• Aucun résultat trouvé

Modification of a commercial DNA extraction kit for safe and rapid recovery of DNA and RNA simultaneously from soil, without the use of harmful solvents

N/A
N/A
Protected

Academic year: 2021

Partager "Modification of a commercial DNA extraction kit for safe and rapid recovery of DNA and RNA simultaneously from soil, without the use of harmful solvents"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01268966

https://hal.archives-ouvertes.fr/hal-01268966

Submitted on 28 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Modification of a commercial DNA extraction kit for

safe and rapid recovery of DNA and RNA

simultaneously from soil, without the use of harmful

solvents

Estelle Tournier, Laurie Amenc, Anne-Laure Pablo, Elvira Legname-Vonarx,

Eric Blanchart, Claude Plassard, Agnès Robin, Laetitia Bernard

To cite this version:

Estelle Tournier, Laurie Amenc, Anne-Laure Pablo, Elvira Legname-Vonarx, Eric Blanchart, et al..

Modification of a commercial DNA extraction kit for safe and rapid recovery of DNA and RNA

simultaneously from soil, without the use of harmful solvents. MethodsX, Elsevier, 2015, 2,

pp.182-191. �10.1016/j.mex.2015.03.007�. �hal-01268966�

(2)

Modi

fication

of

a

commercial

DNA

extraction

kit

for

safe

and

rapid

recovery

of

DNA

and

RNA

simultaneously

from

soil,

without

the

use

of

harmful

solvents

E.

Tournier

a,1,2

,

L.

Amenc

b,2

,

A.L.

Pablo

a,2

,

E.

Legname

b

,

E.

Blanchart

d

,

C.

Plassard

b

,

A.

Robin

c

,

L.

Bernard

d,

*

a

IRD,UMREco&Sols,2PlaceViala,34060 MontpellierCedex1,France

b

INRA,UMREco&Sols,2PlaceViala,34060MontpellierCedex1,France

c

CIRAD,UMREco&Sols,2PlaceViala,34060MontpellierCedex1,France

d

IRD,UMREco&Sols-LaboratoiredesRadioIsotopes(LRI),Ampandrianomby,Antananarivo101,Madagascar GRAPHICAL ABSTRACT

ABSTRACT

Anoptimizedmethod,basedonthecouplingoftwocommercialkits,isdescribedfortheextractionofsoilnucleic acids,withsimultaneousextractionandpurificationofDNAandRNAfollowingacascadeschemeandavoiding theuseofharmfulsolvents.TheprotocolcanmonitorthevariationsintherecoveryyieldofDNAandRNAfrom soilsofvarioustypes.Thequantitativeversionoftheprotocolwasobtainedbytestingthestartingsoilquantity, thegrindingparametersandthefinalelutionvolumes,inordertoavoidsaturationofbothkits.

 Afirstsoil-crushingstepinliquidnitrogencouldbeaddedfortheassessmentoffungalparameters.

*Correspondingauthor.

E-mailaddress:Laetitia.Bernard@ird.fr(L. Bernard).

1

Presentaddress:CIRAD,UMRLSTM,CampusdeBaillarguet,34398MontpellierCedex5,France.

2

Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.mex.2015.03.007

2215-0161/ã2015PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/ licenses/by/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

(3)

 Theprotocolwasefficientondifferenttropicalsoils,includingAndosol,whiletheirhighcontentsofclays, includingpoorlycrystallineclays,andFeandAloxidesusuallymakethenucleicacidextractionmoredifficult.  TheRNArecoveryyieldfromtheprevioustropicalsoilsappearedtocorrelatebettertosoilrespirationthan

DNA,whichispositivelyinfluencedbysoilclaycontent.

ã2015PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/). ARTICLE INFO

Methodname:SoilDNA/RNAco-extraction

Keywords:SoilDNAandRNA,Quantitativeco-extraction,Molecularbiomass,Tropicalsoil

Articlehistory:Received8January2015;Accepted26March2015

1.Methoddetails

WeadaptedacommercialDNAextractionkit(FastDNASPINTMkitforsoil,MPBiomedical,Santa Anna,CA),torecoverDNAandRNAsimultaneously,avoidingtheuseofhazardoussolvents.ThisDNA kit,basedonanSDSextractionbuffer,hasalreadyshownitsefficiency[1,2].RNArecoverywasallowed becausespecialcaresweretakentoworkunderRNase-freeconditions.Allsolutionsandglassware weretreatedwithdiethylpyrocarbonate(DEPC)toensurethattheywereRNasefreeandonlycertified RNase-andDNase-freeplastictubeswereused.Eachcentrifugationstepwasperformedat4Cand tubeswereplacedonicewhilewaitingforthenextstepoftheprocedure.RNAcouldthereforebe purifiedfromtheDNAwashingsolutionatthestep8oftheprotocolasshownontheflowchart presentedinFig.1andasfurtherdescribed.Modificationswebroughttotheinitialprotocolofthe manufactureraredetailedinitaliccharacter.

1.Soilsamplepreparation:add250mgofsoilsample(characteristicsofsoilsusedinthisstudyare showninTable1)toaLysingMatrixEtubeandfreezeovernightat80C.Initiallythemanufacturer

preconizedtouse500mgofsoil.Wehavetested125,250,500and750mg,andobservedthat500mgof soilsamplesledalreadytothemaximumofDNArecovered,as750mgofsoildidnotimprovetheyield (Fig.2).Thereforeevenif500mgofsoilincreasedtheRNAyieldbyafactorofalmost4,thesoilsamples beingprocessedseemedtobelimitedto250mgtokeeptheextractedDNAbelowthesaturationlimitof thekitandtobeabletofollowvariationsofbothmolecules.Ofcourse500mghastobechosenifthe objectiveisonlytomaximizethequantityofDNAandRNArecoveredandnottorelatetheirrecovery yieldtomolecularbiomassestimation.

2.Cellslysing:add978

m

Lsodiumphosphatebuffer,122

m

LofMTbuffer.Whenextractingnucleicacids fromandosol,20mgcaseinehastobeaddedtothelysingmixinordertosaturatethehighadsorption capacityofthenon-crystallizedclays[3].

3.Grinding:homogenizeintheFastPrepTMinstrument(MPBiomedical)for40sataspeedsettingof

6.0.Coolsampleonicefor5minandperformanothergrindingstepundersimilarconditions(40s, speed6.0).Initiallythemanufacturerpreconizedasinglehomogenizationstep.Toincreasetheamount ofnucleicacidsrecoveredforfurtheranalyses,asecondgrindingstepwasintroduced(Fig.3).

4.Centrifugeat14,000gfor5minat4C.Transfersupernatanttoaclean2.0mLmicrocentrifuge tube.

5.Proteinprecipitation:add250

m

LPPS(proteinprecipitationsolution)andmixbyshakingthetube byhand10times.Keeponicebeforenextstep,whenprocessingothersamples.

6.Centrifugeat14,000gfor5minat4Ctopelletprecipitate.Transfersupernatanttoaclean2mL microcentrifugetube.

7.DNAbinding:re-suspendBindingMatrixsuspensionandadd1.0mLtosupernatantinthe2mL tube.Placeonrotaryshakerfor12min,23rpmatroomtemperature, toallowbindingofDNA. Initiallythemanufacturerpreconizeda5minbindingtimebutwehaveobservedthatincreasingthe DNAbindingtimefrom5to12minavoidedDNAcontaminationintothewashingsolutioncontaining RNA.ThiswasverifiedbyPCR(datanotshown).

8.Centrifugeat14,000gfor2minat4CtopelletDNAbindingmatrix.Removethesupernatantand transferitintoaclean15mLtubeforfurtherRNApurification.Keeponicebeforeprocessing.

(4)
(5)

a.DNApurificationprocedure:

9a. Re-suspendtheDNABindingMatrixin500

m

Lofguanidinethiocyanate(5.5M)andtransferto aSPINTMFiltercolumnandcentrifugeat14,000gat4Cfor1min.Transfertheeluatefromthe

catchtubetotheRNA15mLtube(seestep8).

10a.Add500

m

LpreparedSEWS-M(ethanoladded)andgentlyre-suspendthepelletusingtheforce oftheliquidfromthepipettip.

11a. Centrifugeat14,000gat4Cfor1min.Emptythecatchtubeandreplace.

12a. Withoutanyadditionofliquid,centrifugeasecondtimeat14,000gfor2minutesto“dry”the matrixofresidualwashsolution.Discardthecatchtubeandreplacewithanew,cleancatch tube.

13a.AirdrytheSPINTMFilterfor5minatroomtemperature.

Fig.2.Concentrationsofnucleicacidsextracted(DNAandRNA)infunctionofthequantityofsoilsubmittedtotheextraction procedure.

Table1

CharacterizationofthesoilsusedtodevelopandtotesttheDNA/RNAco-extractionmethod.

Soil Maugio Andranomanelatra Betafo Lazaina Miandrivazo GPSordination 35900300E, 43701400N 1946042.1900S, 4706028.7000E 1950005.9200S, 4650035.4900E 1846054.4500S, 4732005.9900E 1932051.1500S, 4528008.4300E WaterpH 8.29 4.42 6.25 6.14 6.55 Clay,g(kgsoil)1 248 619 149 340 90 Silt,g(kgsoil)1 436 188 469 70 194 Sand,g(kgsoil)1 350 193 382 580 716 AlDCBa,g(kgsoil)1 ND 19.9 28.7 7.2 1.44 FeDCBa,g(kgsoil)1 ND 62.1 60.3 35.13 8.61 SiDCBa,g(kgsoil)1 ND 4.2 1.3 0.98 4.15 Aloxb,g(kgsoil)1 ND 17.8 34.6 2.95 1.48 Feoxb,g(kgsoil)1 ND 4.5 24.3 1.41 1.77 Sioxb,g(kgsoil)1 ND 1.9 15.9 0.24 0.73 Alp ND 5.72 6.78 3.04 0.29 Fep ND 3.04 2.06 1.73 0.23 Sip ND <0.01 0.34 0.72 0.73 Carbon,g(kgsoil)1 9.30 60.24 25.00 20.34 11.73 C/N 10.40 12.73 13.15 14.95 11.61 CECcmol(kgsoil)1 21.10 17.32 29.59 6.20 14.25 ND:notdetermined.

(6)

14a.Gentlyre-suspendBindingMatrix(abovetheSPINfilter)in150

m

LofDES(DNase/pyrogen-free water)andincubateat55Cfor12min.Thefinalelutionvolumewasincreasedcomparedto theinitialprotocol,from100to150

m

LtoincreaseDNArecoveryfromthematrix(Fig.4).

15a.Centrifugeat14,000gfor1mintobringelutedDNAintothecleancatchtube.Discardthe SPINfilter.DNAisnowreadyfordownstreamapplication.Hereendedthemodifiedprotocolof theFastDNASPINTMkitforsoil.

b.RNApurificationprocedure:

9b.Add1volumeofisopropanoland500

m

Lofsodiumacetate(3MpH4)tosupernatantobtainedat step8and9a(usually2.5mL).Gentlyshakethetubeandincubatefor90minat20C.

10b. Centrifugeat14,000gand4Cfor30minandwashthepelletwith70%ethanolandcentrifuged again(14,000gat4Cfor5min).Removeethanolandair-drythepelletfor5min.

11b.Re-suspendthepelletin100

m

LofRNAase-freewaterandkeepinicefor10min.

12b.Add300

m

Lofsaltsolution(RNaidkit-MPBiomedicals)andtransferintoanew1.5mLtube.

13b. Add5

m

LofRNABindingMatrixandgentlyshake15minatambienttemperature.

14b. Centrifugeat14,000gand4Cfor1min.Discardthesupernatantandre-suspendthepellet

in500

m

LofRNAwashsolution.

15b. Centrifugeat14,000gand4Cfor1minremovethesupernatant.Re-suspendthepelletin 60

m

LofRNasefreewater,gentlyshakeandincubateat55Cfor15min.Thefinalelutionvolume wasincreasedcomparedtothe initialprotocolfrom20to60

m

L(Fig.5).Witha60

m

Lelution

Fig.3. Concentrationsofnucleicacidsextracted(DNAandRNA)infunctionofthenumberof40-sgrindingcyclesat6ms1 performedbytheFastPrepTMinstrument.Errorsbarscorrespondto95%confidenceintervals(alpha0.05,3replicates).The

conditionschosenasstandardareframed.

(7)

volume,RNAyieldcouldstillbeimproved.However,increasingtheelutionvolumewouldleadtoa dilutionandhenceaconcentrationtoolowforsubsequentreversetranscriptasereactions.Transfer thesupernatanttoaclean1.5mLRNAasefreetubeandkeepat80Cpriortofurtherapplication.

2.Nucleicacidsquantitation

TheDNAand RNAwerequantifiedbyfluorometry usingtheQuant-iTTMPicoGreenDNA and

Quant-iTTM RiboGreen RNA assaykit (Molecular Probes, Carlsbad, New Mexico) respectively in

accordancewiththemanufacturer’sinstructions.ThepurityandintegrityoftheRNArecoveredwas alsoverifiedaftermigrationona1%agarosegel(Fig.6).

3.Optionforfungalparametersanalyses

For the analyses of fungal parameters (density and diversity), a sample size of 1g hasbeen recommendedinordertoberepresentativeof thecommunity[4].Therefore, theapplicabilityto

Fig.5.QuantityofRNArecoveredasafunctionofthevolumeofelutionsolution.Theconditionschosenasstandardareframed.

Fig.6.Electrophoreticprofiles(agarose1%)of10mLofthefinalRNAextract(step15boftheprotocol),and12mLofthe1kb ladder(Invitrogen,France).Gelwasstainedwithethidiumbromide.

(8)

fungalbiomassquantification(seemethodbelow)wastestedbycrushingandhomogenizing30gof soilinliquidnitrogeneitherbyhand,orusingamortargrinder(Pulverisette2,Fritsch,Idar-Oberstein, Germany)priortosubsample0.25gandthenbeginningtheprotocol.Fromourresults,itappearsthat crushing 30g of soil in liquid nitrogen prior to subsample 0.25g for the further co-extraction significantlyimprovedtherecoveryof18SgenescopiesfromtheDNAwhileithasnoeffectonthe 16Scopynumber(Fig.7).ThequantitativePCRprotocolusedisdescribedinSupplementarymaterial (S1).

Fig.7.(a)Bacterial(16S)and(b)fungal(18S)ribosomalgenecopynumberspergramofsoil,measuredbyqPCRasafunctionof thesoilhomogenizationtreatmentbeforesubsampling(0.25gand0.50gofsoil)fortheco-extractionprotocol.30gofsoilwere usedperhomogenizationtreatment.Errorsbarscorrespondto95%confidenceintervals(alpha0.05,3replicates).

(9)

4.Analysesofsamples

Theco-extractionprotocolwasoptimizedonasandyclayloamsoilfromSouthofFrance(Maugio– Table1).Yieldsof26.7

m

gofpurifiedDNAand4.5

m

gofpurifiedRNApergramofsoilwereobtained, withaverygoodrepeatabilityforbothDNAandRNA(coefficientsofvariationof8.69%forDNAand 5.25%forRNAwhenappliedtoasetof10replicatedsoilsamples).Theprotocolwastestedon4tropical soils from Madagascar, which were chosen because their composition was thought likely to complicatetheextractionofnucleicacids(Table1).Onemajorproblemisthepresenceofminerals knowntoadsorborganicmoleculesstrongly,namelyclays(Andranomanelatra,BetafoandLazaina) andmetaloxides(allsoils),andespeciallywhenclaysarepoorlycrystallized(Betafoandtoalesser extendAndranomanelatra).Anotherproblemisthesmallsizeofthemicrobialbiomasspool,whichis usuallycharacteristicofcarbon depletedsandysoil(Miandrivazo).Themostdifficultsoilwasthe Andosol containing allophanes (Betafo), which required the addition of 20mg caseine to the extractionmixjustbeforetheFastPrepgrindingstep(protocolstep2).Thefoursoilswereextractable andgavevariousDNAandRNArecoveryyieldssufficientlyconcentratedtobefurtheranalyzedbyany othermoleculartechnique(Fig.8).Asexpected,themeanRNA/DNAratioobservedfortropicalsoils (0.62)wasgreaterthanthatfortheMediterraneansoilsampledduringthewinter-time(0.17). 5.Additionalinformation

VariationsintheDNAandRNAcompositionbringadditionalinformationasDNAislinkedtocell replicationwhileRNAislinkedtoproteinsynthesis.Acomparisonofthecompositionofmicrobial communitiesbasedonco-extractionofbothDNAandRNAcanprovideaninsightintotheecologyof populations,providedthatDNAandRNAaresubjectedtothesameextractionbias.However,todate, veryfewstudiesdevelopedmethodsforDNA/RNAco-extractionfromsoilsamples[5–10].Withthe exceptionofthemethoddescribed by[8],allprocedureshaverequiredharmfulsolventssuchas

Fig.8.DNA(black)andRNA(lightgrey)extractionyieldsandtheirrespective95%confidenceintervals(alpha0.05,3replicates) from4tropicalsoils,sampledinMadagascarandcharacterizedbydifferenttextures,mineralogies,metalandcarboncontents. SoiltypesareindicatedfollowingtheWRBnomenclature,andfullcharacterizationispresentedinTable1.

(10)

phenol,chloroformand

b

-mercaptoethanol,whicharecarcinogenic,mutagenicreproductivetoxins. The DNA/RNA co-extraction protocol developed in the present work used DEPC and guanidine thiocyanate,whicharejustirritantsbycontactoringestion.SDS-basedmethodsarethoughttobeless efficientthansolvent-basedmethods.Usingasolvent-basedmethod,[5]obtainedyieldsbetween10 and20

m

gofDNAand2and5

m

gRNApergramofsoil,inanunpurifiedextract.Inordertopurifysuch extracts,thesamplewouldhavetobedividedintotwoaliquotsandeachonedigestedwitheither DNAseorRNAsethusdecreasingtheyieldofbothRNAandDNA.

Recently, the quantity of DNA extractedfrom soil had been defined as “microbial molecular biomass”andproposedasamicrobialindicatorofsoilstatus[11–14].Thisnotionofconsideringtotal recoveredDNAasatotalbiomassquantificationtoolisstillstronglydebatedinmicrobialecology becauseDNAcanremainstableintheenvironmentforlongperiodsoftime.IntheirDNAextraction protocol,[14]addedafirststepofsoilwashingtofirstdesorbtheextracellularDNAfromthemineral matrix[15].Suchstepcanalsobeaddedintothepresentprotocol.Buttheparticularityofthepresent methodistosimultaneouslyco-extractRNA,whichisamuchmorelabilemoleculethanDNA.Onthe fourprecedentsoilsfromMadagascar,wehavemeasuredtheCO2evolution(soilrespiration)atpF

2.5during6hat25C.WhenplottedtherespirationagainstDNAandRNArecoveryyieldswefounda muchbettercorrelationwithRNA(Fig.9a;R2:0.97)thanwithDNA(datanotshown;R2:0.66).This canbe explainedby thehigh affinity of extracellular DNA for clays asRNA/DNA ratioinversely

Fig.9. XYdotplotsof(a)soilrespirationagainstRNAextractionyieldsandtheirrespective95%confidenceintervals(alpha0.05, 3replicates),and(b)RNA/DNAagainstsoilclaycontent.Bestfittedrelationshipsfollowedsecondorderpolynomialfunctions. RegressioncoefficientsR2

(11)

correlatedtoclaycontent(Fig.9b).ThereforeRNArecoveryyieldshouldbeabetterindicatorofliving microbialbiomassthanDNA.Nowthisprotocolhasbeendevelopedandtested,futurestudieswillbe conducted todetermine whether theRNA/DNA ratio of themicrobial communities is a reliable bioindicatorofsoilstatusinacontextofglobalchanges(climate,landuses,agriculturalpractices...), providedthatsucheffectsarestudiedonthesamesoilorsoilswithsimilarclaycontent.

Future technical optimizations couldinclude therecoveryof messenger RNAto quantifythe expressionoffunctional genes,compared totheirpresence intotheDNAfraction, aswellasthe recoveryofenzymesfromtheprecipitateobtainedatstep5aswealreadyverifiedthatPPSdoesnot inactivatethem(datanotshown).

Acknowledgments

This study was partly funded by the French “AgenceNationale pourla Recherche” (Systerra program,PerfComANR-08-STRA-11andPépites,ANR-08-STRA-10-04projects).WethankSiobhan Stauntonfor editingtheEnglish language.The authorswould liketodedicatethis articletothe memoryoftheirhighlyrespectedandmuchlovedcolleague,ElvireLegname(INRA,UMREco&Sols). MethodsXthanksthereviewersofthisarticlefortakingthetimetoprovidevaluablefeedback. AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,athttp://dx.doi. org/10.1016/j.mex.2015.03.007.

References

[1]S.M.Dineen,R.ArrandaIV,D.L.Anders,J.M.Robertson,AnevaluationofcommercialDNAextractionkitsfortheisolationof bacterialsporeDNAfromsoil,J.Appl.Microbiol.109(2010)1886–1896.

[2]N.Mahmoudi,G.F.Slater,R.R.Fulthorpe,ComparisonofcommercialDNAextractionkitsforisolationandpurificationof bacterialandeukaryoticDNAfromPAH-contaminatedsoils,Can.J.Microbiol.57(2011)623–628.

[3]S.Ikeda,H.Tsurumaru,S.Wakai,C.Noritake,K.Fujishiro,M.Akasaka,K.Ando,Evaluationoftheeffectsofdifferent additivesinimprovingtheDNAextractionyieldandqualityfromandosol,MicrobesEnviron.23(2008)159–166. [4]L.Ranjard,D.P.H.Lejon,C.Mougel,L.Schehrer,D.Merdinoglu,R.Chaussod,Samplingstrategyinmolecularmicrobial

ecology:influenceofsoilsamplesizeonDNAfingerprintinganalysisoffungalandbacterialcommunities,Environ. Microbiol.5(2003)1111–1120.

[5]R.I.Griffiths,A.S.Whiteley,A.G.O’Donnell,M.J.Bailey,Rapidmethodforco-extractionofDNAandRNAfromnatural environmentsforanalysisofribosomalDNA-andRNA-basedmicrobialcommunitycomposition,Appl.Environ.Microbiol. 66(2000)5488–5491.

[6]R.A.Hurt,X.Qiu,L.Wu,Y.Roh,A.V.Palumbo,J.M.Tiedje,J.Zhou,SimultaneousrecoveryofRNAandDNAfromsoilsand sediments,Appl.Environ.Microbiol.67(2001)4495–4503.

[7]L.Costa,N.C.M.Gomes,A.Milling,K.Smalla,AnoptimizedprotocolforsimultaneousextractionofDNAandRNAfromsoils, Braz.J.Microbiol.35(2004)230–234.

[8]L.Bernard,C.Mougel,P.A.Maron,V.Nowak,J.Lévêque,C.Henault,F.Z.Haichar,O.Berge,C.Marol,J.Balesdent,F.Gibiat,P. Lemanceau,L.Ranjard,Dynamicsandidentificationofsoilmicrobialpopulationsactivelyassimilatingcarbonfrom13

C-labelledwheatresidueasestimatedbyDNA-andRNA-SIPtechniques,Environ.Microbiol.9(2007)752–764. [9]S.Töwe,S.Wallisch,A.Bannert,D.Fischer,B.Hai,F.Haesler,K.Kleineidam,M.Schloter,Improvedprotocolforthe

simultaneousextractionandcolumnbasedseparationofDNAandRNAfromdifferentsoils,J.Microbiol.Methods84(2011) 406–412.

[10]S.A.Placella,E.L.Brodie,M.K.Firestone,Rainfallinducedcarbondioxidepulsesresultfromsequentialresuscitationof phylogeneticallyclusteredmicrobialgroups,Proc.Natl.Acad.Sci.U.S.A.109(2012)10931–10936.

[11]S.Dequiedt,N.P.A.Saby,M.Lelievre,C.Jolivet,J.Thioulouse,B.Toutain,D.Arrouays,A.Bispo,P.Lemanceau,L.Ranjard, Biogeographicalpatternsofsoilmolecularmicrobialbiomassasinfluencedbysoilcharacteristicsandmanagement,Global Ecol.Biogeogr.20(2011)641–652.

[12]S.Terrat,R.Christen,S.Decquiedt,M.Lelièvre,V.Nowak,T.Regnier,D.Bachar,P.Plassart,P.Wincker,C.Jolivet,A.Bispo,P. Lemanceau,P.A.Maron,C.Mougel,L.Ranjard,Molecularbiomassandmetataxonomicassessmentofsoilmicrobial communitiesasinfluencedbysoilDNAextractionprocedure,Microb.Biotechnol.5(2011)135–141.

[13]P.Plassart,S.Terrat,B.Thomson,R.Griffiths,S.Dequiedt,M.Lelievre,T.Regnier,V.Nowak,M.Bailey,P.Lemanceau,A.Bispo, A.Chabbi,P.A.Maron,C.Mougel,L.Ranjard,EvaluationoftheISOStandard11063DNAextractionprocedureforassessing soilmicrobialabundanceandcommunitystructure,PLoSOne7(2012)e44279.

[14]F.Fornasier,J.Ascher,M.T.Ceccherini,E.Tomat,G.Pietramellara,Asimplifiedrapid:low-costandversatileDNA-based assessmentofsoilmicrobialbiomass,Ecol.Indic.45(2014)75–82.

[15]J.Ascher,M.T.Ceccherini,O.L.Plantani,A.Agnelli,F.Borgogni,G.Guerri,P.Nannipieri,G.Pietramellara,Sequential extractionandgeneticfingerprintingofaforestsoilmetagenome,Appl.Soil.Ecol.42(2009)176–181.

Figure

Fig. 1. Schematic diagram of the final DNA/RNA co-extraction protocol.
Fig. 2. Concentrations of nucleic acids extracted (DNA and RNA) in function of the quantity of soil submitted to the extraction procedure.
Fig. 3. Concentrations of nucleic acids extracted (DNA and RNA) in function of the number of 40-s grinding cycles at 6 m s 1 performed by the FastPrep TM instrument
Fig. 6. Electrophoretic profiles (agarose 1%) of 10 m L of the final RNA extract (step 15b of the protocol), and 12 m L of the 1 kb ladder (Invitrogen, France)
+2

Références

Documents relatifs

We applied the most efficient DNA extraction method to 55 questing nymphs of Ixodes ricinus collected by flag- ging a pasture in Puy-de-Dôme (France) and to 32 soft ticks:

We compared the microbial abundance and genetic struc- ture of indigenous bacterial and fungal communities in soils that had been irrigated with wastewater for 4, 8, 16 or 26 years,

Interaction between like-charged surfaces in water: does mean-field (Poisson Boltzmann) always apply for monovalent counterions.. Simulations of Nanoseparated Charged Surfaces

cassava, citrus, papaya, passion fruit and pineapple and B) RNA extracted from roots of citrus, cassava, banana and pineapple using the bench drill protocol in 1% agarose

The protocol canmonitor the variations in the recovery yield of DNA and RNA from soils of various types.The quantitative version of the protocol was obtained by testing the

Finally, we have shown that this protocol can be applied to a wide diversity of soils whatever their mineralogy and metal content (2 Ferralsols, 1 Vertisol, 2 Andosols

Some of these studies demonstrate a great sensitivity of microbial communities to metal pollution (e.g., decline of microbial diversity) while others show resistance/tolerance

A simple modification of the ISO procedure (i.e. FastPrep grinding) leads to a higher microbial DNA extraction yield and to a better discrimination of soil