• Aucun résultat trouvé

Spectral Element Method and Discontinuous Galerkin approximation for elasto-acoustic problems

N/A
N/A
Protected

Academic year: 2021

Partager "Spectral Element Method and Discontinuous Galerkin approximation for elasto-acoustic problems"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: hal-01690670

https://hal.archives-ouvertes.fr/hal-01690670

Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Spectral Element Method and Discontinuous Galerkin approximation for elasto-acoustic problems

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout

To cite this version:

Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout. Spectral Element

Method and Discontinuous Galerkin approximation for elasto-acoustic problems. MATHIAS – TOTAL

Symposium on Mathematics, Oct 2017, Paris, France. �hal-01690670�

(2)

On the coupling of Spectral Element Method with Discontinuous Galerkin approximation for elasto-acoustic problems.

H´el`ene Barucq1, Henri Calandra2, Aur´elien Citrain1,3, Julien Diaz1and Christian Gout3

1 Team project Magique.3D, INRIA.UPPA.CNRS, Pau, France.

2 TOTAL SA, CSTJS, Pau, France.

3 INSA Rouen-Normandie Universit´e, LMI EA 3226, 76000, Rouen.

MATHIAS 2017 October 25-27

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 1 / 22

(3)

Why using hybrid meshes?

(4)

Elastodynamic system

x∈Ω⊂Rd,t∈[0,T],T>0 :







 ρ(x)∂v

∂t(x,t) =∇ ·σ(x,t)

∂σ

∂t(x,t) =C(x)(v(x,t))

With :

ρ(x) the density C(x) the elasticity tensor (x,t) the deformation tensor v(x,t), the wavespeed σ(x,t)the strain tensor

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 3 / 22

(5)

Elasticus software

Software written inFortran 90for wave propagation simulation in thetime domain

Features

Simulation:

on various types of meshes (unstructured triangle, structured quadrangle, hybrid) onheterogeneousmedia (acoustic, elastic and elasto-acoustic)

Discontinuous Galerkin(DG) onquadrangle, triangle and hybrid mesh Spectral Element Method(SEM) only onquadrangle mesh

with various time-schemes :Runge-Kutta (2 or 4), Leap-Frog

(6)

Table of contents

1 Numerical Methods

2 Comparison DG/SEM on structured quadrangle mesh

3 DG/SEM coupling

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 5 / 22

(7)

1 Numerical Methods

Discontinous Galerkin Method (DG) Spectral Element Method (SEM) Advantages of each method

(8)

Discontinuous Galerkin Method

Use discontinuous functions :

Degrees of freedom necessary on each cell :

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 7 / 22

(9)

Spectral Element Method

General principle

Finite Element Method (FEM) discretization + Gauss-Lobatto quadrature

Gauss-Lobatto points as degrees of freedom (gives us exponential convergence onL2-norm)

Z

f(x)dx≈

N+1

X

j=1

ωjf(ξj) ϕij) =δij

(10)

Spectral Element Method

Main change with DG

DG discontinuous, SEM continuous Need to define local to global numbering Global matrices needed for SEM Basis functions computed differently

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 9 / 22

(11)

Advantages of each method

DG

Element per element computation (hp-adaptivity)

Time discretization quasi explicit (block diagonal mass matrix) Simple to parallelize

SEM

Couples the flexibility of FEM with the accuracy of the pseudo-spectral method Reduces the computational cost when you use structured meshes in comparison with DG Simplifies the mass and stiff matrices (mass matrix diagonal)

(12)

2 Comparison DG/SEM on structured quadrangle mesh Description of the test cases

Comparative tables

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 11 / 22

(13)

Description of the test cases

Physical parameters

P wavespeed 1000m.s−1

General context

Acoustic homogeneousmedium

Four different meshes : 10000 cells, 22500 cells, 90000 cells, 250000 cells

CFL computed usingpower iteration method

Leap-Frogtime scheme

Four threadsparallel execution with OpenMP

(14)

Comparative tables

Comparison between numerical solution and analytical solution obtained using the software Gar6more

Quadrangle mesh 10000 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.99e-3 2.5e-2 61.96 500

SEM 4.9e-3 1.3e-1 0.73 204

SEM(DG CFL) 1.99e-3 4.8e-2 1.48 502

Quadrangle mesh 22500 elements:

CFL L2-error CPU-time Nb of time steps

DG 1.33e-3 1.8e-2 252.20 750

SEM 3.26e-3 7e-2 2.42 306

SEM(DG CFL) 1.33e-3 1.2e-2 4.70 751

SEM fifty time much faster on a mesh with 22500 cells than DG

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 13 / 22

(15)

3 DG/SEM coupling Hybrid meshes structures Variationnal formulation Space discretization

(16)

Hybrid meshes structures

Need to couplePk andQkstructures.

Need to extend or split some of the structures (e.g. neighbour indexes) Necessity to define new face matrices

MijK,L= Z

K∩L

φKi φLj, MijK,L= Z

K∩L

ψKi ψjL, MijK,L= Z

K∩L

φKi ψjL

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 15 / 22

(17)
(18)

Variationnal formulation

Global context

Domain in two parts : Ωh,1(structured quadrangle + SEM), Ωh,2(unstructured triangle + DG)

w1,w2the tests-function andξ12the tests-tensors

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 17 / 22

(19)

Variationnal formulation

SEM variationnal formulation :









 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1· ∇w1+ Z

Γout

1n1)·w1

Z

h,1

tσ11=− Z

h,1

(∇(Cξ1))·v1+ Z

Γout

(Cξ1n1)·v1

DG variationnal formulation:









 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2· ∇w2+ Z

Γout

2n2)·w2+ Z

Γint

{{σ2}}[[w2]]·n2

Z

tσ22=−

Z

(∇(Cξ2))·v2+ Z

(Cξ2n2)·v2+ Z

{{v2}}[[Cξ2]]·n2

(20)

Variationnal formulation

SEM variationnal formulation :











 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1· ∇w1+ Z

Γout

1n1)·w1+ Z

ΓDG/SEM

1n1)·w1

Z

h,1

tσ11=− Z

h,1

(∇(Cξ1))·v1+ Z

Γout

(Cξ1n1)·v1+ Z

ΓDG/SEM

(Cξ1n1)·v1

DG variationnal formulation:











 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2· ∇w2+ Z

Γout

2n2)·w2+ Z

Γint

{{σ2}}[[w2]]·n2+ Z

ΓDG/SEM

2n2)·w2

Z

h,2

tσ22=−

Z

h,2

(∇(Cξ2))·v2+ Z

Γout

(Cξ2n2)·v2+ Z

Γint

{{v2}}[[Cξ2]]·n2+ Z

ΓDG/SEM

(Cξ2n2)·v2

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 17 / 22

(21)

Variationnal formulation

Computation steps

1 Simplify the coupling terms and separates the two parts + putσ·n= 0











 Z

h,1

ρ∂tv1·w1=− Z

h,1

σ1· ∇w1+1 2 Z

ΓDG/SEM

12)n1·w1

Z

h,1

tσ11=− Z

h,1

(∇(Cξ1))·v1+1 2 Z

ΓDG/SEM

(Cξ1n1)·(v1+v2)





 Z

h,2

ρ∂tv2·w2=− Z

h,2

σ2· ∇w2+ Z

Γint

{{σ2}}[[w2]]·n21

2

Z

ΓDG/SEM

12)n1·w2

(22)

Space discretization : SEM part

ϕi : SEM basis functions ψi : DG basis functions





Mv1tvh,1+Rσ1σh,1+Rσ2,12σh,2= 0 Mσ1tσh,1+Rv1vh,1+Rv2,12vh,2= 0

Mij= Z

ϕiϕj≈ X

e∈supp(ϕi)∩supp(ϕj) (r+1)d

X

k=1

ωkϕikjk) = X

e∈supp(ϕi)∩supp(ϕj)

ωiδi,j the mass matrix

Rpij = Z

ϕi

∂ϕj

∂p stiffness matrix

Matrix of DG/SEM coupling :

Rσ2,1

2,ij= Z

∂Ω1∩∂Ω2

ψiϕj

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 19 / 22

(23)

Space discretization : DG part





ρMv2tvh,2+Rσ2σh,2−Rσ1,21σh,1= 0 Mσ2tσh,2+Rv2vh,2−Rv1,21vh,1= 0

MijK= Z

K

ψiKψKj mass matrix,

RpKij = Z

K

ψiK∂ψKj

∂p stiffness matrix, RpK,Lij =

Z

∂K∩∂L

ψKi ψLjnK·ep the mass-face matrices

Two new matrices which come from the DG/SEM hybridationR?1,2. Block composed :

(24)

Conclusion and perspectives

Conclusion

1 As expected, SEM is more efficient on structured quadrangle mesh than DG

2 Show the utility on the use of hybrid meshes and method coupling (reduce computational cost,...)

3 Build a variationnal formulation for DG/SEM coupling and find a CFL condition that ensures stability

Perspectives

Implement DG/SEM coupling on the code (2D) Develop h-adaptivity for the structured part Develop DG/SEM coupling in 3D

Aur´elien Citrain Coupling DG/SEM MATHIAS 2017 October 25-27 21 / 22

(25)

Thank you for your attention !

Questions?

Références

Documents relatifs

Table 1 gives the computation times for updating the velocity and stress wavefields in one element for one time step, for different ap- proximation orders, without or with the update

Only deal with a simple case of 3D hybrid meshes : one hexahedron has only two tetrahedra as neighbour...

In this paper, we introduced a new method to solve the Vlasov equation using Hermite polynomial for the velocity variable and discontinuous Galerkin methods for space

Some properties of the DG schemes are discovered using discrete Fourier analyses: superconvergence of the numerical wave numbers, Radau structure of the X spatial error..

Abstract: We introduce a high order interior penalty discontinuous Galerkin scheme for the nu- merical solution of wave propagation in coupled elasto-acoustic media.. A

Couples the flexibility of FEM with the accuracy of the pseudo-spectral method Reduces the computational cost when using structured meshes in comparison with DG.. Coupling DG/SEM

Only deal with a simple case of 3D hybrid meshes : one hexahedron has only two tetrahedra as neighbour...

In this study, selected Ghanaian medicinal plants were investigated for compounds with antiplasmodial property: an ethnobotanical study was conducted, and medicinal