e1ϕ

2

dVg+ Z

M

d

ϕvn

e1

2

dVg. First, we have for all integern:

Z M

ϕvn

e1ϕ

2

dVg= Z

M

1

|e1|2|ϕ(vne1)|2 dVg

≤ 1 e1

2

kϕk2kvne1k2L2(M) so, since lim

n+vn=e1for the normk.kH1(M)we have

nlim+ Z

M

ϕvn

e1ϕ

2

dVg=0.

On the other hand, for all integern: Z

M

d

ϕvn

e1

2

dVg= Z

M

d(ϕvn)e1ϕvnde1

e21

2

dVg

= Z

M

1 e21

!

d(ϕ)vne1+ϕd(vn)e1ϕvnd(e1)−d(ϕ)e21

2 dVg

≤ 1 e1

2

dϕvne1dϕe21+ϕdvne1ϕvnde1

2 L2(M)

(9)

≤ 1 e1

2

dϕvne1dϕe21L2(M)+kϕdvne1ϕvnde1kL2(M) 2

≤ 1 e1

2

hkdϕkke1kkvne1kL2(M)+

kϕkke1(dvnde1) +e1de1vnde1kL2(M)i2

≤ 1 e1

2

hkdϕkke1kkvne1kL2(M)+

kϕkke1kkdvnde1kL2(M)+kϕkkde1kke1vnkL2(M)i2; so, since lim

n+vn =e1for the normk.kH1(M)we have

nlim+ Z

M

d

ϕvn

e1

2

dVg=0.

Therefore, for all function ϕ ∈ C(M)we have lim

n+ ϕvn

e1 = ϕfor the norm k.kH1(M).

Next, by density ofC(M)in H1(M): for all function f ∈ H1(M)we have

nlim+

f vn

e1 = f . Since the sequencef v

n

e1

n∈ H10(M−A)Nwe get finally that f belongs to spaceH10(M−A). Finally, it is easy to see that(iv)⇒(iii).

An obvious consequence of this lemma is the following result :

Proposition. The spectrum of−g+V on the manifold(M,g)and on the manifold (M−A,g)are equal if and only if cap(A) =0.

3.3 The Poincaré inequality

Now, let introduce the Poincaré inequality :

Theorem. If λ1(M) denotes the first eigenvalue of the operator −g+V on the manifold(M,g), the following inequality

kuAk2L2(M)cap(A) λ1(M) holds for all subset A of M.

Proof. The case cap(A) =0 is an obvious consequence of the lemma in section 3.2. Suppose here that cap(A) >0, thenkuAkL2(M)> 0. The first eigenvalue λ1(M)of the operator−g+Von the manifold(M,g)is given by :

λ1(M) = min

EH1(M)

dim(E)=1

maxϕE

ϕ6=0

R

M|dϕ|2+V|ϕ|2dVg

R

M|ϕ|2dVg

= min

ϕH1(M)

ϕ6=0

R

M||2+V|ϕ|2 dVg R

M|ϕ|2 dVg

SinceuAbelongs to the spaceH1(M)we getλ1(M)≤ kucap(A)

Ak2L2(M)

.

(10)

3.4 The main theorem

Recall our main result :

Theorem. Let(M,g)a compact Riemannian manifold. For all integer k ≥1, there exists a constant Ckdepending on the manifold of(M,g)and the potential V such that for all subset A of M we have :

0≤λk(M−A)−λk(M)≤Ck

q cap(A).

Remark. We can easily adapt the proof for a compact Riemannian manifold with boundary.

Proof. Let us denote by(ek)k≥1an orthonormal basis of the spaceL2(M)with eigenfunctions of the operator−g+Von the manifold(M,g). For all integer k≥1, we consider the sets

Fk:=span{e1,e2, . . . ,ek} and

Ek :=

f

1−ueA

1

, f ∈ Fk

.

First, observe thatEkH10(M−A). For allj ∈ {1, . . . ,k}we introduce also the functionsφj :=ej

1−ueA1 Ek.

Step 1: we compute the L2-inner product φi,φj

L2(M)for all pairs(i,j) ∈ {1, . . . ,k}2:

φi,φj

L2(M)= Z

Meiej

1−ueA

1

2 dVg

=δi,j2 Z

M

eiej

e1 uAdVg+ Z

Meiej

u2A e21 dVg. Thus, for all pair(i,j)∈ {1, . . . ,k}2we get :

φi,φj

L2(M)δi,j

2

Z M

eiej e1 uA

dVg+

Z M

eieju2A e21

dVg, hence, by Cauchy-Schwarz inequality we obtain

φi,φj

L2(M)δi,j

2 max

1≤i,jk

eiej e21

kuAkL2(M)+ max

1≤i,jk

eiej e21

kuAk2L2(M)

2 max

1i,jk

eiej

e1

qvol(M)kuAkL2(M)+ max

1i,jk

eiej

e21

kuAk2L2(M)

hence by Poincaré inequality we have

φi,φj

L2(M)δi,j

Bk,M

qcap(A) +cap(A)

(11)

whereBk=Bk(e1,e2, ...,ek,λ1(M),M)≥0, and since the eigenfunctionse1,e2, ...,ek and the eigenvalueλ1(M)depends only on(M,g)andV, for all integerkthe constantBkdepends only on(M,g)andV, ie :Bk=Bk(M,V).

Therefore, there existsεk ∈]0, 1[(depends on the constantBk) such that for all A⊂ Mwe have :

cap(A)≤εkdim(Ek) =kand∀j∈ {1, ...,k}, φj

2

L2(M)1Dk

qcap(A) where (and for the same reasons as in the study ofBk) for all integerk, the con- stantDkdepends only onMandV, ieDk=Dk(M,V).

Step 2: Let a functionφ= f

1−ueA1Ek, with f ∈Fk. Without loss gener- ality we can assume thatkfkL2(M)=1, indeed : we haveR(φ) =R

φ kfkL2(M)

and in our context we intererest in the Rayleigh quotient ofφ(see the end of the final step of the proof).

SetvA := ueA1, we have : Z

M||2dVg= Z

M|d fd(f vA)|2 dVg

= Z

M|d f|2dVg+ Z

M|d f vA+f dvA|2dVg2 Z

Md f d(f vA)dVg

= Z

M|d f|2 dVg+ Z

M|d f vA|2 dVg+ Z

M|f dvA|2dVg

+2Z

Md f dvAf vAdVg2 Z

M|d f|2vAdVg2 Z

Md f dvAf dVg

= Z

M|d f|2 dVg+ Z

M|d f vA|2 dVg+ Z

M|f dvA|2dVg

−2Z

M|d f|2vAdVg−2Z

Md f dvAf(1−vA) dVg. Recall we havedvA= duAe1e2uAde1

1 , and : Z

MV|φ|2dVg= Z

MV|f|2 dVg2 Z

MV|f|2vAdVg+ Z

MV|vAf|2dVg

hence Z

M||2dVg+ Z

MV|φ|2dVg= Z

M|d f|2 dVg+ Z

MV|f|2dVg

| {z }

:=A(f)

+ Z

M|d f vA|2 dVg

| {z }

:=B(f)

+ Z

M|f dvA|2dVg+ Z

MV|vAf|2 dVg

| {z }

:=C(f)

2



 Z

M|d f|2vAdVg+ Z

MV|f|2vAdVg

| {z }

:=D(f)





−2Z

Md f dvAf(1−vA)dVg

| {z }

:=E(f)

.

(12)

Study of A(f) := R

M|d f|2 dVg+R

MV|f|2dVg0 : since fFk we can write f =

k

i=1

αieiwhere(αi)1ikRkand with

k

i=1

α2i = 1 (sincekfkL2(M)= 1), thus we get

A(f) =

* k

j=1

αjdej,

k

i=1

αidei +

L2(M)

+

*√ V

k

j=1

αjej,√ V

k

i=1

αiei +

L2(M)

=

i,j

αiαj

dej,dei

L2(M)+ Z

MVejeidVg

=

i,j

αiαj

ej,∆gei

L2(M)+ Z

MVejeidVg

=

i,j

αiαj

ej, −g+V ei

L2(M)

=

i,j

αiαjλi(M)ej,ei

L2(M)=

k

i=1

α2iλi(M)≤λk(M).

Hence, for all integerk, and for all function f ∈ Fksuch thatkfkL2(M)=1 we have

0≤A(f)≤λk(M). Study ofB(f):=R

M|d(f)vA|2 dVg: herevA = ueA1 anddvA = duAe1e2uAde1

1 ,

so we getB≤ kd fk2kvAk2L2(M)and, with the Poincaré inequality : kvAk2L2(M)

1 e1

2

kuAk2L2(M)≤ 1 e1

2

cap(A) λ1(M)

hence, for all integerk, and for all function f ∈ Fksuch thatkfkL2(M) =1 we have

0≤B(f)≤Ekcap(A)

whereEk = Ek(e1,λ1(M))> 0, moreover since the eigenfunctione1and the eigenvalueλ1(M)depends only on(M,g)andV, for all integerkthe constant Ekdepends only on(M,g)andV, ie :Ek=Ek(M,V).

Study ofC(f): hereC(f)is equal toZ

M|f dvA|2dVg

| {z } +

:=C1(f) Z

MV|vAf|2 dVg

| {z }

:=C2(f)

. Let

us observe firstC1(f):

C1(f)≤ kfk2kdvAk2L2(M)

and

kdvAk2L2(M)= Z

M

duAe1uAde1 e21

2

dVg

≤ 1 e1

2

Z

M|duAe1uAde1|2 dVg

(13)

≤ 1 e1

2

Z

M|duAe1|2 dVg+2Z

M|duAde1e1uA| dVg+ Z

M|de1uA|2 dVg

≤ 1 e1

2

kduAk2L2(M)ke1k2+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

. Next we have also :

C2(f) = Z

MV|vAf|2dVg≤ kfk2 Z

MV|vA|2dVg

≤ kfk2

1 e1

2

Z

MV|uA|2 dVg. Hence we get :

C(f)≤ kfk2

1 e1

2

hkduAk2L2(M)ke1k2

+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

i

+kfk2

1 e1

2

Z

MV|uA|2dVg

≤ kfk2

1 e1

2

hkduAk2L2(M)ke1k2+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

+ Z

M|duA|2dVg+ Z

MV|uA|2dVg

≤ kfk2

1 e1

2

hkduAk2L2(M)+kVkkuAk2L2(M)

+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

i; so, sincekduAk2L2(M)cap(A)andkuAk2L2(M)cap(A)λ1(M) we get for all integer k, and for all function f ∈ Fksuch thatkfkL2(M)=1 :

0≤C(f)≤Fkcap(A)

where Fk = Fk(f,e1,λ1(M)) > 0. Here, for k fixed, the constantFk depends also on f, and f depends on the functions f1,f2,· · ·,fk (which are depends only on M andV) and on the scalarsα1,α2,· · ·,αk; since

k

i=1

α2i = 1, all the (αi)1ikare bounded inR, so finally, for all integer kthe constant Fk can be bounded by a constant (we denotes also by Fk = Fk(M,V)) which depends only onMandV.

Study of|D(f)|: we have

|D|= Z

M|d f|2vAdVg+ Z

MV|f|2vAdVg

(14)

≤ kd fk2

1 e1

Z M

uA

e1 dVg+

V|f|2 e1

Z

M|uA| dVg

max kd fk2

1 e1 ,

V|f|2 e1

!Z

M|uA| dVg

max kd fk2

1 e1

,

V|f|2 e1

!q

Vol(M)kuAkL2(M)

max kd fk2

1 e1

,

V|f|2 e1

!q Vol(M)

scap(A) λ1(M). Hence, for all integerk, and for all function f ∈Fksuch thatkfkL2(M)=1 :

|D(f)| ≤Gk

qcap(A)

where (and for the same reasons as in the study ofF, see the constantFk) for all integerk, the constantGkdepends only onMandV, ieGk=Gk(M,V). Study of|E(f)|: recall thatE(f) =R

Md f dvAf(1−vA) dVg, hence

|E(f)| ≤ Z

M|d f dvA| |f| dVg+ Z

M|d f dvA| |f vA| dVg. For the first termR

M|d f dvA| |f|dVgwe have : Z

M|d f dvA| |f| dVg≤ kfkkd fk

qVol(M)kdvAkL2(M);

we have see in the study ofC(f)that kdvAk2L2

≤ 1 e1

2

kduAk2L2(M)ke1k2+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

so withK:=kfkkd fk

pVol(M)e11

we get Z

M|d f dvA| |f| dVg

KqkduAk2L2(M)ke1k2+2kde1kke1kkduAkL2(M)kuAkL2(M)+kde1k2kuAk2L2(M)

K vu

utcap(A)ke1k2+2kde1kke1k

qcap(A)

scap(A)

λ1(M) +kde1k2

cap(A) λ1(M)

Hk

qcap(A)

Références

Documents relatifs

transmission eigenvalues, asymptotic expansions, thin layers, inverse scattering problems 8.. AMS

In “Global Differential Geometry and Global Analysis” (Berlin 1990), Lecture notes in Math. Gilkey, The asymptotics of the Laplacian on a manifold with boundary. Meyer, In´ e galit´

In works such as [11,16,17,19,24,29], a part of the analysis relies on the construction of 0-forms (i.e. functions) quasi-modes supported in some characteristic wells of the potential

Global representation and multi-scale expansion for the Dirichlet problem in a domain with a small hole close to the

We extend the Friedrich inequality for the eigenvalues of the Dirac operator on Spin c manifolds with boundary under different boundary conditions.. The limiting case is then

Asymptotic behavior of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Asymptotic behaviour of

This quest initiated the mathematical interest for estimating the sum of Dirichlet eigenvalues of the Laplacian while in physics the question is related to count the number of

In this paper, we study the spectrum of the weighted Lapla- cian (also called Bakry-Emery or Witten Laplacian) L σ on a compact, connected, smooth Riemannian manifold (M, g)