• Aucun résultat trouvé

Modeling of an integrated SOFC and biomass gasification system

N/A
N/A
Protected

Academic year: 2021

Partager "Modeling of an integrated SOFC and biomass gasification system"

Copied!
15
0
0

Texte intégral

(1)

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=0203054e-c7f2-41bd-a5bf-c54a8d01f5f4 https://publications-cnrc.canada.ca/fra/voir/objet/?id=0203054e-c7f2-41bd-a5bf-c54a8d01f5f4

NRC Publications Archive

Archives des publications du CNRC

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Modeling of an integrated SOFC and biomass gasification system

(2)

Can Ozgur Colpan Feridun Hamdullahpur

Ibrahim Dincer Yeong Yoo

MODELING OF AN INTEGRATED SOFC AND

BIOMASS GASIFICATION SYSTEM

(3)

Outline

• Introduction to integrated SOFC and biomass gasification systems • Literature survey on modeling of SOFC and biomass gasification

systems

• Objective of this study • Modeling

• Transient heat transfer modeling of SOFC • System level modeling

• Results

• Conclusions

(4)

Introduction to Integrated SOFC and Biomass

Gasification Systems

 Researches focus on finding the optimum performance and the most economic solution for given biomass fuels and desired

outputs.

GASIFICATION GAS CLEANUP SOFC

Biomass Product gas Cleaned gas  Reactor type  Gasification agent  Feedstock  Operating conditions Electricity Heat  Temperature level  Components  Design type  Temperature level  Reforming type  Flow configuration  Catalyst materials  Operating conditions

(5)

Literature Survey

• Omosun et al. (2004): They compared cold gas cleanup and hot gas cleanup systems to be used in biomass gasification/SOFC system.  Hot gas cleanup should be preferred.

• Panopoulos et al. (2006): They investigated the integration of a SOFC with a novel allothermal biomass steam gasification process.  the electrical efficiency of the system as 36% and exergetic efficiency as 32%.

• Cordiner et al. (2007): They studied the integration of a downdraft gasifier with a SOFC in which woody material is used as the fuel.  Electrical efficiency of the system is calculated as 45.8%.

• Athanasiou et al. (2007): They studied integrated SOFC/steam

turbine/gasifier system.  Electrical efficiency of the system is found to be 43.3%.

(6)

Objective

• To model integrated SOFC and biomass gasification systems for predicting the performance of the system.

• Transient heat transfer model of a SOFC

• Thermodynamic models for the rest of the components

• Effect of gasification agent on the performance of the system is studied. Performance assessment parameters are:

• Electrical efficiency

• Fuel utilization efficiency • Power-to-heat ratio

(7)

Transient Heat Transfer Model of SOFC

• A control volume around the repeat element of a planar, co-flow, DIR-SOFC is taken.

• Solid structure is modeled in 2-D, whereas gas channels are modeled in 1-D.

• Cell voltage, Reynolds number at the fuel channel inlet, excess air

coefficient are input parameters. Current density, temperature, and molar gas composition distributions, fuel utilization, power output and electrical efficiency of the cell are output parameters.

• Six gas species, CH4, H2, CO, CO2, H2O and N2 at the fuel channel inlet and two gas species O2 and N2 at the air channel inlet are considered. • Fully developed laminar flow conditions are assumed in channels.

• Convection in the rectangular ducts and surface-to-surface radiation effects,

conduction heat transfer at the section where the interconnects are in contact with PEN structure, ohmic, activation and concentration

polarizations are considered.

(8)
(9)

System Level Modeling-II

• Approach in the modeling:

• The syngas composition (from the thermodynamic modeling of the gasifier)

• The number of SOFC stacks that must be used in this system (using the output of the heat transfer model of the SOFC)

• The molar flow rate of dry biomass • The enthalpy flow rate of all states • Work input to the blowers and pump • Performance assessment parameters

• Electrical efficiency

• Fuel utilization efficiency • Power-to-heat ratio

• Exergetic efficiency

(10)

System Level Modeling-III

• Electrical efficiency

• Fuel utilization efficiency • Power-to-heat ratio • Exergetic efficiency

fg

O H C net el h m LHV n W z y x     1   

fg

O H C process net h m LHV n H W FUE z y x       1    process net H W PHR     ) ( , 15 ,C H O chH2O l ch process net e n x E x E W z y x          

(11)

Input Data

Environmental temperature 25 °C

Fuel

Type of biomass Wood

Ultimate analysis of biomass [%wt dry basis] 50% C, 6% H, 44% O

Moisture content in biomass [%wt] 40%

Gasifier

Moisture content in biomass entering gasifier [%wt] 20%

Temperature of syngas exiting gasifier 900 °C

Molar ratio of steam entering to gasifier to drybiomass

0.1

Molar composition of enriched oxygen 0.35 O2, 0.65 N2

Balance of Plant

Temperature of exhaust gas leaving the system 127 °C

Pressure ratio of blowers 1.18

Isentropic efficiency of blowers 0.53

Pressure ratio of pump 1.2

Isentropic efficiency of pump 0.8

Inverter efficiency 0.95

SOFC

Power requirement of SOFC 10 kW

Number of cells per stack 50

Temperature of syngas entering SOFC 850 °C

Temperature of air entering SOFC 850 °C

Pressure of the cell 1 atm

Cell voltage 0.65

Excess air coefficient 7

Active cell area 10x10 cm2

Number of repeat elements per single cell 18

Flow configuration Co-flow

Manufacturing type Electrolyte-supported

Thickness of air channel 0.1 cm

Thickness of fuel channel 0.1 cm

Thickness of interconnect 0.3 cm Thickness of anode 0.005 cm Thickness of electrolyte 0.015 cm Thickness of cathode 0.005 cm Emissivity of PEN 0.8 Emissivity of interconnect 0.1 Diffusivity of anode 0.91 cm2/s Diffusivity of cathode 0.22 cm2/s Porosity of anode 0.5 Porosity of cathode 0.5 Turtuosity of anode 4 Turtuosity of cathode 4 10

(12)

Results-I

4 CH x 2 H x xCO 2 CO x xHO 2 xN2 Case1: Air 0.14% 11.22% 8.16% 12.95% 22.68% 44.84% Case2: Enriched O2 0.28% 15.74% 11.40% 16.37% 28.80% 27.41% Case3: Steam 2.15% 43.37% 27.38% 8.98% 18.12% 0.00% Syngas composition

Output of SOFC model

r Re ic,ave[A/cm2] U F Wsofc [W/cm2] nstack Case1: Air 0 10.0 0.240 0.85 0.156 13 Case2: Enriched O2 0 6.5 0.246 0.85 0.160 13 Case3: Steam 0 1.5 0.343 0.85 0.223 9 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 1 2 3 4 5 6 7 8 9 10 M a x . ca rb o n a ct iv it y Case 1 Case 2 Case3

(13)

Results-II

Case-1 Case-2 Case-3

12

(14)

Results-III

Power demand for auxiliary components, net power and heat output

SOFC W [W] 1  blower W [W] 2  blower W [W] pump W [W] net W [W] process H  [W] Case1: Air 10140 227.5 1332.1 0.2 8073.2 19741.3 Case2: Enriched O2 10384 204.0 1366.9 0.2 8293.7 17032.9 Case3: Steam 10031 - 1319.6 0.02 8210.2 1765.9

Performance assessment parameters

FUE PHR Case1: Air 18.5% 63.9% 0.409 30.9% Case2: Enriched O2 19.9% 60.9% 0.487 30.7% Case3: Steam 41.8% 50.8% 4.649 39.1% el

Mass flow rate of substances entering the system

biomass m [g/s] air m (B1) [g/s] air m (B2) [g/s] water m [g/s] steam m [g/s] Case1: Air 4.048 7.796 45.648 7.654 7.654 Case2: Enriched O2 3.867 6.989 46.841 6.604 6.604 Case3: Steam 1.826 - 45.219 0.7670 0.6847 

(15)

• A model for a SOFC and biomass gasification system is developed(heat transfer model for SOFC, thermodynamic models for the rest of the

components).

• The effect of gasification agent on the performance of the system is discussed.

• This study shows that steam gasification yields the highest electrical efficiency, power-to-heat ratio and exergetic efficiency, but the lowest fuel utilization efficiency.

• As a future study, exergy analysis will be applied to the system to calculate the exergy destructions and losses; hence identify the locations and magnitudes of the irreversibilities within the system.

Conclusions

Références

Documents relatifs

In this work realized by CIRAD, a specially designed crossed fixed-bed reactor was used to characterize thermal and catalytic tar reduction due to cracking and reforming reactions

Prof.ssa Giovanna Suzzi ______________________.. Biomass valorization for the production of modern energy carriers ... Energy from biomass: an overview on the European

La carte des UAP est un moyen de connaissances "géo-agronomiques" d’un territoire donné : type et dé- limitation d’unités spatiales agronomiques, analyse des

Pour répondre aux attentes de préservation de la biodiversité, de valorisation des atouts de la caatinga, et de ce fait protéger les surfaces encore disponibles de caatinga, l’en-

رزﺎﻣ مﯾﻠﻗإ ﻲﻫ ﺔﯾﻓارﻐﺟ مﯾﻟﺎﻗأ ﺔﺛﻼﺛ ﻰﻟإ ﺔﯾﻠﻘﺻ مﯾﺳﻘﺗ نﻛﻣﯾ و (Zal di Mazara) سطوﻧ مﯾﻠﻗإ و (Zal di Noto) شﻧﻣد مﯾﻠﻗإ و (Zal di Democh) اذ مﯾﺳﻘﺗﻟا اذﻫ نﺎﻛ

...Furthermore, a multiple linear regression model derived from that data could be used to improve the Navy’s estimates for New Work in future availabilities. Unfortunately,

While our experiments do not allow us to study the effect of basis risk on insurance demand directly, we note in the main text that the use of technology to improve measurement

El mapa se titula “Mapa de la parte de Yucatán concedida a los ingleses por los españoles para el corte de madera, siguiendo los tratados de 1783 y 1786” y precisa en una nota