• Aucun résultat trouvé

Degree days: the different types

N/A
N/A
Protected

Academic year: 2021

Partager "Degree days: the different types"

Copied!
10
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Building Research Note, 1979-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=085ebb1c-4a0a-47ab-af05-bcce30cab8a8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=085ebb1c-4a0a-47ab-af05-bcce30cab8a8

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40000571

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Degree days: the different types

(2)

S e

r

TH1

I332

no.

f

38

Donald

W.

Boyd 5 . - - - -- .- - - . . - - - --

Meteorologist seconded to the Division of

Building

Research,

National Research ComciT of Canada

from the Atmospheric Environment Service

Department of F i s h e r i e s and Environment I

I

DEGREE DAYS: THE DIFFERENT

TYPES

!

I

m

-1 by I Ottawa, January 1979 1.

(3)

PEGREE DAYS: THE DIFFERENT TYPES

by

Donald W . Boyd

Some energy requirements such a s the amount of fucl uscd f o r heating

and several n a t u r a l phenomena such as the growth of p l a n t s and tElc t h i c k n e s s of lake ice are correlated more or less c l o s e l y with t h e

accumulated a i r temperature below or above some s t a n d a r d or base temper:^- t u r c . When computed from daily mean temperatures, thcsc temperature differences a r e called degree days. There are two main c l a s s e s of d c g r r c days, differing in the method of calculation. T h i s Note will d e f i n e degree d a y s , distinguish between t h e two classes, and comment on a fcw exnmplcs from each c l a s s .

In g e n e r a l , a degree day is d e f i n e d as a measure of t h e departure

of t h e mean temperature f o r a day f r o m a g i v e n base temperature. TIE accumulation o f such departures o v e r a season o r up to any day can I,e uscd a s an indication of past temperature e f f e c t on some quantity.

Negative departures (or positive departures, if one is primarily c o n c c m c ~ l w i t h t h e negative ones) are treated in two d i f f e r e n t ways f o r different

purposes: t h e y may b e considered as zero, t h a t i s , contributing n o t h i n g

to t h e accumulated t o t a l , or t h e y may be considered as having a negative value w h i c h reduces t h e accumulated t o t a l . Heating, coaling and growing

degree-days belong t o the former class; freezing and thawing to t h e l a t t c r .

The fuel o r cncrgy required t o maintain a temperature of about 21°C

in a small building when outsidc a i r tcmpcraturc is below 1 8 " ~ i s rougl11y proportional to t h c d j fference between 1 8 ' ~ a n d t h c o u t s i d e t c m p c r a t u r c . The energy I-equirements also depend on o t h e r f a c t o r s including wind spccd, s o l a r r a d i a t i o n , and internal heat sources. There is no

convenient way of combining these effects, but f o r average c o ~ ~ d i t i o n s o f

wind, r a d i a t i o n , and internal sources the proportional ity w i t h tempcrnt 11re still h o l d s . Ileating d e g r e e - d a y s based on temperature alone a r c rhcrefclrc

u s e f u l when more complex methods of calculating fuel requirc~i~ents a r c n o t f e a s i h l e .

I f t i s the mean o u t s i d e a i r temperature f o r a particular day, t h c n

(4)

p r o v i d i n g t

is

less t h a n 1 8 . For mean air temperatures greater t h a n 1 8 , no energy is r e q u i r e d to keep t h e building s u f f i c i e n t l y w a r m and t h e r e - f o r e the heating degree-days a r e zero.

Heating degree-days H

f o r

a few days, a month, o r a season are simply t h e sum of the d a i l y values for that period

H =

C

(18 - t] for a31 days when t < 1 8 , H = O for a l l days when t > 1 8 .

In Figure 1 t h e 1977 d a i l y mean temperatures at O t t a w a International Airport have been plotted. The cross-hatched area represents f a i r l y

accurately the number of heating degree-days below 1 8 " ~ .

U n t i l recently, the published heating degree-days i n Canada w e r e

Fahrenheit degree-days beIow 65°F ( 1 ) . If the base temperature in C e l s i u s had been exactly equal to 6 S a F , then conversion of degree days would have been simply a m a t t e r o f multiplying b y 5 / 9 . The new base temperature, however, is 18°C er 6 4 . 4 O F , so that t h e accumulated d e g r e e

days are 0 . 6 Fahrenheit degree-days l e s s f o r each day t h a t the tempera- ture is below 64.4'F. This adjustment i s usually less t h a n 18 Fahrenheit degree-days per month, b u t

if

accuracy

is

important a conversion

procedure f o r monthly values

has

been prepared b y Boyd (2)

.

Annual totals in Fahrenheit degree-days should b e reduced (by a v a l u e depending

on

t h e l e n g t h of t h e h e a t i n g season) before multiplying

by 5 J 9 to convert t o C e l s i u s degree-days. This reduction ranges from about 150 F degree-days f o r annual t o t a l s near 7500 t o about 215 F degree-days f o r annual t o t a l s of 1 2 S O 0 or over.

Normal ( i . e . 30-year average) Celsius degree-days below 18°C f o r

each month a r e available from t h e Atmospheric Environment S e r v i c e ( 3 1 .

C u r r e n t daily v a l u e s are published in t h e Monthly Meteorological

Summaries issued each month by over 50 weather s t a t i o n s

in

Canada.

COOLING DEGREE-DAYS

J u s t as t h e energy required f o r h e a t i n g is roughly proportianal t o

t h e temperature d e p a r t u r e be low some base temperature, so t h e energy required f o r cooling is roughly proportional t o t h e temperature d e p a r t u r e above some b a s e . This required energy is also i n f l u e n c e d b y sun, wind, i n t e r n a l heat sources, and the humidity of t h e outside a i r . Dependence on h u m i d i t y (or, more correctly, on wet-bulb temperature) makes cooling degree days somewhat less reliable than heating degree-days, but t h e y are s t i 1 l c l o se enough f o r some app l i c a r i o n s

.

I f 1 8 O C is selected as the base temperature, t h e n the c o o l i n g degrcc-

(5)

C = C (t - 18) f o r all d a y s when t > 18,

C =

0' for a l l days when t < 18.

Thc d a r k stippled a r e a in F i g u r e 1 represents f a i r l y accurately the number of cooling degree-days above 18°C.

Cooling degrcc-days for l o c a t i o n s in Canada are not readily a v a i l a h l c . Thcy can be computed, however, f r o m h e a t i n g degree-days, provided the b n s c temperature i s t h e same and the mean temperature f a r the period-conccrncd is known. The e q u a t i o n s above can h e rewritten f o r any p e r i o d of Na d a y s

ahovc and Nb d a y s helow 18°C

For Na days when t is e q u a l to or above 1 8 " ~ ,

For the r e m a i n i n g Nb d a y s when t i s below 1 6 ° C

Adding gives

C - H = Et - 18 [Na + Nb), C = I 1 + N

(t

-

l a ) ,

r%~hcre

t

is the mean temperature for t h e

N

d a y s . T h i s equation is cxnc t ,

b u t any rounding-off error in

s

w i l l b e m u l t i p l i e d b y N.

GROIVINC DEGREE-DAYS

The rate o f growth of p l a n t s is roughly proportional t o t11c dcpastul-c o f t h c a i r temperature above about 5"C, p r o v i d i n g o t h e r conditions arc sat i s f a c t o r y , Below 5°C there i s no apprec i a b l e grorlrth. Growing clegrcr- days are therefore d e f i n e d in t h e same way a s c o o l i n g degrcc-days, c x c c l ~ t

t h a t t h e base temperature is 5°C. In 1:igure I t h e l i g h t and dark stippled

areas together r e p r e s e n t f a i r l y accurately t h e number of growing d e g r e c -

days above 5 ' ~ . Normal [i. e

.

30-year average) C c l s i u s d e ~ r c c - d a y s ahovc 5°C f o r each month have been t a b u l a t e d 1 3 ) .

Whcn t h e a i r tempcraturc is abavc 5°C f o r o n l y a p a r t o f t11e d a y , i t may he more approprintc to u s e degree hours or even somc more c o a p l c x

function o f temperature. 7Ilc r e s u l t s I l o u l d nevcr b c referrcrl to ns

dcgree days, Ilowcvcr, hccause, 1,y d e f j n i t io n , Jcgrec clsl)ls n rc b n s c d o n t I ~ c d a i l y mean temperature.

I:RI'I:ZIN(; AN11 TtIhWIMC; DECREE-DAYS

I k p t h of freezing o f t h e ground and t h i c k n e s s o f i c e 0 1 1 lakcs dcpcnc!

on many f a c t o r s , h u t t h e y can he cstimatcd r o u g h l y from t l ~ c dcgrcc rlays below and nhovc freezing. I n t h e s e cases, I-towcvcr, thc days w i t h inc;ul

(6)

temperature above the !lase temperature of O"C cannot h e i g n o r e d a s was done f o r h e a t i n g degree-days. On a day w i t h mean ternperatuse above 0°C

t h e r e w i l l be a tendency for some lake ice to melt

o r

ground to thaw.

The temperature d e p a r t u r e s above freezing must t h e r e f o r e b e s u b t r a c t e d fmm the accumulation of temperatures below freezing. S i n c e t h e base

tcmpcraturc i s zero, t h e freezing degree-days are

for a l l days i n the period, whether t is p o s i t i v e ox negative.

T h e time required t o melt lake ice or thaw ground in thc s p r i n g i s

sornctimes estimated u s i n g thawing degree-days. As w i t h f r e e z i n g degsee-

d a y s , both positive and n e g a t i v e departures must b e accumulated and l ~ c n c c

t h e t h a w i n g degree-days are

f o r a3 1 days i n the p e r i o d .

T h e thawing i n d e x o r thawing degree-days f o r a whole thawing season

a r c represented f a i r l y accurately in Figure 1 b y tlae Arcs between tlac

g r a p h and t h e zero temperature line for the season whcn ternperaturc i s

gcncrally above z e r o , decreased h y the area below z e r o f o r sliort periods

s u c h a s t l ~ o s c in early April and mid-November, i n d i c a t e d by arrows, This

i s a poor method of representing t h e t h a w i n g index because it r e q u i r e s

t h c visualization of the d i f f e r e n c e of areas. A much b e t t e r method is

shown in IYigure 2, where degree days above and below z e r o laave been

accumulated day by day, s t a r t i n g w i t h 1000 degree days in 1976 at the

f i r s t of October, t o i l l u s e a t e both f r e e z i n g and t h a w i n g indices. The areas above and belaw O"C in Figure 1 are represented by v c r t i c a l

d i s t a n c e s in Figure 2.

?he freezing index for winter is defined as t h e number of cIegrce days (below and above freezing) between t h e h i g h e s t p o i n t i n t h e autumn

and t h e lowest point t h e following spring on the cumulative degrcc-day timc curve. Similarly, t h e t h a w i n g i r~dcx i s thc n u n ~ b c r of degree d a y s

from t h c l o w e s t p o i n t i n the s p r i n g to thc h i g h c s t po i n t t h e following autumn (Pigurc 2 ) . Because o n l y degrcc-day d i f f c r c n c c s a r c o f concern, thc zero p o i n t on the dcgree-day s c a l e is q u i t e arbitrary. Tt was starrcd at 1000 to avoid negative v s l u c s .

hriy s p r i n g or autumn month t h a t i n c l u d e s a scasonr;l inirlirnu~n or

rnaxim~m of t h e c u m u l a t i v e degree-days above freezing c u r v e will bc c a l l c ~ l

3 "chatlge-svcrrl month. In a1 I other months the Ccl s j 11s dcgrcc-days ahovc freezing a r e

(7)

w l ~ c r e

F

i s t h e monthly mean tcrnperaturc and cach t j s n d a i l y ncan

temperature. These valucs a r e p o s i t i v e i n sumnicr a n d a r c c a l l e d thowi ng d c g ~ e e - d a y s . Days below f r e e z i n g will decrease t h e thawing degree-day t o t a l f o r the month, h u t t h e r e w i l l b e no f ~ e e z i n g degree-days. I n w i n t e r monrhs t h e v a l u e s w i l l be n e g a t i v e . Their a11r;olutc v a l u c s a r c

c a l I c d freezing degrce-days and the thawing degree-days are z e r o .

I n a change-over month b o t h fseezing and thawing d e g r e e - d a y s have

non-zero v a l u e s , one o c c u r r i n g o n l y before the changeover d a t e a n d t h c

o t h e r only a f t e r . I t can b e shown t h a t i f T is the thawing dcgrcc-days and T: t h e freezing d e g r e e - d a y s , t h e n

u h c r c 'I' and F a r e nevcr n c g a t j vc hut o n c of t h c n is zero i n cilch nmntl~

unless i t i s a chnngc-ovcr ~iionth ( 4 ) . hbnr.21 m o n t h l y frcrzing :rncl

thawing dcgrcc-days and annun1 t o t a l s for ovcr ROO weathcr stations hrwc

been computed from normal monthly mean t e m p e r a t u r e s 3s cxplaincd i n ( . I ) , and pub1 i s h e d b y t h e Atmospheric Environment Servicc (5)

.

C o ~ ~ v c r s i o n from Fahrenheit degrec-days to Celsius i s s i m p l y a m a t t e r of multiplying by S / Y , s i n c e the base temperatures are e x a c t l y equivalent.

As i n d i c a t e d , Reference [ 3 ) i n c l u d e s t a l l u l a t i a n s o f the normal

degree days below 1 8 ' ~ and above

5"C,

calculated according t o the acceptcrl

method f o r t h a t c l a s s of degree day. Unfortunately, it also includcs degrcc d a y s above and below 0°C calculated

in

the same w a y . T h i s means

t h a t s h o r t freezing p e r i o d s during t h e thawing season and s h o r t thawing

periods during the freezing s e a s o n a r e i g n o r e d i n s t e a d of d e c r e a s i n g t l l c

accumulated degree d a y s . The d e g r e e days above and helow 0 ° C in Rcfcrcncc

( 3 ) a r c t h e r e f o r e not t h e same as the f r e e z i n g and thawing degree-days u n d c r d i scussion.

' l l ~ e r e seems t o b c a good d e a l o f confusion a n d i n i s u t i d c r s t n n d i n g connected w i t h d e g r e e days, caused p a r t l y b y the d i f f ~ r c n t methods o f calcuIation f o r d i f f e r e n t p u r p o s e s , and p a r t l y l ~ y the difficulty o f canvcrting from F a h ~ e n h c i t to Celsius. T h i s r 2 i s c u s s i o n shoultl l e a d to 3

b e t t e r understanding o f the different k i n d s of d e g r e e d a y s and t l r c i r

rerationship. REFERENCES

1 , bleating dcgrcc-day normals below 65°F - nascd on t h c p c r i o d I ! ) J I - I P 1 , O .

C l imatology D i v i s i o n , Metcorological U r a n c l ~ , Toron t o (now Atmo sphcr i c linviror~inent S e r v i c e , Downsvicw)

,

CDS 15-64, O c t ~ h e r 1 9 6 4 .

2 . Royd, I)onal d W . C o n v e r t i n g h e a t i n g dcgrce-days from llclow 65°F t o Rclow 1 8 " ~ . National Rescarch C o u n c i l of C a n a d a , I l i v i s i o n o f

(8)

3 . Aston, 0 . Dcgree Days 1 9 4 1 - 1 9 7 0 :

CDS # 7-77 A t l a n t i c Provinces, June 19 77

CUS HX1-77 Ontario, October 1977

CDS 1112-77 The North-YT and

NWT,

Deceniber 1977 C D S # 1 3 - 7 7 Quebcc, Dccember 1977

CDS # 2-78 Manitoba, May 1978

CDS # 3-78 Saskatchewan, June 1978

CDS 4 - 7 8 A l b e r t a , August 1978 B . C . to b e p u b l i s h e d

Atmospheric Environment S e r v i c e , Downsview,

4 . Boyd, Ijonald 1V. Cornput i n g freezing and t h a w i n g ilcgrce- Jays from

m o n t l ~ l y temperatures. National Research Counci l of Can:!d;l, nivision of Building Research, NRCC 14791, J u l y 1975.

5. Royd, Donald IV. Normal f r e e z i n g and t h a w i n g degree-days f o r Canada

1931-1960. Atmospheric Environment S e r v i c e , Downsview, Canada, CLT 4 - 7 3 , 1973.

(9)

-30 J T M A M J J A S O N D F I G U R E 1 D b l L Y M E A N T E M P E R A T U R E S . S H A D E D A R E A S I L L U S T R A T E : - ' H E A T I N G D E G R E E D A Y S

B Y

C R O S S H A T C H I N G - C O O L I N G D E G R E E D A Y S

B Y

D A R K S T l P P L t N G

-

G R O W I N G D E G R E E D A Y S B Y B O T H S T I P P L E D A R E A S

(10)

-

1000 O N D J F M A M J J A S O N D F I G U R E 2 C U M U L A T I V E D E G R E E D A Y S A B O V E A N D BELOW F R E E Z I N G F O R 15 MONTHS T O I L L U S T R A T E D E F I N I T I O N S O F F R E E Z I N G A N D T H A W I N G I N D I C E S

Références

Documents relatifs

The typical increase of portal pressure, increase of liver pressure loss, slight decrease of portal flow and major decrease in arterial flow are quantitatively captured by the model

A new convex relaxation based on affine arithmetic, to be used within IBBA, is proposed in Section 4 for the quadratic convex objective function of the considered model.. In Section

Mirror finish stainless steel suspended false ceiling. Diocesan Centre/ Church

Olivier Turc, Vincent Oury, Yves Gibon, Duyên Prodhomme, Francois Tardieu, Claude Welcker.. To cite

This report presents the results of a PERD sponsored study that addresses the question of moored vessel stationkeeping in the pack ice conditions that will be periodically

L’éditeur souhaite répondre à cette question contrefactuelle : «Quel aurait été le rendement du système de placement des publicités si nous avions augmenté le prix de la

,WLVLPSRUWDQWWRKLJKOLJKWWKDWWKHUHLVDVWURQJLQWHUUHODWLRQVKLSEHWZHHQ%UD]LOLDQJUDGXDWH SURJUDPV DQG 6 7 DFWLYLWLHV 6LQFH WKH EHJLQQLQJ RI WKH ¶V

In contrast to probe best and round robin, the optimal time until the next probe under the probe second-best policy depends on the belief of the best channel after an ON channel