• Aucun résultat trouvé

Electrochemical impedance spectroscopy studies of porous titanium foams intended for orthopaedic applications

N/A
N/A
Protected

Academic year: 2021

Partager "Electrochemical impedance spectroscopy studies of porous titanium foams intended for orthopaedic applications"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

207th ECS Meeting, Abstract #1792, 2005-05-15

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Electrochemical impedance spectroscopy studies of porous titanium

foams intended for orthopaedic applications

Menini, Richard; Gauthier, Maxime; Lefebvre, Louis-Philippe

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=a6fb184f-839a-4ee1-8537-d0b4f7f34fd0 https://publications-cnrc.canada.ca/fra/voir/objet/?id=a6fb184f-839a-4ee1-8537-d0b4f7f34fd0

(2)

207th ECS Meeting, Abstract #1792, copyright ECS

Electrochemical Impedance Spectroscopy Studies of Porous Titanium Foams

Intended for Orthopaedic Applications

Richard Menini, Maxime Gauthier and Louis-Philippe Lefebvre

National Research Council Canada Industrial Materials Institute, 75 de Mortagne Blvd.

Boucherville (QC) J4B 6Y4, Canada

Since the mid-1980s, many porous biomaterials have been developed for hard and soft tissue ingrowth while porous implants are becoming increasingly important in orthopaedics and dentistry. The interest mainly comes from the fact that interconnected porosity allows tissue ingrowth and integration. Porous titanium has been used extensively for that purpose in orthopaedics. A new process [1] has been developed recently to produce porous materials having structure and properties similar to those of cancellous bones, see Fig. 1. The main purpose of the present paper is to study the TiO2 layers of the foams by Electrochemical Impedance Spectroscopy (EIS).

Fig. 1. SEM Ti foam micrograph

Modifying the initial powder mixture and the thermal treatment conditions produced materials having different microstructures (A, B1, B2 and B3) [2]. Electrochemistry was used to: i) determine the surface area by EIS, ii) find the corrosion current density (j0) (simulated body fluid, 37°C and after 18 h at Ecorr or 144 h for B2A and B3A) and the penetration rates (PR) and iii) study the TiO2 layers by EIS at Ecorr. For all the different foams, the best EIS fittings were obtained using the equivalent circuit shown in Fig. 2. Qox1 and Rox1 are related to the outer TiO2 layer while Qox2 and Rox2 are related to the inner one. Qp and Rp are related to the porous nature of the foam. Figures 3 and 4 show the corresponding experimental and simulation data for foam A, B2 and B2A.

Qox1 Rox1 Rox2 Rs Qox2 Rp Qp Qox1 Rox1 Rox2 Rs Qox2 Rp Qp

Fig. 2. Eq. circuit used for EIS modeling of the Ti foams.

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 40 10 50 0.001 Hz 0.01 Hz 1 Hz 10 Hz 100 Hz 0.1 Hz ZRe (Ω) ZIm (Ω ) 0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 40 10 50 0.001 Hz 0.01 Hz 1 Hz 10 Hz 100 Hz 0.1 Hz ZRe (Ω) ZIm (Ω )

Fig. 3. Nyquist diagram for Foam A. Experimental data ({) and EIS modeling data using EC2 (─).

0 10 20 30 40 50 60 70 80 90 -4 -3 -2 -1 0 1 2 3 Log f (Hz) Θ (d eg ) 0 10 20 30 40 50 60 70 80 90 -4 -3 -2 -1 0 1 2 3 Log f (Hz) Θ (d eg )

Fig. 4. Bode diagrams for Foams B2 ({) and B2A (U), experimental data and EIS modeling data using EC2 (─).

The thickness (l) of the inner dense TiO2 layer formed on flat polished titanium can be calculated using the capacitor parallel-plate equation (1) which was simplified to equation (2) since the depression angle αox2 was close to unit (0.995 +/- 0.010). The constant phase elements (Qox2) for the different foams vs. the corresponding penetration rates are shown in Fig. 5.

ox2 0 ox2

ε ε A

l

C

=

(1) 12 ox2 ox2

8 9 10

.

ε

l

Q

×

=

(2) PR (µm.year-1) Solid Ti 10 20 30 40 50 60 70 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Qox2 (µ S.s α.cm -2) A B1 B2A B2 B3 B3A PR (µm.year-1) Solid Ti 10 20 30 40 50 60 70 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 10 20 30 40 50 60 70 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 Qox2 (µ S.s α.cm -2) A B1 B2A B2 B3 B3A

Fig. 5. Constant phase element of the inner TiO2 layer obtained

by EIS versus penetration rate for solid titanium and the different Ti foams.

Since Qox2 is inversely proportional to the thickness of the inner dense TiO2 layer, the corrosion resistance of the titanium foam increases with the thickness of its oxide layer.

Acknowledgements: the authors wish to thank Marie-Josée Dion and Mélanie Bolduc for their contribution to the work.

[1] Lefebvre L-P, Thomas Y. US Patent 6660224 [2] Gauthier M, Menini R, Bureau MN, So SKV, Dion

MJ and Lefebvre LP. Proceedings of the ASM Materials & Processes for Medical Devices Conference. p382. 8-10 Sept., Anaheim CA, 2003.

Figure

Fig. 2. Eq. circuit used for EIS modeling of the Ti foams.

Références

Documents relatifs

characteristics of time-optimal concatenations of control elements generating any SU (2) unitary, and impose bounds on: the maximum number of indepen- dent parameters, namely

Rural land managers, foresters and farmers, but also local decision makers, local authorities and members of local governments, are increasingly aware of the necessity to take into

Drawing on postcolonial studies and postmodern theory, our analysis of Desai’s novel will show how the focus of nostalgia shifts from India to England, reverting

In conclusion, this study showed that red orange juice anthocyanins were rapidly absorbed from both stomach and small intestine and then excreted in the urine as intact and

The results are congruent with the above-mentioned morphological data (well-defined nano- channels) and validate the strategy of fully aromatic triblock copolymers with highly

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

Large-scale evolution of kinetic energy: amplitude modulation coefficients The amplitude modulation of the small-scale turbulence embodies the large-scale evolution of the intensity

We performed the cars-learning simulations for the ‘Binary-PCM Synapse’ architecture with 3 different PCM reset resistance states, keeping the set state constant: (1) negligible