• Aucun résultat trouvé

PRESENT STATUS OF THE MICHIGAN-MIT ULTRA-COLD POLARIZED HYDROGEN JET†

N/A
N/A
Protected

Academic year: 2021

Partager "PRESENT STATUS OF THE MICHIGAN-MIT ULTRA-COLD POLARIZED HYDROGEN JET†"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00230938

https://hal.archives-ouvertes.fr/jpa-00230938

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PRESENT STATUS OF THE MICHIGAN-MIT ULTRA-COLD POLARIZED HYDROGEN JET†

B. Vuaridel, J. Bywater, D. Crabb, W. Kaufman, R. Raymond, T. Roser, J.

Stewart, B. van Guilder, G. Court, Yu. Melnik, et al.

To cite this version:

B. Vuaridel, J. Bywater, D. Crabb, W. Kaufman, R. Raymond, et al.. PRESENT STATUS OF THE

MICHIGAN-MIT ULTRA-COLD POLARIZED HYDROGEN JET†. Journal de Physique Colloques,

1990, 51 (C6), pp.C6-541-C6-544. �10.1051/jphyscol:1990668�. �jpa-00230938�

(2)

PRESENT STATUS OF THE MICHIGAN-MIT ULTRA-COLD POLARIZED HYDROGEN JETS

B. W A R I D E L , J.A. BYWATER, D.G. CRABB, W.A. KAUFMAN, R.S. RAYMOND, T. ROSER, J.A. STEWART, B.S. VAN GUILDER, G.R. COURT*,

Yu.M. MELNIK*", A.F. PRUDKOGLYAD**, V.G. LUPPOV*** and M. MERTIG***

Randall Laboratory of Physics, The University of Michigan, Ann Arbor,

!I 41809-1120, U.S.A.

Department of Physics, The University of Liverpool, Liverpool L69 3BX, Great-Britain and Department of Physics, MIT, Cambridge, M A 02139, v;S.A.

Institute for High Energy Physics, Protvino, Moscow Region, U.S.S.R.

* * * Joint Institute for Nuclear Research, Dubna, Moscow. U.S.S.R.

Abstract-Progress is reported on t l ~ e p~uiluction of an intense polarized atolnic hydrogen beam using microtx,nre rli iven c s t r a c t i o ~ ~ of stal)ilizrd a ttsnlic 1lgdlr)gcn.

Electrc.)n ~ ~ i n - ~ ~ o l i ~ r i z e t l a.t.olnic l y t l r o g ~ n call 1,s stored at 11igl1 drilsit,ies over rela.t,ivelg lol~g taillie 1)eriods in a higll nlz1.gpet.i~ field

( 2

5 T ) nntl a.t 1t)tv tcmpera.tmes ( 2 0.8 Ii). D. Iileppner and T. 0. ~iinikoskil proposed t,ll;l.t. R hiall tl(msit,y a.to~llic h~-drogen beam could I,e prod~~cetl I,y using clect,rol~ spill rcsona.~lce (ESR.) plulllping to est,r:~.ct 11)-dmge~i atollls froill a. nlagiletic storage l>ottlc. Such a ~ ~ ~ i c r o ~ v a v e dri~ien est~mction process cvulrl l,rovitle a.11 i~ltc,lisc lonv velocity sl>in-pola.rized atomic bcaln with il, na.rrom relocit,y tlist,ribut.ion; it should be llossil,le t,o at,t,;l.in a, d(,i~sit,y of about 1014 atoms/cln2 l>>? using ll~aglletic focusil~g. We to use such a.

sl,i~l-l)olarizetl jet t.o s t , ~ ~ t l y l ) - ~ elast,ic sca.tt.eriilg at 400 GcV and 3 TeV in t,lle NEPTUN-A experilnellt at, U N I ~ "

011r al,llaratus'~ was designetl specifically t,o develop the t,ecll~~iql~e of proclucillg a high density aton~ic l1ydrogffn 11eam by nlicrr)xvas-e tlriven estractio~l. Tlle vertical sectioll cont,a,inetl a, c o n t i ~ l ~ ~ o u s flow dilution refrigerat,or xt-ibh R, cooling poxxler of 27 ~ I F V at 0.35 I<. \Ve rece~lt,lp illstallet1 a. net%- storage ccll, sllo~vn in Fig. 1, tvl1ic11 collsists of double-walled copper t,ubing xvith an iilterllal diameter of 26 nlm, allout half t,he diameter of our earlier stori.g.e cell. Tile spa,ce bet*een the two walls fornled the ~liixing chalnl~er of the dilution refrigerator.

Tlle storage cell 11act a 10 111111 diameter aperture on the ~ul>strealn ellcl to dlc)w f i r the atonlic 11yclroge11 feed and a. 5 111111 dia.met,er a.perture on the downstrea~h ellcl wllere the a.toms were extracted. A baffle a.rrangeme~~t, allowed for good acco~nmoda.tion of the a.tolns. A11 oversize-d waneguicle byya.ssec1 the baffles.

All stor;l.ge cc11 surfaces were stably coated 11y a 4He film a t a partial helium pressure of a few Pa.

The hclimn fill11 prerentecl rapicl reconlbi~latioll of the atomic hydrogen. The llydrogen atoms were produced in a.n rf dissocia,t,or a.nd the11 guided into the low t e l l ~ p e r ~ t u r e region 13y a Teflon tube alld a teflon-coated colq>er llozzle at alq>lr>xi~nat.ely 20 I<. The 20 I i atolns were then fed illto the stomge cell through the 10 111111 c\inmet,er aperture. After ther~ndiza.tion by ga.s and wall collisions in the ba.ffle, sta,tes c(, aa.ncl 6 were trapped a.xiall- by t l ~ e lnag~letic field asd rididly by tlle cylindrical stora,ge cell xvalls at a tempera~ture of about 300 1111';. Microwa.ves were i ~ ~ j e c t e d from the left in Fig. 1 to clrive either the cc to cl or b to c tra.rlsitioll allcl we detected a.toms in either t,l~e c or rl sta,te that exited townrcl the right.

installed t,wo different cletectors to observe the esbracted atomic 11ydrogru Isea.111. The t,herma.l detect,c,r nleasured tlie thermal energy of 4.5 eV, which wa.s releasecl when two llydrogen a.toms recoilll,inecl on its surface. The colllpression tulle detector, located clo~vnstreain of a large bore sestupole, nleasnred the i~irrca.se of t,lle pressure of molecular. 11j~clrogell in a l i l l ~ ~ ~ l ellclosecl volume.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990668

(3)

COLLOQUE DE PHYSIQUE

3 - Esnerin~entd Results

1% i11vest~iga.tcd the e~tract~ioll of a,t,omic hyclrogen from our st,ora.ge cell a t two conll,ina.tions of lnagnetic field ancl ~~licrowa.ve frecluel~cy: 5 T/140 GHz a.nd 'i.G T/213 GHz. We conlpa.red the a.mount of recolll1,ination heat on tlle therinal tlctec tor wi tll 11ea,t fro111 t l ~ e caliI,ra.tion hea.ter. At 5 ~ 1 1 4 0 GHz the ~na.sin~um ol ,served ra.t,es was 5 s 1O1%t.toiils/s. T l ~ i s 7vil.s well 1,elo~v tlle ra.t.es ol>servetl a.t 7.G T/213 GHz, l,rol,al,ly I,eca.tlse of t l ~ e loxrer feed efficiency a.t the lower field. At 7.G T/213 GHz we o11servecl up to 1.2 s 10'' a.tonls/s on t l ~ e tliernial detector. We calculated t.hat the tllernlal cletector is sensitive t,o oillg 15% of the I>eam. Therefore, tlle t,otal extractc~cl l~\drogc,n flux wa,s est,inla,ted to I,e al>otrt S x 10j6 atolils/s.

We used tlle sestupole to focus t l ~ e ext,ra,cted a,tc,ms ont,o the 10 1111i1 dia.meter al~erture of t l ~ e conil)ressio~l tube. We llleasuretl t,he flux of a.t,c)illic 11ydrogei1 for va.rious sest,ul>ole fielcls. The result,s a.re shown in Fig.

2 l>y the d0t.s. For compnlrisc-m, tlle results of sill~ulat,ion ca.lcula.t,ions are given 1)y ope11 circles. For tllese cdculatio~~s it was assmnecl that tlle atoms were est,ract,ed fro111 the storage cell at 55% of the 5 T ccl~tral field a.ntl that the t~mptra.ture of the ga.s was 300 111Ii. It resrllted ill a, velocit,y of the a,tolils of 200 f 17 1ll/s after a.ccelrrat,ion in tlie fieltl gradieut. The exgerii~~ent,al resu1t.s were it1 fairly good a.greement wit.11 the calculation. This clca.rly clemonstra.tes t11a.t ttllr est.ra.ctac1 a.tolns a.re bot,l~ highly elect,ron spin polarized ancl ra.tlwr ~noi~oel~eget.ic.

The cdculatecl curve is slightly sllifted t.o~vard the left of the esperinlentd curve. T l ~ e position ~llcert,aillt,~

of the stora.gc cell al~erture in tlle field gra.clicnt may; expla.in this cliscrepa.ilcy. Wlieii the b e a n was focused onto t,lle coml~essioli t,ulje al)ert.ure, oLser~-~tl fl11ses 111) to 3 X 1 0 f 4 a.t,or~~s/s. At'a. lligller fieltl (7.G T ) ? we expect to cjbt.a.in al)c.~ut 10'%.toms/s using t,lie same set,-up. A ilrw high efficiency feed systenl is being I~uilt to f~~rt,ller ilnprovc thc flus of the extracter1 atollls.

/ l / T. 0 . Niinilioslii, in Proceetlil~gs c.)f the Int,cnln.tional Symposiuln on Higli Energy Pllysics with Polarizecl Beams allcl Polarizecl Targets (EXS 38, Birkhiiuser Veilag, Base1 and Stut.tgart, 1981) p. 91;

D. I<leppner and T . J . Greytak ill Proceedil~gs of tlie 5"" 1ntcrna.tional Conference on High Energy Spill P11ysic.s , ed. by G. M. Bunce (Broolilla.~ell Na.t,iolla.l La.l>ora.tory, 1982), D. 546, AIP Conf. Proc.

No. 96 (1983).

/2/ A. D. Iirisch, Proc. of T3'orlis110p 011 Physics a t UNIi.

1.31 T. Roser et d. UM HE 89-18, Sublnittecl to Pl~ys. Rev. Lett.

/t/

This resea.rc11 was supported by a grant from the U. S. Departnleilt of Energy. We would like to thank Professors A. D. I<risch, D. Iileppner, a.ncl T. J . Greytak for their support a.nd advice.

(4)
(5)

COLLOQUE DE PHYSIQUE

QMS Signal

v s S e x t u p o l e C u r r e n t

Fig. 2 - Flux of a.t.omic hytlrogcn as ineasurecl IJY the colllpression tube. Tlle esperinlrnta1 results are sllolvll 1)p t,l~c d0t.s ant1 t.he ol)en circles a.rc a, siill111atio11 assumillg a. 100'%1 electron spin-polarizecl mo~loeilergetic bea.111. Tllr cllrvcs a.re to gnitle the eye.

Références

Documents relatifs

Now, the following fact is true: the structure of quantum mechanics underlined in the general scheme above is stable. On the contrary, classical mechanics is not

As in the 1dPT case, the dissipative force on the tip has two contributions: one arises due to the cantilever degrees of freedom and is proportional to the tip velocity relative to

In Chapter 5, we use the adap- tively damped Picard iterations and a restricted unigrid method to solve nonlinear diffusion problems and ensure the positivity of approximate

The effects on the performance of organic solar cells with the addition of silver nanoparticles was ex- amined through the addition of 5, 10, 20, and 30 nm diameter silver

When C 0 ⊂ X has minuscule multiplicity C k at p with the corresponding minus- cule representation V, we define (When X is a del Pezzo surface, we use lines in X to construct

The unipotent variety of a reductive algebraic group G plays an impor- tant role in the representation theory.. This was first conjectured

Finally, we introduce a C ∗ -algebraic version of the split real quantum group in the language of multiplier Hopf algebras, and consequently the definition of R is made rigorous as

We were using Forest Inventory and Analysis (FIA) data to validate the diameter engine of the Forest Vegetation Simulator (FVS) by species. We’d love to have used the paired