• Aucun résultat trouvé

On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for elasto-acoustic problems

N/A
N/A
Protected

Academic year: 2021

Partager "On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for elasto-acoustic problems"

Copied!
30
0
0

Texte intégral

(1)

HAL Id: hal-01907431

https://hal.archives-ouvertes.fr/hal-01907431

Submitted on 29 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for

elasto-acoustic problems

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout

To cite this version:

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout. On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for elasto-acoustic problems.

13th World Congress of Computational Mecanics, Jul 2018, New-York, United States. �hal-01907431�

(2)

Coupling DG/SEM

On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for elasto-acoustic

problems

H´el`ene Barucq1, Henri Calandra2, Aur´elien Citrain3,1, Julien Diaz1and Christian Gout3

1 Team project Magique.3D, INRIA.UPPA.CNRS, Pau, France.

2 TOTAL SA, CSTJF, Pau, France.

3 INSA Rouen-Normandie Universit´e, LMI EA 3226, 76000, Rouen.

R´eunion d’´equipe 13/09/2018

(3)

Coupling DG/SEM

Why using hybrid meshes?

water

water sand

salt

sandstone

Useful when the use of unstructured grid is non-sense (e.g. medium with a layer of water)

Well suited for the coupling of numerical methods in order to reduce the computational cost and improve the accuracy

(4)

Coupling DG/SEM

Elastodynamic system







 ρ(x)∂v

∂t(x,t) =∇ ·σ(x,t)

∂σ

∂t(x,t) =C(x)(v(x,t))

With :

ρ(x) the density C(x) the elasticity tensor (x,t) the deformation tensor v(x,t), the wavespeed σ(x,t) the strain tensor

(5)

Coupling DG/SEM

Elasticus software

Written inFortranfor wave propagation simulation in thetime domain Features

Using various types of meshes (unstructured triangle and tetrahedra) Modelling of various physics (acoustic, elastic and elasto-acoustic)

Discontinuous Galerkin Method(DG) based on unstructured triangle and unstrustured tetrahedra

with various time-schemes :Runge-Kutta (2 or 4), Leap-Frog withp-adaptivity,multi-ordercomputation...

(6)

Coupling DG/SEM

Table of contents

1 Numerical Methods

2 Comparison DG/SEM on structured quadrangle mesh

3 DG/SEM coupling

4 Comparison between DG/SEM an DG on hybrid meshes

5 3D extension

(7)

Coupling DG/SEM Numerical Methods

1 Numerical Methods

Discontinuous Galerkin Method (DG) Spectral Element Method (SEM) Advantages of each method

(8)

Coupling DG/SEM Numerical Methods

Discontinuous Galerkin Method (DG)

Discontinuous Galerkin Method

Use discontinuous functions :

Degrees of freedom on each cell :

(9)

Coupling DG/SEM Numerical Methods

Spectral Element Method (SEM)

Spectral Element Method

General principle

Finite Element Method (FEM) discretization + Gauss-Lobatto quadrature Gauss-Lobatto points as degrees of freedom ( exponential convergence on L2-norm)

Z

f(x)dx≈

N+1

X

j=1

ωjf(ξj) ϕij) =δij

(10)

Coupling DG/SEM Numerical Methods

Spectral Element Method (SEM)

Spectral Element Method

Main change with DG

DG discontinuous, SEM continuous Need of defining local to global numbering Global matrices required by SEM

Basis functions computed differently

(11)

Coupling DG/SEM Numerical Methods

Advantages of each method

Advantages of each method

DG

Element per element computation (hp-adaptivity)

Time discretization quasi explicit (block diagonal mass matrix) Simple to parallelize

SEM

Couples the flexibility of FEM with the accuracy of the pseudo-spectral method Reduces the computational cost when using structured meshes in comparison with DG

(12)

Coupling DG/SEM DG/SEM Comparison

2 Comparison DG/SEM on structured quadrangle mesh DG/SEM comparison on quadrangle mesh Description of the test cases

Comparative tables

(13)

Coupling DG/SEM DG/SEM Comparison

Description of the test cases

Description of the test cases

Physical parameters

P wavespeed 1000m.s−1 Density 1kg.m−3 Second orderRicker SourceinPwave (fpeak= 10Hz)

General context

Acoustic homogeneousmedium Four differents meshes :10000 cells, 22500 cells, 90000 cells, 250000 cells

CFL computed usingpower iterationmethod

Leap-Frogtime scheme Four threadsparallel execution withOpenMP

(14)

Coupling DG/SEM DG/SEM Comparison

Comparative tables

Comparative tables

Error computed as the difference between an analytical and a numerical solution for each method

Quadrangle mesh 10000 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.99e-3 2.5e-2 19.30 500

SEM 4.9e-3 1.3e-1 0.36 204

Quadrangle mesh 22500 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.33e-3 1.8e-2 100.48 750

SEM 3.26e-3 7e-2 1.19 306

(15)

Coupling DG/SEM DG/SEM Comparison

Comparative tables

Comparative tables

Error computed as the difference between an analytical and a numerical solution for each method

Quadrangle mesh 10000 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.99e-3 2.5e-2 19.30 500

SEM 4.9e-3 1.3e-1 0.36 204

SEM(DG CFL) 1.99e-3 4.8e-2 0.73 502

Quadrangle mesh 22500 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.33e-3 1.8e-2 100.48 750

SEM 3.26e-3 7e-2 1.19 306

SEM(DG CFL) 1.33e-3 1.2e-2 2.82 751

SEM fifty time faster than DG on a mesh with 22500 cells

(16)

Coupling DG/SEM DG/SEM coupling

3 DG/SEM coupling Hybrid meshes structures Variational formulation Space discretization

(17)

Coupling DG/SEM DG/SEM coupling

Hybrid meshes structures

Hybrid meshes structures

Aim at couplingPkandQk structures.

Need to extend or split some of the structures (e.g. neighbour indexes) Define new face matrices

MijK,L= Z

K∩L

φKi φLj, MijK,L= Z

K∩L

ψKi ψjL, MijK,L= Z

K∩L

φKi ψjL

(18)

Coupling DG/SEM DG/SEM coupling

Variational formulation

Variational formulation

Global context

Domain in two parts : Ωh,1(structured quadrangle + SEM), Ωh,2(unstructured triangle + DG)

(19)

Coupling DG/SEM DG/SEM coupling

Variational formulation

Variational formulation

SEM variational formulation :









 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1· ∇w1+ Z

Γout,1

1n1)·w1

Z

h,1

tσ11=− Z

h,1

(∇(Cξ1))·v1+ Z

Γout,1

(Cξ1n1)·v1

DG variational formulation:









 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2· ∇w2+ Z

Γout,2

2n2)·w2+ Z

Γint

{{σ2}}[[w2]]·n2

Z

h,2

tσ22=−

Z

h,2

(∇(Cξ2))·v2+ Z

Γout,2

(Cξ2n2)·v2+ Z

Γint

{{v2}}[[Cξ2]]·n2

(20)

Coupling DG/SEM DG/SEM coupling

Variational formulation

Variational formulation

Add the average of the solution of each part at the interface + putσ?n?= 0











 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1· ∇w1+1 2 Z

Γ1/2

12)n1·w1

Z

h,1

tσ11=− Z

h,1

(∇(Cξ1))·v1+1 2 Z

Γ1/2

(Cξ1n1)·(v1+v2)























 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2· ∇w2+ Z

Γint

{{σ2}}[[w2]]·n2−1 2 Z

Γ1/2

12)n1·w2

Z

h,2

tσ22=− Z

h,2

(∇(Cξ2))·v2+ Z

Γint

{{v2}}[[Cξ2]]·n2

−1 2 Z

Γ1/2

(Cξ2n1)·(v1+v2)

(21)

Coupling DG/SEM DG/SEM coupling

Variational formulation

Energy study

Goal : Show that our coupling preserves the energy

We setξ11, ξ22,w1=v1,w2=v2

We add the equations of the two parts variational formulation d

dtE= 0

(22)

Coupling DG/SEM DG/SEM coupling

Space discretization

Space discretization : SEM part

ϕi : SEM basis functions ψi : DG basis functions





Mv1tvh,1+Rσ1σh,1+Rσ2,12σh,2= 0 Mσ1tσh,1+Rv1vh,1+Rv2,12vh,2= 0

Mij= Z

ϕiϕj≈ X

e∈supp(ϕi)∩supp(ϕj) (r+1)d

X

k=1

ωkϕikjk) = X

e∈supp(ϕi)∩supp(ϕj)

ωiδi,j the mass matrix

Rpij = Z

ϕi∂ϕj

∂p stiffness matrix Matrix of DG/SEM coupling :

Rσ2,1

2,ij=1 2 Z

∂Ω1∩∂Ω2

ψiϕj

(23)

Coupling DG/SEM DG/SEM coupling

Space discretization

Space discretization : DG part





ρMv2tvh,2+Rσ2σh,2−Rσ1,21σh,1= 0 Mσ2tσh,2+Rv2vh,2−Rv1,21vh,1= 0

MijK= Z

K

ψiKψjK mass matrix,

RpKij = Z

K

ψiK∂ψjK

∂p stiffness matrix, RpK,Lij =

Z

∂K∩∂L

ψKi ψLjnK·ep the mass-face matrix

Two new matrices which come from the DG/SEM couplingR?1,2. Block composed :

Rv1,21 =Rσ1,21 =−1 2 Z

∂Ω2∩∂K1

ψjK2ϕi (1)

(24)

Coupling DG/SEM Comparison DG/SEM and DG

4 Comparison between DG/SEM an DG on hybrid meshes Experimentation context

Comparative tables

(25)

Coupling DG/SEM Comparison DG/SEM and DG

Experimentation context

Context

Acoustic homogeneous medium 54000 triangles

21000 quadrangles

Using Leap-Frog time scheme Parallel computation using OpenMP Done with different orders of discretization

(26)

Coupling DG/SEM Comparison DG/SEM and DG

Comparative tables

Comparative tables

P1−Q3computation :

CFL L2-error CPU-time

DG 1e-5 0.03 7343.92

DG/SEM 1e-5 0.03 823.22

P2−Q3computation :

CFL L2-error CPU-time

DG 1e-5 0.002 9452.73

DG/SEM 1e-5 0.003 1393.80

P3−Q1computation :

CFL L2-error CPU-time

DG 3e-5 0.009 3078.15

DG/SEM 3e-5 0.01 2951

P3−Q2computation :

CFL L2-error CPU-time

DG 1e-5 5.4e-4 9951.60

DG/SEM 1e-5 0.007 3122

(27)

Coupling DG/SEM 3D extension

General settings

Figure:Hexa/Tet boundary configuration

Only deal with a simple case of 3D hybrid meshes : one hexahedra has only two tetrahedra as neighbour

Extend SEM in 3D (basis functions...)

Require introducing a new matrix which handles the rotation cases between two elements

(28)

Coupling DG/SEM 3D extension

(29)

Coupling DG/SEM

Conclusion and perspectives

Conclusion

1 Build a variational formulation for DG/SEM coupling and find a CFL condition that ensures stability

2 As expected, SEM is more efficient on structured quadrangle mesh than DG

3 Show the utility of using hybrid meshes and method coupling (reduce computational cost,...)

Perspectives

Implement DG/SEM coupling on the code (2D)X Develop DG/SEM coupling in 3DX

Add a local time-stepping scheme Develop PML in the hexahedral part

(30)

Coupling DG/SEM

Thank you for your attention !

Questions?

Références

Documents relatifs

As the problem size grows, direct solvers applied to coupled BEM-FEM equa- tions become impractical or infeasible with respect to both computing time and storage, even using

Au vu de ces résultats, l’utilisation du système au niobium(V) cationique n’étant pas envisageable pour une version énantiosélective de la

Sensitive Redox Speciation of Iron, Neptunium and Plutonium by Capillary Electrophoresis hyphenated to Inductively Coupled Plasma Sector Field Mass Spectrometry.. Carl-Heinrich

Aur´ elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 5 / 22.. 1

Only deal with a simple case of 3D hybrid meshes : one hexahedron has only two tetrahedra as neighbour...

Some properties of the DG schemes are discovered using discrete Fourier analyses: superconvergence of the numerical wave numbers, Radau structure of the X spatial error..

Only deal with a simple case of 3D hybrid meshes : one hexahedron has only two tetrahedra as neighbour...

F IGURE 1 – A finely meshed inclusion with border Γ g is embedded in a coarse mesh and is tied with the corresponding virtual surface Γ v using the mortar method : (a) coarse host