• Aucun résultat trouvé

Strain-induced dissolution of Y–Ti–O nano-oxides in a consolidated ferritic oxide dispersion strengthened (ODS) steel

N/A
N/A
Protected

Academic year: 2021

Partager "Strain-induced dissolution of Y–Ti–O nano-oxides in a consolidated ferritic oxide dispersion strengthened (ODS) steel"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-02354518

https://hal.archives-ouvertes.fr/hal-02354518

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Strain-induced dissolution of Y–Ti–O nano-oxides in a consolidated ferritic oxide dispersion strengthened

(ODS) steel

B. Hary, R. Logé, J. Ribis, M.-H. Mathon, M. van der Meer, T. Baudin, Y. de Carlan

To cite this version:

B. Hary, R. Logé, J. Ribis, M.-H. Mathon, M. van der Meer, et al.. Strain-induced dissolution of

Y–Ti–O nano-oxides in a consolidated ferritic oxide dispersion strengthened (ODS) steel. Materialia,

2018, 4, pp.444-448. �10.1016/j.mtla.2018.11.002�. �hal-02354518�

(2)

ContentslistsavailableatScienceDirect

Materialia

journalhomepage:www.elsevier.com/locate/mtla

Correspondence

Strain-induced dissolution of Y–Ti–O nano-oxides in a consolidated ferritic oxide dispersion strengthened (ODS) steel

B. Hary

a,

, R. Logé

b

, J. Ribis

a

, M-H. Mathon

c

, M. Van Der Meer

b

, T. Baudin

d

, Y. de Carlan

a

aDEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

bLMTM, Ecole Polytechnique Fédérale de Lausanne, rue de la Maladière 71b, CH-2002 Neuchâtel, Switzerland

cLLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France

dICMMO, SP2M, Univ. Paris-Sud, Université Paris-Saclay, UMR CNRS 8182, bât.410, F-91405 Orsay, France

a r t i c le i n f o

Keywords:

ODS alloy

Severe plastic deformation Energy filtered TEM Small angle neutron scattering Dissolution

a b s t r a ct

ThepresentstudyshowstheinfluenceofsevereplasticdeformationonhighlystableY-Ti-Onano-oxidespresent inferriticODSalloysusedfornuclearapplications.Aninnovativestrainpathimplyingalternatedcompressions wasusedtodeformthematerialtoanequivalentplasticstrainof13.EnergyFilteredTransmissionElectron MicroscopyandSmallAngleNeutronScatteringrevealedthestrain-induceddissolutionoftheY-Ti-Onano-oxides.

Itappearstobethefirsttimethatdissolutionofsuchparticlesisclearlyobservedafterdeformation.Annealing thematerialenablestore-precipitatethenano-oxides.Theseresultsshowastronganalogywiththemechanical alloyingofODSpowder.

1. Introduction

Controlofthesecondaryphaseprecipitationisakeyparameterto enhancethemanufacturingprocessofanalloyaswellasitsmechan- ical properties.A conventional way todissolve precipitates is obvi- ouslytoperformannealingabovetheirequilibriumdomain.However, itisknownthatdissolution[1–3]orphasetransformation[4,5]canbe strain-inducedaswell,particularlyinAl-Cualloys[6–8]wherecoher- entparticles𝜃′and𝜃′′arerepeatedlyshearedbydislocations,leadingto theirpartialorcompletedissolution.Strain-induceddissolutionalsooc- cursduringthemanufacturingrouteofOxideDispersionStrengthened (ODS)steels,mainlyconsideredfornuclearapplications.Indeed,when elaboratingthesematerials,anyttria(Y2O3)powderismilledwiththe ferriticmatrixpowderthroughthemechanicalalloyingprocesslead- ingtothedissolutionof yttriaparticles[9–13]. This phenomenonis regularlyobservedbuttheunderlyingmechanismsareverylittlecom- mented. Then,nano-oxides precipitateduring hot consolidation and givethematerialitshighmechanicalproperties.

Inthisstudy,focuswasmadeontheinvestigationofstrain-induced dissolutionofthese nano-oxides,presentinconsolidatedODS alloys.

Differenttypesofnano-oxidescanprecipitateaccordingtothechemical compositionofthealloyalthoughinrecentODSsteels,Y-Ti-Onanoclus- ters(averagediameterof2–3nm)arethemostcommonones[14–20]. ThestructureoftheseprecipitatesisclosetotheY2Ti2O7pyrochlore- likestructure.Theybecomemoreandmorestoichiometricwiththein- creaseoftheirsize.Theyusuallyexhibitacube-on-cube[16,17,21]or

Correspondingauthor.Presentaddress:Université LibredeBruxelles,50avenueFDRoosevelt,B1050Bruxelles,Belgium.

E-mailaddress:benj.hary@gmail.com(B.Hary).

cube-on-edge[16,20]coherencyrelationshipwiththeferriticmatrixas wellaspossiblemisfitdislocationsattheirinterfaces(semi-coherentpar- ticles).Manystudies[22–26]showedthatnon-stoichiometricorY2TiO5 compoundscanalsobefound.Thesenanoparticlesshowaremarkable thermalstabilitythatcanbeattributedtotheircomplexstructure,the very lowsolubilityof yttriumandoxygeninthematrixandthelow interfacial energywhich reduces the so-called Gibbs-Thomsoneffect [16].Atveryhightemperature(>1300°C),theybecomemoresensi- tivetoOstwaldripeningandcoarsensignificantly[23,27,28].Arecent study[29]reportedthatplastic deformationcannotablyaffectsome ODS particles such asYAlO3 in a PM2000 ODS alloy, that undergo twinning whichallowthemtosustainahighdegreeofplasticstrain althoughtheyareharderthanthematrix.Nonetheless,ODSparticles areneverdissolved,evenabovethemeltingpointofthematrix,around 1530°C.Therefore,thissingularbehaviormotivatestheinvestigationof theinfluenceofsevereplasticdeformation(SPD)onthestabilityofsuch nanoparticles.Acombinationofmechanicalandthermaltreatmentscan providenewdegreesoffreedominthecontrolofsecondaryphasepre- cipitation.

2. Materialsandmethods

ThechemicalcompositionoftheODSalloyinvestigatedispresented inTable1.ThebasepowderwithanominalcompositionofFe-14Cr-1W (wt%)commonlyusedinthemanufacturingofODSsteelswasatomized

https://doi.org/10.1016/j.mtla.2018.11.002

Received24October2018;Accepted4November2018 Availableonline6November2018

2589-1529/© 2018ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

(3)

B. Hary, R. Logé and J. Ribis et al. Materialia 4 (2018) 444–448

Table1

Chemicalcompositionoftheas-extrudedmaterial.

Element Cr W Ti C Ni Mn Y O Fe

wt% 14,13 0,91 0,20 0,03 0,20 0,29 0,13 0,11 Bal.

Fig.1. (a)PrincipleoftheMaxStrainMCUusedtoperformtheSPD,(b)equivalentstrain(totalandplastic)foreachhitduringtheSPDprocess.

atAubert&Duval.Thisbasepowderwasmilledwithapowderofti- taniumhydride(TiH2) andyttria(Y2O3) atCEAin anattritorunder argonatmospherefor10hataspeedof400rotationsperminutes.The ball-to-powderratiowasaboutto15.Theproportionoftitaniumhy- drideandyttriaincorporatedwasmanagedinordertotargetamass percentageof0.2Tiand0.2Y2O3 in theconsolidatedmaterial. The ODSsteelpowderisputintoasoftsteelcanandpre-compactedduring 1hat1100°C.Then,thematerialis consolidatedbyhotextrusionat 1100°Cwithasurfacereductionratioof 13andaircooled.Thisisa standardODSmanufacturingroute.Duringtheintensegrindingphase, theyttriumoxidesdissolveandre-precipitatewiththetitaniumtoform theY-Ti-Opyrochlores.

TheODSsteeliscold-deformedusingtheMaxStrainMobileConver- sionUnit(MCU)ofaGleeble®3800systemfromDynamicsSystemInc.® atEPFL.TheMaxStrainMCUenablestoperformSeverePlasticDeforma- tion(SPD)byalternatedcompressionalongtwoorthogonaldirections (seeFig.1(a)).First,thespecimeniscompressedalongonedirection.

Then,thedeviceis rotatedby90° degreebefore performingthe2nd compression.Afterthesecondcompression,thedevicerotatesbackto theinitialposition,thesampleundergoesthethirdcompression,andso on.TheODSsteelisembeddedintwosteelspecimenholdersthatpre- ventdeformationalongthethirddirection,whichisheretheextrusion directionofthematerial.Thetestset-upthereforeensuresplanestrain conditions.TheODSspecimenhasasquarecrosssectionof6×6mm2. Theequivalentstrain𝜀eqandthevonMisesequivalentstressarecom- putedfromthedisplacementandloadsensorsoftheGleeble®system, respectively.Thestrainrateis0.01s1.Thirtycompressionhitswere appliedtothespecimen(fifteenalongeachdirection)leadingtoatotal equivalentplasticstrainof about13.Theequivalentstrain(totaland plastic)foreachhitduringtheprocessispresentedinFig.1(b).Itde- creasesasthenumberofhitincreasessinceasmallquantityofmatteris ejectedtowardtheedgesofthesampleateachcompression.Themaxi- mumvonMisesstressforthefirsthitreachesabout1250MPawhileit increasesuptoalmost1800MPaforthefollowinghits,duetothestrain hardening.

Inordertoinvestigatethenano-oxidesdistributionthroughoutthe thermomechanicaltreatment,energyfilteredtransmissionelectronmi- croscopy (EFTEM) was used to perform electron energy loss spec- troscopy(EELS)mappingusingaTEMJEOL2100operatingat200kV.

Thejumpratioimageswereacquiredinthelow-lossregionsusingthe two-windowsmethod.FortheFe Medgejumpratioimage,thepre- edgeenergyis48eVwhilethepostedgeenergyis64eV.FortheCrM edgejumpratioimage,thepre-edgeenergyis36eVwhilethepostedge energyis52eV.Theslitwidthwas8eVforallthejumpratioimages.

Inaddition,sampleswereanalyzedbySmallAngleNeutron Scat- tering(SANS)duetotheabilityofthistechniquetodetectthesmall- estprecipitates(<2nm) andtohave aconsiderablyhigheranalyzed volumecomparedtoTEM.SANSexperimentswereperformedatLéon Brillouinlaboratory(CEA-CNRS),usingthePAXYspectrometer,inthe sameconditionsasthosereportedbyMathonetal.[30].Itshouldbe notedthat acquisitionconditionsenabletodetectparticleswith size rangingfrom0.5to25nm,namelythattheSANSsignalresultsessen- tiallyfromthecontributionoftheY-Ti-Onano-oxides.Tofitthedata, sphericalparticlesareconsideredandtwoGaussiandistributionsare usedtomodelabimodalpopulation,asalreadyreportedinthelitera- ture[30–32].FormoreinformationabouttheSANStechniqueandthe fittingmethodused,thereaderisreferredto[30].

3. Resultsanddiscussion

Fig.2showstheEFTEMironjumpratiomapscarriedouton the samples. Thicknessewas measuredusingits relationwiththemean freepathoftheelectrons𝜆intheplasmonsuchasz=e/𝜆wherezisthe scaleparameterofthethicknessmaps.OnFig.2,thefirstcompression directionisnormaltotheobservationplan.Thesecondcompressiondi- rectionbeingorthogonaltothefirstone,itliesintheobservationplan.

Intheobservedareas,zisrangingfrom0.2to0.5foreverysamples,al- lowingtoperformareliablecomparisonbetweenthem.Onecannoticed ontheas-extrudedmaterialinFig2(a)manylocalirondepletionsthat exhibitanear-sphericalshapeandareabout5–10nmlarge.Theinsets onFig2(a)clearlyshowthattheselocalirondepletionsarecorrelated withtitaniumenrichments.Theselocalmodificationsof thechemical compositiondirectlyindicatethepresenceofthewell-reportedY-Ti-O nano-oxides.ItcanbementionedthatEFTEManalyses(notshownhere) werealsoperformedonasampleafterasinglecompressionof𝜀=0.7 andY-Ti-Onano-oxideswerestillvisible.

AfterSPD(Fig.2(b)),itismuchmoredifficulttodistinguishthepres- enceofY-Ti-Oparticlesandonlytwowereobserved,asshowninthe 445

(4)

Fig.2. EFTEMFejumpratiomapsin(a)as-extrudedmaterial,(b)afterSPDand(c)aftersubsequentannealing1hat1150°C.Insetsbeloweachmapsshowsthe superimpositionofFeandTijumpratiomaps.

Fig.3.(a)ScatteredmagneticintensityobtainedfromSANSand(b)volumefractionwithassociatedaverageprecipitatesradiianddensityforthethreesamples investigated.

insets.Thelargerirondepletioninthetoprightcorner(blackarrow) doesnotshowtitaniumenrichmentandismorelikelyachromiumcar- bide.Inordertoensurethereproducibilityofthisresult,tenotherareas wereanalyzedintheSPD sample,andnoparticlesweredetected.It shouldbenotedthattheremainingparticlesafterSPDarestillroughly spherical(insetsinFig.2(b)),meaningthatthemorphologydoesnot seemtobeimpactedbythedeformationprocess.Thisstandsoutfrom otherstudies[29,33]wherethemorphologyoftheoxidesisaffected by thedeformation process. This can be explained by thedeforma- tionpathapplied inthepresentstudy, whichconsistin twoorthog- onalcompressiondirections associatedwithaplane strainstatethat doesnot allowthe materialtoflow in thethirddirection.Afteran- nealing1hat1150°C(Fig.1(c)),irondepletionsandtitaniumenrich- mentsarevisible again, althoughtheir numberappears tobe lower thanin theas-extruded sample. These observationshighlighttheef- fectofSPDonnano-particles:thehugeamountofplasticstrainintro- ducedbythedeformationprocessisresponsiblefortheirdissolution.

Then,whenannealingathightemperature, supersaturationofsolute elements(Y,TiandO)inthematrixleadstotheprecipitationofnew nano-oxides.

Tosupport the aforementioned observationsand statements at a muchlargerscale,SANSexperimentswerecarriedout.Fig.3(a)shows themagneticscatteredintensityasafunctionofthenormoftheneu-

tronsscatteringvectorqobtainedforthedifferentsamples.Thesmaller thenano-particles,thehigherthenormofthescatteringvector[30].In Fig.3(b),thevolumefractionofnano-particlesmeasuredinthedifferent statesispresented,withtheassociatedmeanradiusrmofthedistribution anddensityd.Here,theinfluenceof SPDandsubsequentheattreat- mentsonthenanoparticlesdistributionisemphasized.AfterSPD,the scatteredmagneticintensityonFig3(a)(blackcurve)isclearlyshifted towardlowervaluescomparedtotheas-extrudedstate(redcurve).The moreimportantdispersionathighvaluesofqfortheSPDsamplecan beexplainedbythehighercontributionofthenoisetothetotalsignal, sincetherearemuchlessprecipitates.Thiscouldalsoindicatesthatthe smallernano-oxides(qhigherthan1nm1)preferentiallydissolvecom- paredtothelargerones.Fittingthemagneticintensitycurvesenables toobtainthecharacteristicsofthedistribution,whicharepresentedin Fig.3(b).Itcanbenoticedanimportantdecreaseofthevolumefrac- tionanddensityafterSPDcomparedtotheas-extrudedmaterial.The volumefractionisreducedfrom1.2%to0.2%andthedensitydropsby oneorderofmagnitude.

Afterannealing1hat1150°C,thescatteredmagneticintensityin Fig.3(a)isnotablyhigherthanafterSPDandexhibitsthesametrend asthatoftheinitialas-extruded state.Thevolumefractionincreases from0.2%afterSPDto0.8%afterannealingat1150°Candtheden- sityreaches3.4×1023m3.Themeanradiusofprecipitatesdoesnot

(5)

B. Hary, R. Logé and J. Ribis et al. Materialia 4 (2018) 444–448

vary,whichmeansthatY-Ti-Oparticlesre-precipitatewithananometric size.

Consequently,SANSexperimentsandEFTEManalysesareinagood agreementanditcanbeconcludedthatmostoftheY-Ti-Onano-oxides aredissolvedbyplasticdeformation, andre-precipitateafteranneal- ing,withtheirinitialnanometricsize.Thisphenomenonappearstobe similartothedissolutionofY2O3particlesduringmechanicalalloying [10,34]andthefurtherprecipitationof nano-oxidesduring hotcon- solidationofODSmaterials.However,strain-induceddissolutionofthe muchmorestableandsmallerY-Ti-OoxidesinaconsolidatedODSsteel wasneverclearlyobserved,althoughAydoganetal.[35]recentlysus- pecteditduetoachangeoftheprecipitatesmorphologybeforeandafter uniaxialcompressionandrecrystallization.

Inthefollowing,severalaspectsconcerningthermodynamicand/or mechanicalfeaturesareevokedtoaccountforthissingulardissolution oftheY-Ti-Ooxides.Nonetheless,itshouldbementionedthattheiden- tificationofaspecificmechanismtoexplainthisphenomenonisbeyond thescopeofthispaper.

Thermodynamicconsiderationsarefoundintheliteraturetotake intoaccountthedissolutionofsecond-phaseparticles.Theheavyplas- ticdeformationintroducedleadstoanout-of-equilibrium matrixand thecreationofmanyboundaries,interstitialsandvacancies.Thisstate couldprovokedthedissolutionofthenano-oxydes.Duringthemilling ofODSpowder,Kimuraetal.[9]proposedthatgrainboundarieswith amorphousareasin theirvicinitywouldactassinksfor yttriumand oxygenatomsejectedfromtheY2O3particlesduetosuccessivecrush- ingsteps.Theinterfacialenergygraduallyincreasesasthesizeofthe precipitatedecreases, untilit reachesa critical radiusand dissolves completely.Strain-induceddissolutionisalsoreportedinheavilydrawn pearliticsteels.Severalauthors[3,36]considerthatthecementitedis- solutionresultsfromthetransferofcarbonatomsfromFe3Ctoferrite orgrainboundariesduetoahigherbindingenergybetweencarbonand dislocationsinferrite.Inanothersystem(Cu-Fealloy),Sauvageetal.

[37]showedthatthelargeamountofvacanciesintroducedbyplastic deformationstronglyenhancetheinter-diffusionandthemechanicalal- loyingeventhoughthesolubilityofFeinCuisnormallyverylow.Simi- larthermodynamicanalysesofrelativephasestabilityaftermechanical alloyingcouldbeproposedtoexplainthedissolutionofY-Ti-Onanoclus- ters.

Inthemeantime,mechanicalaspectsarerelativetotheinteractions betweendislocationsandprecipitates.Twomechanismsareusuallycon- sideredfor suchinteractions,namelytheOrowanby-passingmecha- nismortheshearingofprecipitatesbythedislocations.TheOrowanby- passingmechanismisgenerallyobservedonlargeandnon-deformable particles,suchas𝜃(Al2Cu)phaseinaluminumalloysorintermetallic phases,thatdislocationscannotcross.Thedislocationbowsoverthe particlesandreleases,leavingdislocationloopsaroundtheprecipitates.

Particlesthatusuallyundergoby-passingareverydifficulttodissolve byplasticdeformation.

Theshearingmechanismislikelytooccurinthecaseofdeformable andcoherentparticles:dislocationsgothroughtheparticlesconsidering continuousslipplanesattheparticle-matrixinterface.Duringthismech- anism,atomsareprogressivelyejectedfromtheparticlesbysuccessive shearingandputbackintosolution[8].Thiswasobservedexperimen- tallyonGuinier-Preston(GP)zonesandoncoherent𝜃’’and𝜃’precipi- tatesinAl-Cualloys[6–8].Moreover,Jiaoetal.[2]mentionedabout Ni/Si-richradiation-inducedclustersthattheshearingofaprecipitate bydislocationsisverylikelytoincreaseitsfreeenergyaswellasthe areaofitsinterfaceandsofavoritsdissolution.Experimentally,noneof theabovemechanisms(by-passingorshearing)hasbeenobservedonY- Ti-Onanoparticlessofar,evenundermonotonicloading.Despitetheir coherencywiththematrixandtheirnanometricsize,itwascomputedby Takahashietal.[38]thatthecriticalresolvedshearstress(CRSS)neces- sarytosheartheODSprecipitatesexceeds20GPa,whichismuchhigher thanthemaximumstressreachedundermonotonicloading.Onthisba- sis,Orowanby-passingisratherconsideredintheliteraturealthough

noresidualdislocationloopsaroundthenanoparticlesweredistinctly foundeither.Itisalsolikelythatfromacertainnumberofcompres- sionhits,theaccumulatedstrainhardeningishighenoughfortheCRSS valuetobe reachedaroundthenano-oxides,activatingtheshearing mechanism.AsimilarmechanismwasobservedbyBrechetandLouchet [39]oncoherent𝛿’precipitatesinanAl-Lialloyafterfatiguetestwhere Orowanloops finallyshear theprecipitateswhenthelocalstressbe- comehigherthanacriticalvalue.Theauthorsnamedthisphenomenon

“delayed-shearing”.

Thus,dissolutionofY-Ti-Onano-oxidesbySPDcouldresultsfrom acombinationofbothmechanicalandthermodynamicaspects.These resultsalsoleadtoquestionsaboutthedissolutionmechanismsofox- idesobservedduringtheMechanicalAlloying(MA).Duringthisstep, itisnoticedthattheoxides,mixedwiththemetalpowders,arecom- pletely dissolved. Ifwe considerthat themechanisms of dissolution duringtheMechanicalAlloying(MA)arethesameasthoseobserved inthisstudybySPD,itsuggeststhatduringtheMA,theoxides(which canbeseveralmicronslargeatthestart)arefractured,finelydispersed andthencompletelyembeddedinthematrix.Then,thesamephenom- enaasthoseseeninthisstudycouldleadtothecompletedissolution of theoxidesdue tothesignificantplastic deformationof themetal powders.

Further experiments would be necessary to clarify the nano- oxides/dislocations interactions throughout thedeformation process.

Theamountofplasticstrainatwhichparticlesstartdissolvingalsode- servestobeinvestigated.Nevertheless,thisstudyshowsthatthestrain- induceddissolutionobservedsofarintheliteratureinprecipitatesthat canbethermallydissolved(𝜃’’,𝜃’,Fe3C,𝜀-Cu…)canbeobservedalso withhighlystablenanoparticlesthatremainatequilibriumabovethe melting pointofthematrix.Moreover,theabilitytorecover theini- tialsizeanddensityafterannealingappearsnoteworthy,particularlyto managethedissolution/precipitationsequenceduringthemanufactur- ingrouteofODSmaterials.

Acknowledgment

The authors would like to warmly thank Dr. Denis Sornin (CEA/DEN/DMN/SRMA/LTMEX)forhishelpinthisstudyandthesup- plyofthematerial.

References

[1] T. Tsuchiyama , S. Yamamoto , S. Hata , M. Murayama , S. Morooka , D. Akama , S. Takaki , Acta Mater. 113 (2016) 48–55 .

[2] Z. Jiao , M.D. McMurtrey , G.S. Was , Scr. Mater. 65 (2011) 159–162 . [3] V.G. Gavriljuk , Mater. Sci. Eng. A 345 (2003) 81–89 .

[4] X. Sauvage , M.Y. Murashkin , B.B. Straumal , E.V. Bobruk , R.Z. Valiev , Adv. Eng.

Mater. 17 (2015) 1821–1827 .

[5] B.B. Straumal , A.R. Kilmametov , Y. Ivanisenko , A.S. Gornakova , A.A. Mazilkin , M..J. Kriegel , O.B. Fabrichnaya , B. Baretzky , H. Hahn , Adv. Eng. Mater. 17 (2015) 1835–1841 .

[6] W. Huang , Z. Liu , L. Xia , P. Xia , S. Zeng , Mater. Sci. Eng. A 556 (2012) 801–806 . [7] Z. Liu , S. Bai , X. Zhou , Y. Gu , Mater. Sci. Eng. A 528 (2011) 2217–2222 . [8] C.R. Hutchinson , P.T. Loo , T.J. Bastow , A.J. Hill , J. da Costa Teixeira , Acta Mater.

57 (2009) 5645–5653 .

[9] Y. Kimura , S. Takaki , S. Suejima , R. Uemori , H. Tamehiro , ISIJ Int. 39 (1999) 176–182 .

[10] M. Ratti , D. Leuvrey , M.H. Mathon , Y. de Carlan , J. Nucl. Mater. 386 (2009) 540–543 –388 .

[11] C.L. Chen , Y.M. Dong , Mater. Sci. Eng. A 528 (2011) 8374–8380 . [12] Z. Oksiuta , N. Baluc , Nucl. Fus. 49 (2009) 55003 .

[13] L. Toualbi , M. Ratti , G. André, F. Onimus , Y. De Carlan , J. Nucl. Mater. 417 (2011) 225–228 .

[14] M.-L. Lescoat , J. Ribis , A. Gentils , O. Kaïtasov , Y. De Carlan , A. Legris , J. Nucl. Mater.

428 (2012) 176–182 .

[15] M.J. Alinger , G.R. Odette , D.T. Hoelzer , J. Nucl. Mater. 333 (2004) 382–386 . [16] J. Ribis , Y. De Carlan , Acta Mater. 60 (2012) 238–252 .

[17] J. Ribis , M. Lescoat , S.Y. Zhong , M. Mathon , Y. De Carlan , J. Nucl. Mater 442 (2013) 101–105 .

[18] X. Boulnat , M. Perez , D. Fabrègue , S. Cazottes , Y. De Carlan , Acta Mater. 107 (2016) 390–403 .

[19] Y. Jiang , J.R. Smith , G. Robert Odette , Acta Mater. 58 (2010) 1536–1543 . [20] Y. Wu , J. Ciston , S. Kräemer , N. Bailey , G.R. Odette , P. Hosemann , Acta Mater. 111

(2016) 108–115 . 447

(6)

[21] S.Y. Zhong , J. Ribis , N. Lochet , Y. de Carlan , V. Klosek , M.H. Mathon , J. Nucl. Mater.

455 (2014) 618–623 .

[22] H. Sakasegawa , L. Chaffron , F. Legendre , L. Boulanger , T. Cozzika , M. Brocq , Y. de Carlan , J. Nucl. Mater. 384 (2009) 115–118 .

[23] M. Lescoat , J. Ribis , Y. Chen , E.A. Marquis , E. Bordas , P. Trocellier , Acta Mater. 78 (2014) 328–340 .

[24] S. Ukai , T. Okuda , M. Fujiwara , T. Kobayashi , S. Mizuta , H. Nakashima , J. Nucl. Sci.

Technol. 39 (2012) 872–879 .

[25] M.K. Miller , D.T. Hoelzer , E.A. Kenik , K.F. Russell , J. Nucl. Mater. 329 (2004) 338–341 –333 .

[26] M.J. Alinger , G.R. Odette , D.T. Hoelzer , Acta Mater. 57 (2009) 392–406 . [27] M. Dade , J. Malaplate , J. Garnier , F. De Geuser , N. Lochet , A. Deschamps , J. Nucl.

Mater. 472 (2016) 143–152 .

[28] J. Shen , H. Yang , Y. Li , S. Kano , Y. Matsukawa , Y. Staoh , H. Abe , J. Alloy. Compd.

695 (2017) 1946–1955 .

[29] Z. Zhang , W. Pantleon , Acta Mater. 149 (2018) 235–247 .

[30] M.H. Mathon , M. Perrut , S.Y. Zhong , Y. de Carlan , J. Nucl. Mater. 428 (2012) 147–153 .

[31] S.Y. Zhong , J. Ribis , T. Baudin , N. Lochet , Y. de Carlan , V. Klosek , M.H. Mathon , J.

Nucl. Mater. 452 (2014) 359–363 .

[32] P. Olier , J. Malaplate , M.H. Mathon , D. Nunes , D. Hamon , L. Toualbi , Y. de Carlan , L. Chaffron , J. Nucl. Mater. 428 (2015) 40–46 .

[33] M. Song , C. Sun , J. Jang , C.H. Han , T.K. Kim , K.T. Hartwig , X. Zhang , J. Alloy.

Compd. 577 (2013) 247–256 .

[34] T. Okuda , M. Fujiwara , J. Mater , Sci. Lett. 14 (1995) 1600–1603 .

[35] E. Aydogan , O. El-Atwani , S. Takajo , S.C. Vogel , S.A. Maloy , Acta Mater. 148 (2018) 467–481 .

[36] A. Lamontagne , V. Massardier , X. Kléber , X. Sauvage , D. Mari , Mater. Sci. Eng. A 644 (2015) 105–113 .

[37] X. Sauvage , F. Wetscher , P. Pareige , Acta Mater. 53 (2005) 2127–2135 . [38] A. Takahashi , Z. Chen , N. Ghoniem , N. Kioussis , J. Nucl. Mater. 417 (2011)

1098–1101 .

[39] Y. Brechet , F. Louchet , Acta Metall. 37 (1989) 2469–2473 .

Références

Documents relatifs

Et si il est une spécificité française, c’est bien la place toujours importante de l’Etat central qu’il s’agit de noter tant dans l’encadrement des

In both culture media, the T5 and INRA 812 strains showed great sensitivity towards the essential oil of flow- ers (inhibition rate &gt;60% in solid medium, &gt;70% in liquid

This is a repository copy of Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.. White Rose Research Online URL for this

We present results based on simulated brain activity using a Multivariate Autoregressive Model, with realistic subject anatomy obtained from Human Connectome Project [4] dataset..

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Effectivement, il est dorénavant possible de passer d'un mode à l'autre sans pour autant perdre la mise en page html.. Voici

Les m´ ethodes d´ efinies ` a l’int´ erieur de la classe (inline) peuvent avoir leur corps recopi´ e ` a chaque appel pour acc´ el´ erer l’ex´ ecution. Ce n’est pas le cas