• Aucun résultat trouvé

Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol-gel coating on martensitic stainless steel

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol-gel coating on martensitic stainless steel"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00833772

https://hal.archives-ouvertes.fr/hal-00833772

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Effect of cerium concentration on corrosion resistance

and polymerization of hybrid sol-gel coating on

martensitic stainless steel

Jean-Baptiste Cambon, Florence Ansart, Jean-Pierre Bonino, Viviane Turq

To cite this version:

Jean-Baptiste Cambon, Florence Ansart, Jean-Pierre Bonino, Viviane Turq.

Effect of cerium

concentration on corrosion resistance and polymerization of hybrid sol-gel coating on

marten-sitic stainless steel.

Progress in Organic Coatings, Elsevier, 2012, pp.

75, pp.

486-493.

(2)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

To link to this article:

DOI:10.1016/j.porgcoat.2012.06.005

Official URL:

http://dx.doi.org/10.1016/j.porgcoat.2012.06.005

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 8743

To cite this version:

Cambon, Jean-Baptiste and Ansart, Florence and Bonino, Jean-Pierre and Turq,

Viviane

Effect of cerium concentration on corrosion resistance and

polymerization of hybrid sol–gel coating on martensitic stainless steel. (2012)

Progress in Organic Coatings, pp. 75 (n° 4). pp. 486-493. ISSN 0300-9440

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

(3)

Effect

of

cerium

concentration

on

corrosion

resistance

and

polymerization

of

hybrid

sol–gel

coating

on

martensitic

stainless

steel

Jean-Baptiste

Cambon

,

Florence

Ansart,

Jean-Pierre

Bonino,

Viviane

Turq

InstitutCarnotCIRIMAT,UniversitédeToulouse,UMRCNRS5085,118RoutedeNarbonne,31062ToulouseCedex9,France

Keywords: Stainlesssteel Sol–gelcoating Corrosioninhibitor EIS NMRspectroscopy

a

b

s

t

r

a

c

t

Stainlesssteelsareincreasinglyusedintheaeronauticsfieldforthemanufactureofstructuralparts.One ofthem,theX13VDmartensiticstainlesssteel(X12CrNiMoV12-3),knownforitsgoodmechanical prop-erties,hasapoorcorrosionresistanceinconfinedorsevereenvironments.Inthepastyears,Cr(VI)based pre-treatmentshavebeencurrentlyusedforcorrosionprotectionofdifferentmetals,however,theyare toxicandduetoenvironmentalregulations,theywillbedefinitelybannedinanearfuture.Alternatives toreplaceCr(VI)showadvantagesanddrawbacksconsideringkeypropertiessuchas:corrosion resis-tance,adhesionofcoatings,fatigueresistance,durabilityandreliability.However,someoftheirpossible alternativesshowhighpotential.

Inthispaper,aprocesswasdevelopedtoimprovethecorrosionresistanceofthemartensitic stain-lesssteel.Organic–inorganichybridcoatingswithdifferentceriumconcentrationsweredepositedonto stainlesssteelbysol–gelprocess.Corrosionresistanceofthecoatingswasevaluatedby electrochemi-calimpedancemeasurementsandithasbeenprovedthatceriumconcentrationof0.01Mintohybrid coatingwasanoptimalcontent.Adhesiontestswerealsocarriedoutby“nanoscratchtest”to character-izethecoatingsmechanicalpropertiesasafunctionofceriumconcentrationbutresultsdonotclearly showtheinfluenceofceriumforthecoatingadhesiontowardthesubstrate.Totrytocorrelatewiththe electrochemicalproperties,liquid29SiNMRspectroscopywasthenperformedtoinvestigatehydrolysis

andcondensationreactionsofsol–gelprocess,andbythismethod,itwasdemonstratedthatforhigher ceriumconcentration(>0.01M)thereisamodificationofthechemicalstructureofthesol–gelnetwork.

1. Introduction

Metallic corrosion occurs as a result of chemical reactions betweenthemetalsurfaceandtheenvironment,whichconverts themetalintoitsoriginalore.Inthecaseofsteelandaluminum, Cl−,O

2andH2Ospecies,inadditiontoelectrontransport,playkey

rolesinthecorrosionprocess[1,2].Generally,corrosion preven-tiontechnologyusesoneormoreofthefollowingmethods.The firstoneistheadditionofelements(Cr,Ni,etc.)inthemetalsto enrich thesurface witha corrosion-resistantcomponentduring thecorrosionprocess. Thiscan beassociatedtotheadditionof aqueousinhibitors,whichcanbestronglyadsorbedbychemical conversiontreatmentonthemetalsurfacetopreventthereaction withtheoxidizingagent.Chromates(Cr(VI))areusedasthemost commoncompoundsduetotheirefficiencyinsevereatmosphere andtheirlowcost.Butchromiumbasedcompoundsareextremely toxicadditives,carcinogen,mutagenandreprotoxic.Sotheuseof chromateswillbestrictlyprohibitedinthenextyears[3].

∗ Correspondingauthor.

E-mailaddress:cambon@chimie.ups-tlse.fr(J.-B.Cambon).

Sol–gelcoatingsareoneofthemostpromisingalternative pre-treatments,completelychrome-freewithotheradvantagessuchas cost-effectiveness,lowlife-cycleenvironmentalimpactandsimple applicationprocedures.Thepotentialapplicationofsol–gel coat-ingsas a corrosion protectionsystemfor metalsubstrates was highlighted15yearsagobyGuglielmi[4].Thenseveralworkshave beenundertakentomake varioussol–gelbasedprotective coat-ings,asdescribedinnumerousrecentreviews.Submicronmetal oxidefilmsinhibitcorrosionbyprovidingachemicallyinertbarrier tothediffusionofcorrosivespecies,andtheprotective character-isticsofsol–gelfilmscontainingSiO2[5],TiO2 [6],Al2O3[7],and

ZrO2[8],havebeenreportedinvariousstudies.Despiteadvantages

ofsol–gelprocessing,ceramiccoatingssufferfromseveral draw-backs:(a)high-temperaturetreatments(>600◦C)arerequiredto

decreaseporosityandstabilizethefilms;(b)cracksoccurduring temperaturefluctuationsduetothebrittlenatureofceramicfilms andincompatibilitybetweenthethermalexpansioncoefficientsof metalsandprotectivecoatings;(c)thick(>1mm)crack-freesol–gel coatingsaredifficulttoobtain.Theselimitationscanbeavoidedby thedevelopmentofhybridorganic–inorganicprotectivecoatings, whichcombinethehardness,scratchresistanceandthermal sta-bilityoftheceramiccomponentwiththeflexibility,transparency andtunableadhesionoftheorganicsubstances[9–12].

(4)

Table1

ChemicalcompositionofCX13VDstainlesssteel(Febalance).

Element C Cr Ni Mo Va

mol% 0.12 11.5 2.50 1.60 0.30

Fig.1. Semi-developedformulaofGPTMS(glycidoxyproil-trimethoxysilane)(a) andAl(OsBu)

3(aluminumsec-butoxide)(b).

Corrosioninhibitorsareincorporatedintothecoatinginorderto improveitscorrosionresistance.Rareearthelementsand particu-larlyceriumareamongthosecommonlyusedforthatpurposeand ceriumhasbeenfoundasanefficientcathodicinhibitor[13–16]. Theobjectiveofthisworkwastostudytheinfluenceofcerium con-centrationwithinasol–gelhybridcoatingappliedonmartensitic stainlesssteelanddevelopedfromthesystem: glycidoxypropyl-trimethoxysilane(GPTMS)andaluminumsec-butoxideAl(OsBu)

3.

Aninvestigationofthesolformulationandchemicalmechanisms wasmade,kineticofhydrolysisandcondensationofalkoxysilanes hasbeenfollowedwithdifferentceriumconcentrationsbyliquid

29SiNMRspectroscopytoidentifysol–gelmechanisms.

Hydropho-bic and adhesion properties of different coatingswere studied respectivelybycontactanglemeasurementand“nanoscratchtest” devicetoverifyceriuminfluence.Finally,theanti-corrosion prop-ertiesofceriumdopedorundopedhybridorganic–inorganicwere investigatedbyelectrochemicalconventionaltechniquesandan optimalceriumconcentrationwasfound:0.01Mandacorrelation with29SiNMRresultshasbeentakeninevidence.

2. Experimentalprocedure 2.1. Material

Metallicsubstrates,CX13VDmartensiticstainlesssteelSS (com-positiongiveninTable1)50mm×25mm×1mmsizessamples are cleaned and pre-treated using several steps, after alkaline degreasing,chemicalcleaningcorrespondsto:1minimmersionin fluonitricacid(pH=1)maintainedat60◦C.Sampleisfinallywashed

inethanolanddriedinair. 2.2. Solandcoatingpreparation

Solsfromwhich coatingswereprocessed, werepreparedby mixingglycidoxypropyl-trimethoxysilane(GPTMS)andaluminum tri-sec-butoxideAl(OsBu)

3(formulasinFig.1)anddistilledwater

andpropanolinmolarratio5:1:1:10.ThenCe(NO3)3·6H2Owas

addedto reach0.001,0.005,0.01,0.05 and 0.1M Ce3+.The sol

wasstirredduring2hatroomtemperatureandmaturedfor24h beforedepositiononthesubstratetoinitiatethesol–gelreactions. Theycouldschematicallybedividedintotwosteps,thefirstisa hydrolysisreaction(1)whichaimstopromotereactivehydroxyl groupsreactiveM-OH.Thesecondstepisthecondensation reac-tioninvolvingthealkoxide(2)oronlythehydrolyzedspecies(3).

M(OR)n+nH2O→ M(OH)n+nROH

M(OH)n+M(OR)n→(HO)n−1M-O-M(OR)n−1+ROH M(OH)n→(HO)n−1M-O-M(OH)n−1+H2O

Thesol–gelfilmswereobtainedbydip-coatingprocedure,using animmersion followedby a withdrawalat a controlledrateof 20cmmin−1.Thiswithdrawalspeedhasbeenchosenintherange

[1–50cmmin−1] becauseitcorrespondstothemoreconvenient

coveringintermofthickness(LandauandLevichlaw)and homo-geneityofthefilm.Afterdeposition,coatedsamplesweredriedin anovenat100◦Cduring24htocompletepolymerizationofthe

hybridfilm.

2.3. Characterization

Theviscosityofeachsolwasdeterminedbyaviscometer Rheo-matRM100of typeTaylor–Couette flowat ashear in therange [600–966s−1].

Kineticsofhydrolysisandcondensationofalkoxysilaneswere studiedbyliquid29SiNMRspectroscopy.Themeasurementswere

performedonaBrucker400MHzspectrometer.NMRspectrawere recordedwithbenzenelikeinternalchemicalshiftreference.The chemicalshiftsweregiveninppmrelativetotheinternalreference. MacrostructuralpropertiesofcoatingswereevaluatedbySEM microscopy,observationswereperformedonsampleswithaJEOL JSM-6510LVapparatus.

Thickness measurements were performed with a fisher dualscopeFMP20,thistechniqueiscommonlyusedforthe deter-minationofcoatingthicknessessuchaspaints.

Coatingroughnessisevaluatedbywhite-lightinterferometry (ZygoInstruments).

Contactanglemeasurementswereperformedwithwaterdrop methodusingcamera.Thentheimagewasprocessedbyasoftware package(windrop).

ScratchtestswereperformedusingaNanoScratchTesterCSM withadiamondindenterwithconicalgeometry.Thescratchtest wascarriedoutwithprogressiveloadingfrom0to60mN.After thescratchtest,thechangesinthemechanismofscratchandthe criticalloadswerevisualizedbyopticalmicroscopy.

The electrochemical behavior of coating was evaluated by electrochemical impedance spectrometry (EIS) in NaCl (0.1M)+Na2SO4(0.04M)solution.AKClsatelectrode,connectedto

theworkingsolution,wasusedasreferenceelectrodeanda plat-inumtapeasauxiliaryelectrode.Allelectrochemicalexperiments wereperformedafterstabilization(1h)offreeopencircuit poten-tial.Electrochemicalimpedancespectra(EIS)rangingfrom65kHz to10mHzwerecarriedwitha80mVsinusoidalperturbation sig-naltothecorrosionpotentialwithSolartronInstrumentSI1286 ElectrochemicalInterfacepotentiostatandaSolartronInstrument SI1260Impedance/Gain-Phase-analyser.Alltheelectrochemical experimentswerecarriedouttoroomtemperatureand theEIS diagramswererecordedforimmersiontimesupto24h.

3. Resultsanddiscussion

Thescanningelectronmicrographsofsubstratebeforeandafter cleaningareshowninFig.2anditwasrevealedaftersurface prepa-rationofmetallicsubstrate,themartensiticmicrostructurewith thepresenceoflamellas.

Theviscosityofasolundergoinghydrolysisand polyconden-sationisstronglydependentintimeandisrelatedtothesizeof particles.Thelargertheformedmolecules,thehighertheviscosity [17].Fig.3showstheeffectofceriumconcentrationonthe viscos-ityofthesolagedfor24h(justbeforedeposition).Anincreaseof viscositycanbeobservedwiththeincreasingofcerium concen-tration.Thisisassociatedwiththehighhygroscopiccharacterof ceriumwhichabsorbsthelargeamountofwatertrappedinthesol network[18].

(5)

Fig.2. SEMimagesofsurfacemorphologiesofX13VDstainlesssteelbefore(a)andafter(b)cleaning.

Fig.3.Viscosityofsolswithdifferentconcentrationsofcerium.

Forabetterunderstandingofsol–gelmechanismsintothesols theworkwasonthebondinvolvedinthereactionsversuscerium concentration.

Liquid29SiNMRspectroscopywasusedtoinvestigatethe

chem-icalstructureoftheinorganicnetworkjustafterthesynthesisof sols(0h)andafter(24h).Duringhydrolysisandcondensation reac-tions,thesiliconenvironmentchangesfromSi ORtoSi OHthento Si O Si.Then,eachcondensationreaction,withtheformationofa Si O Sioxobridgeinducesachemicalshiftof8–10ppminthehigh field[19].29SiNMRwascarriedouttofollowtheinorganicphase

polymerizationofeachsol.The29Sipresentstheresonancesignals

at−39,−49,−59and−67ppm,denotedT0,T1,T2andT3

respec-tively[20,21].TheTspeciescorrespondtothesilanescontaining0, 1,2or3hydrolysedgroupsasshowninFig.4.

Fig.5showsthe29SiNMR ofdifferentsampleswithvarious

cerium concentrations atthe initialstate(0h). Atthis reaction stage,T0,T1 andT2,werethepresentspeciesinallsamples,no

studiedsamplesshowedanysignalofT3.Eachpeakwhich

corre-spondedtoT0,T1 and T2 respectivelyhadthesameareaforall

samples,whichmeansthattheconcentrationofceriumhad no realinfluenceonthecondensationofsol–gelnetworkand each speciewaspresentinthesameconcentration.Howeveraslight

Fig.5. Liquid29SiNMRspectraofsolwithdifferentceriumconcentrations(0h).

displacementofsignalsinthelowfieldwasobservedforsolswith higherceriumconcentration(0.05and0.1M).Fig.6showsthe29Si

NMRofsamesamplesafterasol–gelreactionat24hjustbeforethe depositionstep.Nostudiedsampleshowedsignalofthefree tri-alkoxysilaneprecursorT0andpeakareacorrespondingtospecieT2

increasedforallsamples.Itmeansthatthecondensationincreased inthesamewayforthesolswithdifferentceriumconcentrations. Thisphenomenonisstillobservedforsolswhichcontainedcerium concentrationof0.05and0.1M.Forexample,thefocusontheshift ofT2specie(Fig.7),thiswasclearlyobservedforcerium

concentra-tionhigherthan0.01M.Furthermore,onthiszoom,thepresence ofsatellitepeakscanbeunderlined.TheyalsocorrespondtoT2

bondsbutfordifferentspeciesinthesecondsphereof coordina-tion.Inallcases(meanpeakandsatellitepeaks)theshiftfrom0.01 to0.1ispreserved.Intheliterature[22,23],forothersilanebased matrixwithTEOSitcanbeduetotheelectronegativeeffectofCe(III) whichcanreducethelocaldiamagneticshieldinginthevicinityof

(6)

Fig.6. Liquid29SiNMRspectraofsolwithdifferentceriumconcentrations(24h).

Fig.7.Liquid29SiNMRspectraofsolwithdifferentconcentrationsofcerium(24h) focuson10mm.

theattachedprotons.Ceriumhadnoinfluenceoncondensationof networksol–gelbutalargequantityofthisdopant(>0.01M)can changethechemicalstructureofsol–gelnetwork.

Nowitisinterestingtocharacterizethecoatingselaboratedby dip-coatingwiththesolsstudiedpreviously.Fig.8presentsaSEM micrographofasurfaceandcrosssectionofsol–gelcoating with-outceriumdepositedX13VDsubstrate.Atthisscale,thecoatingis homogeneous,covering,crack-freeandadherenttothesubstrate. Theaveragethicknessofcoating,estimatedbythecrosssection analysis(Fig.8b)isabout5–6mm.Thelevelingcharacterofthis filmcanbeunderlinedbywhitelightinterferometry(Fig.9)andthe surfaceroughnessRadecreases(0.42→0.17mm).

Thickness measurements performed by fisher dualscope for hybrid coatings with different cerium concentrations and are reportedinTable2.Thevaluesandtheiraccuracycannotshowa realinfluenceonthelayerthicknessalthoughtheceriumpresence hasincreasedthesolviscosity,parameterdirectlycorrelatedtothe layerthickness[24].

Thehydrophobicitywasevaluatedfromcontactangle measure-mentofawaterdroponhybridcoating.Theobtainedvaluesversus theceriumconcentrationaregiveninFig.10.Thisgraphshowsa slighttendencyofthecontactangleincreasewiththeincreaseof ceriumconcentration,from75◦foracoatingwithoutceriumuntil

about80◦forcoatingswithhigherceriumconcentration.Thisvalue

underlinesthehydrophobiccharacterofcoatingandimprovesthe tightnesstoward waterwhichisanimportantcharacteristic for anticorrosionproperties.

Anticorrosionpropertiesdependonintrinsicpropertiesofthe coatingsbutalsoonbondsestablishedwiththesubstrateandas a consequenceontheadhesion.To investigatetheinfluence of ceriumonthecoatingsadhesiontostainlesssteelsubstratesscratch testswithincreasingloadwereperformedonthevarious sam-ples.Differentcriticalloads,indicatingchangesinthemechanism ofscratchweredefined[25–27]asitcanbeseeninFig.11: - CL0:Plasticdeformation

-CL1:Brittlefracture -CL2:Delamination

Thedifferentcriticalloadvalues(mN)ofthehybridsol–gel coat-ingwhichcontaindifferentinhibitorconcentrationswereshowed inFig.12.Itwasobservedthatthisconcentrationhadno significa-tiveinfluenceontheadhesionpropertiesofcoatings.Thisgraph showsthatforallceriumconcentrationsinthecoating,thetwo criticalloadsCL0,CL1stayedalmostunchangedconsideringthe accuracyofthemeasurementsbecausethecurveswhich repre-senteachcriticalloadarequitestable.ForthecriticalloadCL2,a slightdecreaseofthisloadcanbeunderlined,probablyduetoa lowerdelaminationresistanceforhighceriumcontent.Thentotry

(7)

Fig.9.3Dtopographicanalysisofthesurfacesof(a)X13VDstainlesssteeland(b)hybridcoatingonX13VD,fromawhitelightinterferometer.

Table2

Hybridcoatingthicknessobtainedfordifferentconcentrationsofcerium.

Ceriumconcentration(M) 0 0.001 0.005 0.01 0.05 0.1

Thickness(mm) 5.73±0.6 5.35±0.7 6.01±0.8 5.61±0.5 5.77±0.7 5.89±0.9

Fig.10.ContactanglevaluesofawaterdroponhybridcoatingonX13VDwith differentceriumconcentrations.

tounderstandwhyceriumcontentplaysaroleonsolproperties, itwasplannedtodeterminetheceriumcontentinfluenceonthe corrosionresistanceofcoatings.

Theelectrochemicalimpedancespectroscopy(EIS)isoneofthe mostcommonlytechniqueusedforinvestigationandpredictionof theanticorrosionprotection[28,29].Thispowerfulmethodallows notonlyacomparisonbetweenperformancesofdifferentsystems butalsocangivekeyinformationonkineticsmechanismsofthe coatingdamageandthecorrosionactivityduringimmersioninthe corrosionmedia.InthisworkEISwasusedtoinvestigatetheeffect ofcerium concentrationin solonthecorrosionbehaviorofthe

0 10 20 30 40 50 60 0,12 0,1 0,08 0,06 0,04 0,02 0 Ce(NO3)3 (M) Load (mN) CL 0 CL1 CL2

Fig.12.CriticalloadsforhybridcoatingonX13VDstainlesssteelwithdifferent ceriumconcentrations.

X13VDsubstratescoatedincorrosivesolution(NaCl0.1M+Na2SO4

0.04M).EISdiagramswithX13VDstainlesssteelandhybridcoated sampleswereobtainedafterstabilizationofthecorrosionpotential andfordifferentimmersiontimes.

Fig.13showstheEISplotsinBoderepresentationobtainedfrom thesol–gel hybridcoating withoutceriumcompared toX13VD substrateafter respectively1hand 24himmersion. ForX13VD substrate,theelectrochemicalimpedancediagramsobtainedafter differentimmersiontimesarecharacterizedbytwotimeconstants

(8)

Fig.13.Bodephase(a)andmodulusimpedance(b)plotsforX13VDstainlesssteeluncoatedandhybridcoatingwithoutceriumonX13VDstainlesssteelinNaCl (0.1M)+Na2SO4(0.04M)1hand24himmersion.

Fig.14.NyquistplotsforhybridcoatingonX13VDstainlesswithdifferent concen-trationsofceriuminNaCl(0.1M)+Na2SO4(0.04M)1himmersion.

(Fig.13a).Thefirsttimeconstant[0–1000Hz]isindependentofthe immersiontimeandthesecond[0.01–1Hz]oneisbetterdefined forincreasingimmersiontimes.Accordingtoliterature[30,31]if thebarsteelisconsidered,thetimeconstantathighfrequency isattributedtochargetransferprocessandthetimeconstantat thelowfrequencyiscorrelated withtheredoxprocessestaking placeintothepassivefilm.Theincrease ofimpedancemodulus in thelow frequency range (Fig.13b)when immersion time is longercanbeinterpretedbytheimprovementoftheprotection ofthepassivefilm.Forthehybridcoatingdepositedonthe sub-strate(Fig.14a)after1himmersion,twotimeconstantscanbethen observed,oneforthehighfrequencyarea(HF)[1000–65000Hz] whichcanbeattributedtothehybridcoatingproperties:barrier effectwhichlimitschargetransferprocessandanothertime con-stantatmediumfrequency(MF)[1–1000Hz]whereaninflexionof thecurveisobservedwhichcanbeassociatedtothehybridfilm permeability.On hybridcoatingafter24himmersion (10mHz), theappearanceofathirdtimeconstantwasobservedatlow fre-quency(LF).Itisprobablyduetotheformationofapassivation layerattheinterfacebetweenthehybridcoatingandthesubstrate. Thislayer can resultfrom the reactionbetween stainless steel andtheelectrolyte,whichdiffusesintothecoating.Itisthesame phenomenonthatforuncoatedsubstratebuthoweverthis contri-butionremainedrelativelylowduetothehybridbarriereffect.The

highmodulusimpedance(Fig.14b)ofcoatedstainlesssteelslightly decreasedafter24hofimmersionandindicatesthebeginningof thefilmdamage;howevertheperformancesarestillgreatly supe-riortotheseofthepassivatedsubstrate,sothisprovesthegood barriereffectofthesol–gelcoating.

Fig.14showsEISmeasurementswithNyquistplotforhybrid sol–gelcoatingscontainingdifferentconcentrationsofceriumafter 1himmersion.Whenceriumwasaddedincoatingto0.01M,itwas clearlyobservedanincreaseofthecapacitiveloop,itmeansthatthe barriereffectwasimprovedwithlowceriumcontentintherange [0–0.01M].Whenceriumcontentishigherthan0.01M,another behaviorwastakeninevidence:animportantdropofthebarrier effectwithadecreaseofcapacitiveloops,butthistimeitisnot duetoadecreaseofthecoatingthicknessbecausethesolswith ceriumcontentof0.05and0.1Mhaveaviscosityhigher(Fig.3). Thedeteriorationofbarrierpropertiesofthefilmcanbeattributed tothemodificationin thehybridfilmsnetworkby theCeions incorporation,asitwasmentionedbeforebyotherothers[32].

Fig.15 shows EISmeasurements in theBode representation (phaseandmodulus)inordertocomparecorrosionperformance forhybridsol–gelcoatingscontainingdifferentcerium concentra-tions after1himmersion.Whenceriumwasadded insol until aconcentrationreaching0.01M,itwasclearlyobserved onthe curves (Fig. 15a), an improvement of the barrier effect and a decreaseofthepermeabilityofhybridcoatingbecausethe inflec-tionofthecurveatmediumfrequency(MF)wasshiftedtolower frequency.Forhigherceriumconcentrations(0.05and0.1M),the corrosionperformancesofthesecoatingsclearlycollapsedandthe inflectionof thecurveatMFwasshiftedtohigher frequencies. These coatings are more permeable and the electrolyte pene-tratesthecoatings moreeasilyto reactwiththesubstrate and toformthepassivationlayerbecausetheconstanttime at low frequency,characteristicofthispassivationlayer,ismore significa-tive.Theimpedancemodulus(Fig.15b)increasesforlowcerium content(<0.01M)and sharplydecreasesforthesesame cerium concentrationsin thesol–gel coating.Fig.16 shows impedance modulusatlowfrequency(10MHz)versusceriumconcentration. Thismodulusischaracteristicofcorrosionprotectionofthewhole system:hybridcoatingand reactivitywiththesubstrate.Itwas alsoobservedthatthismodulusincreasedwhencerium concen-trationreachedavaluebetween0.005and0.01M.Then,forhigher inhibitorconcentrations, themodulus highlydecreased andthe coatingbecamelessprotectorthancoatingwithoutcerium.The sameremark maybemade for coatingwithdifferent inhibitor concentrationsafteranimmersionof24hinthecorrosive solu-tion. Bode representation withphase (Fig. 17) and impedance

(9)

Fig.15.Bodephase(a)andimpedancemodulus(b)plotsforhybridcoatingonX13VDstainlesswithdifferentconcentrationsofceriuminNaCl(0.1M)+Na2SO4(0.04M)1h immersion.

Fig.16.Impedancemodulus(f=10mHz)withdifferentconcentrationsofceriumin NaCl(0.1M)+Na2SO4(0.04M)1himmersion.

modulus(Fig.18), showsthattheoptimalcerium concentration inthecoatingcorrespondstoavalueof0.01M.

Takenintoaccounttheseresults,onekeypointisconfirmed: theexistenceofathresholdconcentrationofcerium correspond-ingto0.01M.So,itispossibletotrytocorrelatethesecorrosion resultswithchemicaldisplacementsobtainedbyliquid29SiNMR

spectroscopyforsolswithahighceriumconcentration.Theseshifts correspondtotheimportantcollapseinanti-corrosionproperties ofsol–gelhybridcoating.Ceriumhadnotanyinfluenceon conden-sationnetworksilanebutalargequantityofthisdopant(>0.01M) canchangethechemicalstructureofhybridnetwork.Thereisan

Fig.18.Impedancemodulus(f=10mHz)forhybridcoatingonX13VDstainlesswith differentceriumconcentrationsinNaCl(0.1M)+Na2SO4(0.04M)24himmersion.

abilitytocreatenewconnection(Ce–Al)withaluminumfromthe ASBofthematrixwhichcoulddestabilizethehybridnetworkand alsoreducetheresistancetowardcorrosionofcoatings.Itwillthen beinterestingtostudythechemicalstructureofsol–gelhybridsat solidstatewithtechniquessuchassolid29Siand13CNMR

charac-terizationandRamanspectrometryinordertobetterunderstand nowtheinfluenceofceriumdirectlyoncoatingproperties(these experimentsarenowinprogress).

Fig.17. Bodephase(a)andimpedancemodulus(b)plotsforhybridcoatingonX13VDstainlesswithdifferentceriumconcentrationsinNaCl(0.1M)+Na2SO4(0.04M)24h immersion.

(10)

4. Conclusion

The influence of cerium concentration on behavior against corrosionofhybridsol–gel coatingonmartensiticX13VD stain-lesssteelhasbeeninvestigated.Theincrease ofceriumcontent improved hydrophobic character of coating and its tightness towardwater.Electrochemicalimpedancespectroscopyshowedan optimalceriumconcentrationof0.01Minthehybridlayer.Besides, theincreaseofceriumconcentrationabove0.01Mdecreasedthe barriereffectofsol–gelcoating.Thecoatingswereperformedby scratchtests,andnosignificativeceriuminfluencehasbeenproved onthe adhesion properties of coatingsto themartensitic sub-strate;soadirectcorrelationbetweenanticorrosionandadhesion performancesofsol–gelcoatingisnotpossible.Liquid29SiNMR

spectroscopywasthencarriedouttodeterminatethecerium influ-enceonsolcondensation.Itwasshownthatanexcessofcerium (>0.01M)leadtoachemicalshiftofTspeciesandcanchangethe chemicalstructure of sol–gelnetwork. Thereforea reduction of corrosionresistanceofcoatingsupwasnotedtothesamecerium concentration(0.01M).

Acknowledgments

Thiswork wascarried out in theframework of the ARCAM project,withthefinancial supportof DGCIS,Regions Aquitaine, AuvergneandMidi-Pyrénées.Theauthorsthankfullyacknowledge thepartnersoftheproject:Ratier-Figeac,Aubert&Duval,Olympus, theMechanicalandEngineeringInstituteofBordeaux,the Materi-alsDepartmentofICAMandtheInstituteCARNOTCIRIMAT. References

[1]M.R.Ryan,D.E.Williams,R.J.Chater,B.M.Hutton,D.S.McPhail,Nature415 (2002)770.

[2]I.Betova,M.Bojinov,T.Laitinen,K.Makela,P.Pohjanne,T.Saario,Corros.Sci. 44(2002)2675.

[3]ToxicologicalProfileforChromium,ATDSR/Tp-88/10,AgencyforToxic Sub-stances,USPublicService,Washington,DC,1989.

[4]M.Guglielmi,J.Sol–GelSci.Technol.8(1997)443.

[5]D.C.L.Vasconcelos,J.A.N.Carvalho,M.Mantel,W.L.Vasconcelos,J.Non-Cryst. Solids273(2000)135.

[6]A.Nazeri,P.P.TrzaskomaPaulette,D.Bauer,J.Sol–GelSci.Technol.10(1997) 317.

[7]J.Masalski,J.Gluszek,J.Zabrzeski,K.Nitsch,P.Gluszek,ThinSolidFilms349 (1999)186.

[8] F.Perdomo,P.D.Lima,M.A.Aegerter,L.A.Avaca,J.Sol–GelSci.Technol.15 (1999)87.

[9] V.H.V.Sarmento,M.G.Schiavetto,P.Hammer,A.V.Benedetti,C.S.Fugivara, P.H.Suegama,S.H.Pulcinelli,C.V.Santilli,Surf.Coat.Technol.204 (2010) 2689–3270.

[10]E.Roussi,A.Tsetsekou,D.Tsiourvas,A.Karantonis,Surf.Coat.Technol.205 (2011)3235–3244.

[11]R.T.Sakai,F.M.Di,L.daCruz,H.G.deMelo,A.V.Benedetti,C.V.Santilli,P.H. Suegama,Prog.Org.Coat.74(2012)288–301.

[12]T.P.Chou,C.Chandrasekaran,G.Z.Cao,J.Sol–GelSci.Technol.26(2003)321. [13] A.Pepe,M.Aparicio,S.Ceré,A.J.Durán,J.Non-Cryst.Solids348(2004)162–171. [14]M.A.Arenas,J.J.deDamborena,Electrochem.Acta48(2003)3693–3698. [15] F.Andreatta,L.Paussa,A.Lanzutti,N.C.RoseroNavarro,M.Aparicio,Y.Castro,

A.Duran,D.Ondratschek,L.Fedrizzi,Prog.Org.Coat.72(2011)3–14. [16]C.Motte,M.Poelman,A.Roobroeck,M.Fedel,F.Deflorian,M.-G.Olivier,Prog.

Org.Coat.74(2012)326–333.

[17]L.L.Hench,J.K.West,Chem.Rev.90(1990)33–72.

[18]X.Zhong,Q.Li,J.Hu,X.Yang,Prog.Org.Coat.69(2010)52–56.

[19]M.Feuillade,C.Croutxé-Barghorn,C.Carré,J.Non-Cryst.Solids352(2006) 34–341.

[20]L.B.Toung,W.S.Trahanovsky,J.Am.Chem.Soc.91(1969)5060. [21]F.L.S.Purgato,J.R.Romero,J.Catal.209(2000)394.

[22]D.L.Pavia,G.R.Lampman,G.S.Kriz,IntroductiontoSpectroscopy,2nded., Har-courtBrace,London,1996.

[23] S.Aubonnet,C.C.Perry,J.AlloysCompd.300–3001(2000)224–229. [24]L.D.Landau,B.G.Levich,ActaPhysiochim.U.R.S.S.17(1942)42–54. [25]A.Kupicka,Prog.Org.Coat.46(2003)32.

[26]F.Bondioli,R.Taurino,A.M.Ferrari,J.ColloidInterfaceSci.334(2009)195–201. [27] S.M.Noh,J.W.Lee,J.H.Nam,J.M.Park,H.W.Jung,Prog.Org.Coat.74(2012)

192–203.

[28]S.V.Lamaka,M.L.Zheludkevich,K.A.Yasakau,R.Serra,S.K.Poznyak,M.G.S. Ferreira,Prog.Org.Coat.58(2007)127–135.

[29] M.L.Zheludkevich,K.A.Yasakau,A.C.Bastos,O.V.Karavai,M.G.S.Ferreira, Elec-trochem.Commun.9(2007)2622–2628.

[30]L.Freire,M.J.Carmezin,M.G.S.Ferreira,M.F.Montemor,Electrochim.Acta55 (2010)6174–6181.

[31] C.M.Abreu,M.J.Cristóbal,R.Losada,X.R.Nóvoa,G.Pena,M.C.Pérez, Elec-trochim.Acta51(2006)1881–1890.

[32]C.F.Malfatti,T.L.Menezes,C.Radtke,J.Esteban,F.Ansart,J.P.Bonino,Mater. Corros.62(2011)9999.

Figure

Fig. 2. SEM images of surface morphologies of X13VD stainless steel before (a) and after (b) cleaning.
Fig. 6. Liquid 29 Si NMR spectra of sol with different cerium concentrations (24 h).
Fig. 9. 3D topographic analysis of the surfaces of (a) X13VD stainless steel and (b) hybrid coating on X13VD, from a white light interferometer.
Fig. 14. Nyquist plots for hybrid coating on X13VD stainless with different concen- concen-trations of cerium in NaCl (0.1 M) + Na 2 SO 4 (0.04 M) 1 h immersion.
+2

Références

Documents relatifs

The scattering effects due to the generated plasma compensate for self-focusing to some extent but they also distort the beam profile with consequent distortion of the

When the value of strain rate is moderate, the addition of carbon monoxide has negligible effect on flame temperature and leads to a slight increase in both peak NO concentration

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Ouvertes (plusieurs démarches et solutions possibles et acceptables) à géométrie variable Définition Compétence relevant Compacte, courte. Étendue,

Enfin, d’après certains acteurs, la mise en œuvre d’une coopérative éphémère coûte cher (entre 20000 et 25000 € en moyenne, pour financer le salaire des animateurs,

Le plan d’une action d’un sujet agissant est soit une description des actions intentionnelles soit une description des actions possibles dans le futur, ceci étant fait afin

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

- Search: Look for research artefacts by funder, project, publication date, access mode, type, language, content provider or free text.. - Share: Deposit research