• Aucun résultat trouvé

Elliptic instability of a curved Batchelor vortex - corrigendum

N/A
N/A
Protected

Academic year: 2021

Partager "Elliptic instability of a curved Batchelor vortex - corrigendum"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-01430558

https://hal.archives-ouvertes.fr/hal-01430558

Preprint submitted on 10 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Elliptic instability of a curved Batchelor vortex - corrigendum

Francisco Blanco-Rodriguez, Stéphane Le Dizès

To cite this version:

Francisco Blanco-Rodriguez, Stéphane Le Dizès. Elliptic instability of a curved Batchelor vortex -

corrigendum. 2017. �hal-01430558�

(2)

1

Elliptic instability of a curved Batchelor vortex - corrigendum

Francisco J. Blanco–Rodr´ ıguez and St´ ephane Le Diz` es

Aix-Marseille Universit´ e, CNRS, Centrale Marseille, IRPHE, Marseille, France (Received 9 January 2017)

Due to a normalisation mistake, a systematic error has been made in the values of the coefficients R

AB

and R

BA

in the dispersion relation (4.7) of Blanco-Rodr´ıguez &

Le Diz`es (2016). The correct values are twice those indicated in this paper for all the modes. This modifies the values given in table 2 and formulas (C2n-q), (C3n-q), (C4n-q).

For instance, in table 2 the correct value of R

AB

for the mode (−2, 0, 1) at W

0

= 0.4 is R

AB

= 2.302 + 0.382i instead of R

AB

= 1.151 + 0.191i.

This error affects the y-scale of the plots (c) and (d) of figure 5 which has to be multiplied by two, and those of figure 6, which has to be divided by 2. It also changes all the figures obtained in section 8. The correct figures are given below (using the same figure numbers as in Blanco-Rodr´ıguez & Le Diz`es (2016)).

The comparison with Widnall & Tsai (1977) done in section 8.1 for a vortex ring is also slightly modified. With the correct normalisation, the inviscid result of Widnall &

Tsai (1977) for the Rankine vortex is σ

max

2

= [(0.428 log(8/ε) − 0.455)

2

− 0.113]

1/2

while we obtain for the Lamb-Oseen vortex σ

max

2

= 0.5171 log(8/ε) − 0.9285. The Lamb-Oseen vortex ring is thus less unstable than the Rankine vortex ring as soon as ε > 0.039 for the same reason as previously indicated.

REFERENCES

Blanco-Rodr´ıguez, F. J. & Le Diz` es, S. 2016 Elliptic instability of a curved Batchelor vortex. J. Fluid Mech. 804, 224–247.

Widnall, S. E. & Tsai, C.-Y. 1977 The instability of the thin vortex ring of constant vorticity.

Phil. Trans. R. Soc. London A 287, 273–305.

(3)

2 F. J. Blanco–Rodriguez and S. Le Diz` es

0.05 0.1 0.15 0.2 0.25 0.3 0

0.2 0.4 0.6 0.8 1 1.2

ε σ

∗ max

2 π R

2

/ Γ

0.05 0.1 0.15 0.2 0.25 0.3 0

0.2 0.4 0.6 0.8 1 1.2

ε σ

∗ max

2 π R

2

/ Γ

(a) (b)

Figure 8. Maximum elliptic instability growth rate σ

max

2

= σ

max

2πR

2

/Γ versus ε = a/R for a vortex ring of radius R (a), and 2 counter-rotating vortices distant of 2R (b), both of core size a. Black lines: W

0

= 0 (mode (−1, 1, 1)), red lines: W

0

= 0.2 (mode (−2, 0, 2)), green lines:

W

0

= 0.4 (mode (−2, 0, 1)). Solid lines are for Re = ∞, dashed lines for Re = 5000. For both cases, the perturbation wavenumber is assumed not to be discretized (see figure 9).

0 0.1 0.2 0.3

0 0.2 0.4 0.6 0.8 1 1.2

ε σ max2πR2

0 0.1 0.2 0.3

0 0.2 0.4 0.6 0.8 1 1.2

ε 00 0.1 0.2 0.3

0.2 0.4 0.6 0.8 1 1.2

ε

(a) (b) (c)

Figure 9. Elliptic instability growth rate σ

max

2

= σ

max

2πR

2

/Γ for a vortex ring of radius R = 1/ε for Re = ∞ (solid lines) and Re = 5000 (dashed lines). Thick lines are the maximum growth rate curves plotted in figure 8(a), thin lines are the growth rate curves assuming that the instability wavenumbers are discretized and only take the values k

n

= 2πn ε, n = 1, 2, 3, · · ·.

(a): W

0

= 0 (mode (−1, 1, 1)), (b): W

0

= 0.2 (mode (−2, 0, 2)), (c): W

0

= 0.4 (mode (−2, 0, 1)).

(4)

Elliptic instability of a curved Batchelor vortex - corrigendum 3

0 1 2 3

0 2 4 6 8

L

z

/R σ

∗ max

2 π L

2 z

/ Γ

2 4 6 8

0 0.5 1 1.5

L

z

/R σ

∗ max

2 π R

2

/ Γ

Figure 10. Maximum elliptic instability growth rate versus L

z

/R of an array of alternate vortex rings (solid lines) and of an array of straight counter-rotating vortex pairs of alternate sign (dashed lines) for ε = a/R = 0.1 and Re = ∞. Black lines: W

0

= 0 (mode (−1, 1, 1)), red lines:

W

0

= 0.2 (mode (−2, 0, 2)), green lines: W

0

= 0.4 (mode (−2, 0, 1)). Left plot: normalization with Γ/(2πL

2z

). Right plot: normalization with Γ/(2πR

2

). The vertical lines on the left plot indicate the value of L

z

/R where the local strain rate vanishes for each configuration.

0 0.5 1 1.5 2

0 2 4 6 8

L/R σ

∗ max

2 π

3

L

2

/ Γ

2 4 6 8 10

0 0.1 0.2 0.3 0.4

L/R σ

∗ max

2 π R

2

/ Γ

Figure 11. Maximum elliptic instability growth rate versus L/R of two helical vortices (solid lines) and of an double-array of straight co-rotating vortices (dashed lines) for a/R = 0.1 and Re = ∞. Black lines: W

0

= 0 (mode (−1, 1, 1)), red lines: W

0

= 0.2 (mode (−2, 0, 2)), green lines:

W

0

= 0.4 (mode (−2, 0, 1)). Left plot: normalization with Γ/(2πL

2z

). Right plot: normalization

with Γ/(2πR

2

). The vertical lines on the left plot indicate the value of L/R where the local

strain rate vanishes for each configuration.

Références

Documents relatifs

Immunofluorescence labeling of transverse cryosections of normal adult skeletal muscle with anti-DMPK (20G8) and anti-skeletal myosin (fast) Western blots showing

Les résultats de simulation pour l'approche à prédiction d'erreur de sortie sont schématisées les figures (Fig.4.9): 3000 i 2500 2000 ·.. Variante

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Since the results of Crow [C70], collisions in this model are searched as perturbations of an antiparallel pair of vortex filaments, with initial perturbations related to the

The growth rate of this radiative instability is strongly reduced in the presence of a cyclonic background rotation f /2 and is smaller than the growth rate of the

The strictly temporal (given real axial wavenumber k and unknown complex frequency ω) instability analysis of the Batchelor (a, q)-vortex has been extensively addressed both in

Pour les trouver, il faut recourir à des techniques informatiques telles que « l’exploration de données », les « réseaux neuronaux » et « l’apprentissage machine », qui

Les réductions moyennes du bruit entre les mesures du microphone extérieur (champ libre) et les niveaux sonores intérieurs moyens dans chaque pièce sont comparés aux calculs