• Aucun résultat trouvé

A Multiscaling Model of an Intensity-Duration-Frequency Relationship for Extreme Precipitation

N/A
N/A
Protected

Academic year: 2021

Partager "A Multiscaling Model of an Intensity-Duration-Frequency Relationship for Extreme Precipitation"

Copied!
16
0
0

Texte intégral

(1)

A Multiscaling Model of an

Intensity-Duration-Frequency Relationship for Extreme Precipitation

Hans Van de Vyver

Royal Meteorological Institute of Belgium

September 21, 2017

(2)

IDF-curves (Uccle, Belgium)

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0

0.51.02.05.010.020.050.0100.0

d (hour)

Maximum intensity / mm h−1

(3)

General IDF relationship

General IDF relationship (Koutsoyiannis, Kozonis &

Manetas, 1998):

T -year return level of rainfall intensity:

i T (d ) = a(T )

(d + θ) η , with θ > 0, 0 < η < 1, with

a(T ) = F Y 1 (1 − 1/T ),

and F Y (y ) is the CDF of the scaled intensity, I (d ) b(d ).

(4)

Generalized extreme value (GEV) distribution

◮ Let X 1 , . . . , X m be a sequence of iid random variables.

◮ Block maxima M m = max{X 1 , . . . , X m }.

◮ CPF: P {M mz}.

◮ For sufficiently large m, P {M m ≤ z} is approximated by the generalized extreme value (GEV) distribution

G (z ; µ, σ, γ) = exp

"

1 + γ z − µ σ

−1/γ # .

◮ In practice: blocks of one year.

(5)

Generalized extreme value (GEV) distribution

◮ Location parameter µ specifies center of distribution.

◮ Scale parameter σ determines size of deviations.

◮ Shape parameter γ determines rate of tail decay.

◮ Return period

T = 1

1 − G (z ) .

◮ Return level

z (T ) = µ − σ γ

( 1 −

− log

1 − 1 T

−γ )

.

(6)

Simple scaling models

◮ Series of d -hourly intensity: I 1 (d ), I 2 (d ),. . .

◮ Annual maximum intensity:

I (d ) = max{I 1 (d ), I 2 (d ), . . . , I N y (d )}.

◮ Simple scaling.

Strict sense:

Id) = λ −η I (d), with 0 < η < 1.

Wide sense:

E [I qd)] = λ q η E [I q (d)].

◮ Multiscaling:

E [I qd )] = λ −α q E [I q (d )], with α q = q ϕ q η.

(7)

Scaling GEV-models

◮ We assume

I (d ) ∼ GEV[µ(d ), σ(d ), γ].

◮ Simple scaling hypothesis (Menabde et al., 1999; Nguyen et al., 1998):

µ(d ) = d −η µ, σ(d ) = d −η σ, γ (d ) = γ,

with 0 < η < 1. ⇒ Equivalent with the general relationship.

◮ Multiscaling hypothesis:

µ(d ) = d −η 1 µ, σ(d ) = d −η 2 σ, γ (d ) = γ, with 0 < η 1 ≤ η 2 , and η 1 < 1.

⇒ Not covered by the general relationship.

(8)

Illustration: Uccle precipitation

1 2 5 10 20 50

12510

Rainfall duration (hour)

µ (mm/h)

Slope = −0.724 MLE for each duration Regression Line

1 2 5 10 20 50

0.20.51.02.05.0

Rainfall duration (hour)

σ (mm/h)

Slope = −0.845

◮ Location parameter: slope = -0.724.

◮ Scale parameter: slope = -0.845.

(9)

Bayesian inference

N year of IDF-data:

i =

 

i 11 . . . i 1M

.. . . .. .. . i N1 . . . i NM

 

| {z }

M durations .

◮ Density function of IDF-data i is L(i; ψ) = L(i | ψ).

◮ Bayesian rule

π(ψ | i) = L(i | ψ) π(ψ) R

Ψ L(i | ψ) π(ψ)d ψ , with

◮ π(ψ): prior distribution.

◮ π(ψ | i): posterior distribution.

◮ Van de Vyver, H. (2015) Bayesian estimation of

Intensity-Duration-Frequency relationships. J. Hydrol. 529,

1451–1463.

(10)

Bayesian inference: scaling exponents

0.7 0.8 0.9 1.0

0 5 10 15 20 25 30

η (−)

Density

η

1

η

2

(11)

Bayesian inference: 20-year return levels

25 30 35

0.000.050.100.150.200.250.30

d = 1 h

Intensity (mm/h)

Density

4.0 4.5 5.0 5.5

0.00.51.01.52.0

d = 12 h

Intensity (mm/h)

Density

2.2 2.4 2.6 2.8 3.0 3.2 3.4

0.00.51.01.52.02.5

d = 24 h

Density

Simple scaling Multiscaling

(12)

IDF-curves (Uccle, Belgium)

1 2 5 10 20 50

125102050

Simple scaling

Rainfall duration (hour)

Maximum intensity (mm/h)

1 2 5 10 20 50

125102050

Multiscaling

Rainfall duration (hour)

Maximum intensity (mm/h)

(13)

Station location

0 50 100 150 200 250 300 350 400 450 500 550 600 650

50 km

Rochefort Forges

Dourbes Nadrin

Uccle Melle

Lacuisine Wasmuel

Ernage

St Hubert Bierset

Spa Deurne

Gosselies

Florennes

Raversijde

(14)

Model selection

Simple scaling Multiscaling

Station η ¯ AIC BIC η ¯ 1 η ¯ 2 AIC BIC

Rochefort 0.712 681.1 686.8 0.718 0.831 671.6 678.9

Forges 0.702 812.8 818.4 0.720 0.878 792.3 799.6

Dourbes 0.691 656.2 662.0 0.702 0.810 648.9 655.9

Nadrin 0.691 753.0 758.9 0.695 0.832 734.6 741.9

Uccle 0.723 2182.5 2193.0 0.723 0.844 2138.2 2151.3

Melle 0.717 691.9 697.9 0.715 0.795 689.6 696.4

Lacuisine 0.637 844.6 850.5 0.643 0.791 825.8 833.2

Wasmuel 0.726 608.9 614.7 0.737 0.876 594.5 601.8

Ernage 0.730 559.9 565.4 0.729 0.852 551.1 557.9

St Hubert 0.653 693.9 699.7 0.656 0.792 675.0 682.4

Bierset 0.747 873.8 879.7 0.750 0.846 867.1 874.2

Spa 0.666 793.2 799.0 0.669 0.757 788.8 795.8

Deurne 0.713 729.6 735.5 0.711 0.799 724.5 731.4

Gosselies 0.708 624.7 630.0 0.715 0.799 621.4 627.8

Florennes 0.727 751.8 757.5 0.724 0.824 746.2 753.2

Raversijde 0.707 768.8 774.7 0.711 0.794 764.3 771.4

(15)

Conclusions

◮ Simple scaling GEV-model:

µ(d ) ∼ d −η , σ(d ) ∼ d −η .

⇒ Parameters scale with one common exponent.

◮ Multiscaling GEV-model:

µ(d ) ∼ d −η 1 , σ(d ) ∼ d −η 2 .

⇒ Parameters scale with two different exponents.

◮ Bayesian inference of scaling models.

Advantages:

◮ Assessment of uncertainty.

◮ Model comparison with information crition (AIC, BIC).

◮ Multiscaling is significantly better than simple scaling!

◮ Open question: IDF characteristics worldwide?

(16)

Thank you for your attention!

Références

Documents relatifs

La statistique y apparaît comme truchement privilégié pour accéder au texte, mais le texte c’est aussi l’affaire des historiens, des sociologues, des

Complexes of the Bis(di-tert-butyl-aniline)amine Pincer Ligand: The Case of Copper... Redox

An asterisk indicates a significant difference (P&lt;0.005) by Mann-Whitney test when comparing treatments to BLS256 (EV). This experiment was reproduced three times with

Results: DJB induced a dramatic decrease in body weight and improvement in glucose control (glucose- and insulin-tolerance) in obese wild type mice fed a high calorie diet, for 25

plots from Taq DNA polymerase stop assay; Energy optimized structure of ligands at HF/6- 31G* level; Time dependent RMSD graphs of c-MYC, c-KIT1 and telomeric (parallel,

Deuxièmement, un grand nombre de non-distracteurs sont sémantiquement plus proches de la réponse que les distracteurs, mais n’ont pas été sélectionnés manuellement car

While the European pollution exerts its largest influence over northern Africa, it can increase the surface ammonium sulfate concentration over eastern Asia by 0.2–0.5 µg m − 3 ,

Our contributions are four-fold: (1) formalizing the problem of discovering blind spots in reinforcement learning due to representa- tion incompleteness, (2) introducing a