• Aucun résultat trouvé

A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes

N/A
N/A
Protected

Academic year: 2021

Partager "A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: inria-00455799

https://hal.inria.fr/inria-00455799

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes

Marco Picasso, Frédéric Alauzet, Houman Borouchaki, Paul-Louis George

To cite this version:

Marco Picasso, Frédéric Alauzet, Houman Borouchaki, Paul-Louis George. A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. [Research Report] RR-7202, INRIA.

2010, pp.25. �inria-00455799�

(2)

a p p o r t

d e r e c h e r c h e

IS S N 02 49 -6 39 9 IS R N IN R IA /R R -- 72 02 -- FR +E N G

Domaine 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes

Marco Picasso, Frédéric Alauzet, Houman Borouchaki and Paul-Louis George

N° 7202

Février 2010

(3)
(4)

Centre de recherche INRIA Paris – Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

∗ †

(5)
(6)

!∇ (u − u h ) ! L

2

(Ω) ≤ Ch | u | H

2

(Ω) . u

Ω R 2 R 3 h u h

C h u

C

u u h

L 2

u − u h H 1 H 2

L 2

Ω R 2 f ∈ L 2 (Ω) u : Ω → R

− ∆u = f Ω,

u = 0 ∂Ω.

(7)

h > 0 T h Ω K

h K h V h

T h V h,0 V h

∂Ω u h ∈ V h,0

!

Ω ∇ u h · ∇ v h dx =

!

f v h dx ∀ v h ∈ V h,0 .

w = ∂ 2 u

∂x 2 1 u h

w h ∈ V h

!

w h v h dx = −

!

∂u h

∂x 1

∂v h

∂x 1

dx +

!

∂ Ω

∂u h

∂x 1

v h n 1 ds ∀ v h ∈ V h ,

n = (n 1 , n 2 ) T ∂Ω

O(1)

Ω = (0, 1) 2 h = 0.1

(8)

h

w h (P) = w h (x 1 , x 2 ) = u h (x 1 − h, x 2 ) − 2u h (x 1 , x 2 ) + u h (x 1 + h, x 2 ) h 2

P O(h 2 )

2 u/∂x 2 1 (x 1 , x 2 ) u h r h u u

u(x 1 , x 2 ) = x 1 (1 − x 1 ) w(x 1 , x 2 ) = − 2 u h r h u

w h (P ) = − 3/2 P w h (P ) =

− 9/4 P

Ω f H 3 (Ω)

w w h C

h ≤ 1

! w − w h ! L

2

(Ω) ≤ C.

L 2

! w − w h ! 2 L

2

(Ω) =

!

(w − w h )(w − v h )dx +

!

(w − w h )(v h − w h )dx, v h ∈ V h

! w − w h ! 2 L

2

(Ω) =

!

(w − w h )(w − v h )dx

!

∂x 1

(u − u h ) ∂

∂x 1

(v h − w h )dx +

!

∂Ω

∂x 1

(u − u h )(v h − w h )n 1 ds,

! w − w h ! 2 L

2

(Ω) ≤ ! w − w h ! L

2

(Ω) ! w − v h ! L

2

(Ω)

+ !∇ (u − u h ) ! L

2

(Ω) !∇ (v h − w h ) ! L

2

(Ω)

+ !∇ (u − u h ) ! L

2

(∂Ω) ! v h − w h ! L

2

(∂Ω) .

C h

h 2 !∇ (v h − w h ) ! 2 L

2

(Ω) + h ! v h − w h ! 2 L

2

(∂ Ω) ≤ C ! v h − w h ! 2 L

2

(Ω) ,

! w − w h ! 2 L

2

(Ω) ≤ ! w − w h ! L

2

(Ω) ! w − v h ! L

2

(Ω)

+ C ! v h − w h ! L

2

(Ω)

"

1

h !∇ (u − u h ) ! L

2

(Ω) + 1

h 1/2 !∇ (u − u h ) ! L

2

(∂Ω)

#

.

(9)

v h − w h = v h − w + w − w h

! w − w h ! 2 L

2

(Ω) ≤ 3

$

! w − v h ! 2 L

2

(Ω)

+ C 2

" 1

h !∇ (u − u h ) ! L

2

(Ω) + 1

h 1/2 !∇ (u − u h ) ! L

2

(∂Ω)

# 2 % , v h ∈ V h u ∈ H 3 (Ω) w ∈ H 1 (Ω) v h = R h w

! w − v h ! L

2

(Ω) ≤ Ch ! u ! H

3

(Ω) ,

C h u

1

h !∇ (u − u h ) ! L

2

(Ω) + 1

h 1/2 !∇ (u − u h ) ! L

2

(∂Ω) h

!∇ (u − u h ) ! L

2

(∂Ω) ≤ !∇ (u − r h u) ! L

2

(∂Ω) + !∇ (r h u − u h ) ! L

2

(∂Ω) .

!∇ (u − u h ) ! L

2

(∂Ω) ≤ Ch | u | H

2

(∂Ω) ≤ Ch ˜ ! u ! H

3

(Ω) ,

C C ˜ h u

!∇ (r h u − u h ) ! L

2

(∂Ω) ≤ C

h 1/2 !∇ (r h u − u h ) ! L

2

(Ω) .

!∇ (r h u − u h ) ! L

2

(∂Ω) ≤ C h 1/2

&

!∇ (r h u − u) ! L

2

(Ω) + !∇ (u − u h ) ! L

2

(Ω) '

≤ Ch ˜ 1/2 | u | H

2

(∂Ω) ,

C C ˜ h u

∂u h /∂x 1

(10)

Π h : L 2 (Ω) → V h L 2 V h

g ∈ L 2 (Ω) Π h g ∈ V h

!

(Π h g)v h dx =

!

gv h dx ∀ v h ∈ V h .

P

Π h g(P ) = (

K∈T

h P∈K

!

K

gdx (

K∈T

h P∈K

| K | ,

Π h g(x) =

N

h

(

i=1

Π h g(P i )ϕ i (x) ∀ x ∈ Ω,

N h T h ϕ i

P i

Ω f H 3 (Ω)

w

w h = Π h

∂(Gu h ) 1

∂x 1

,

(Gu h ) 1 Gu h ∈ V h d

d = 2, 3 Gu h ∇ u

C ˜ 0 < α ≤ 1 h 1

h !∇ u − Gu h ! L

2

(Ω) + 1

h 1/2 !∇ u − Gu h ! L

2

(∂Ω) ≤ Ch ˜ α .

C h ≤ 1

! w − w h ! L

2

(Ω) ≤ Ch α . Π h

!

w h v h dx =

!

∂(Gu h ) 1

∂x 1

v h dx ∀ v h ∈ V h .

!

w h v h dx = −

!

(Gu h ) 1

∂v h

∂x 1 dx +

!

∂Ω

(Gu h ) 1 v h n 1 ds ∀ v h ∈ V h .

(11)

∂u h /∂x 1 (Gu h ) 1

L 2 ∇ u h

V h

(Gu h ) 1 = Π h ∂u h

∂x 1

.

P i

u h P i P i

P i j j = 1, ..., N i N i ≥ 6

P i (x 1 , x 2 ) P i

(ξ j , η j ) P i j

p(x 1 , x 2 , P i ) = a i 0 + a i 1 x 1 + a i 2 x 2 + a i 3 x 2 1 + a i 4 x 1 x 2 + a i 5 x 2 2 u h (P i j )

N i × N i

A T A&a = A T &b,

A =

 

 

1 ξ 1 η 1 ξ 1 2 ξ 1 η 1 η 1 2 1 ξ 2 η 2 ξ 2 2 ξ 2 η 2 η 2 2 1 ξ N

i

η N

i

ξ N 2

i

ξ N

i

η N

i

η N 2

i

 

  &a =

 

  a i 0 a i 1 a i 5

 

  &b =

 

 

u h (P i 1 ) u h (P i 2 ) u h (P i N

i

)

 

  .

w = ∂ 2 u/∂x 2 1 (Gu h ) 1 ∈ V h , (Gu h ) 1 (P i ) = ∂p

∂x 1

(0, 0, P i ) = a i 1 i = 1, ..., N h , w h

w h ∈ V h , w h (P i ) = ∂ 2 p

∂x 2 1 (0, 0, P i ) = 2a i 3 i = 1, ..., N h .

(12)

w = ∂ 2 u/∂x 2 1 w h ∈ V h

De = !∇ (u − u h ) ! L

2

(Ω) , De ZZ =

/ / / / ∂u

∂x 1 − (Gu h ) 1

/ / / / L

2

(Ω)

(Gu h ) 1 ,

D 2 e ZZ = ! w − w h ! L

2

(Ω) w h , De LS =

/ / / / ∂u

∂x 1 − (Gu h ) 1

/ / / /

L

2

(Ω)

(Gu h ) 1 ,

D 2 e LS1 = ! w − w h ! L

2

(Ω) w h ,

D 2 e LS2 = ! w − w h ! L

2

(Ω) w h , D 2 e W F = ! w − w h ! L

2

(Ω) w h .

Ω = (0, 1) 2 f u

u(x 1 , x 2 ) = sin(2πx 1 ) Ω

!∇ (u − u h ) ! L

2

(Ω)

O(h)

* O(h 1.5 ) O(h 2 )

* O(h 1.5 )

O(h 2 )

h 2

(13)

De De ZZ D 2 e ZZ De LS D 2 e LS1 D 2 e LS2 D 2 e W F

O(h 2 )

* O(h 1.5 )

h = 0.05

De De ZZ D 2 e ZZ De LS D 2 e LS1 D 2 e LS2 D 2 e W F

h = 0.05 w h

(14)

w h (x 1 , 0.525)

w(x 1 ) = − 4π 2 sin(2πx 1 )

h = 0.05 w w h

x 1 x 2 = 0.525

h = 0.003125

L 2 ∇ u − Gu h

∇ (u − u h ) ∇ u h − Gu h

w h

h = 0.0125 w h

De De ZZ D 2 e ZZ De LS D 2 e LS1 D 2 e LS2 D 2 e W F

(15)

De De ZZ D 2 e ZZ De LS D 2 e LS1 D 2 e LS2 D 2 e W F

w h (x 1 , 0.5) w h (x 1 , 0.5)

w(x 1 ) = − 4π 2 sin(2πx 1 )

w h (x 1 , 0.5) w h (x 1 , 0.5)

w(x 1 ) = − 4π 2 sin(2πx 1 )

h = 0.003125 w w h

x 1 x 2 = 0.5

(16)

h = 0.0125 w h

A T D 2 A&a = A T D 2 &b,

D 1

1/2

(17)

D 2 e LS1 D 2 e LS2 D 2 e LS1 D 2 e LS2 D 2 e LS1 D 2 e LS2

0.75 T OL ≤

$ (

K

∈Th

η K 2

% 1/2

!∇ u h ! L

2

(Ω) ≤ 1.25 T OL.

T OL η K

T OL ar

ei ZZ

ei ZZ = !∇ u h − Gu h ! L

2

(Ω)

!∇ (u − u h ) ! L

2

(Ω) .

w h

T OL = 0.0625

(18)

T OL De De ZZ D 2 e ZZ De LS D 2 e LS1 D 2 e LS2 D 2 e W F

T OL N h ar ei ZZ

T OL = 0.0625 w h

(19)

w h (x 1 , 0.5) w h (x 1 , 0.5)

w(x 1 ) = − 4π 2 sin(2πx 1 )

w h (x 1 , 0.5) w h (x 1 , 0.5)

w(x 1 ) = − 4π 2 sin(2πx 1 )

T OL = 0.0625 w w h

x 1 x 2 = 0.5

Ω = (0, 1) 3 f u(x 1 , x 2 , x 3 ) = 1

2

&

tanh(40r(x 1 , x 2 , x 3 ) − 0.1) − tanh(40r(x 1 , x 2 , x 3 ) − 0.2) ' , r(x 1 , x 2 , x 3 ) = 0

(x 1 − 0.5) 2 + (x 2 − 0.5) 2 + (x 3 − 0.5) 2

w h w

x 3 = 0.5 w h

h = 0.0125

(20)

De De ZZ D 2 e ZZ D 2 e W F N h

h = 0.0125

w h x 3 = 0.5

10 × 10 × 10

u h

T OL = 1 T OL

w h

T OL = 0.125

(21)

T OL = 1 u h

x 3 = 0.5

T OL De De ZZ D 2 e ZZ D 2 e W F N h

T OL

(22)

w h

w h

w

w h

w h

w

w h

w h

w

T OL = 0.125 w

w h x 1 x 2 = x 3 = 0.5 0.5 ≤ x 1 ≤ 0.9

(23)
(24)
(25)
(26)

Centre de recherche INRIA Paris – Rocquencourt

Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

ISSN 0249-6399

Références

Documents relatifs

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6.. Human Health Therapeutics Research Centre,

Carbon supported pyrolyzed CoTMPP catalyst (CoTMPP/C) was assessed using X- ray diffraction and Raman, a number of varied electrochemical tests, as well as a single cell test..

According to the spirit of tight typings, linear head correctness does not only provide the size of (linear head) normal forms, but also the lengths of evaluation sequences to

Then we extract the features produced by the 2D model for all images of the training database and we train the same 3D model on 70x70x70 patches using these extracted features (Fig.

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,