• Aucun résultat trouvé

Poisson Homology in Degree $0$ for some Rings of Symplectic Invariants

N/A
N/A
Protected

Academic year: 2021

Partager "Poisson Homology in Degree $0$ for some Rings of Symplectic Invariants"

Copied!
25
0
0

Texte intégral

(1)

HAL Id: hal-00325594

https://hal.archives-ouvertes.fr/hal-00325594

Preprint submitted on 29 Sep 2008

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Poisson Homology in Degree 0 for some Rings of

Symplectic Invariants

Frédéric Butin

To cite this version:

(2)

Poisson Homology in Degree

0

for some Rings of Symple ti Invariants Frédéri BUTIN

1

Abstra t

Let

g

be anite-dimensionalsemi-simpleLiealgebra,

h

aCartan subalgebra of

g

,and

W

itsWeyl group. The group

W

a tsdiagonallyon

V := h ⊕ h

,aswellason

C[V ]

.Thepurposeofthisarti le istostudythePoisson homologyofthealgebraofinvariants

C[V ]

W

endowedwiththestandardsymple ti bra ket.

Tobegin with,wegivegeneralresults aboutthePoissonhomologyspa eindegree

0

,denotedby

HP

0

(C[V ]

W

)

, inthe asewhere

g

isoftype

B

n

− C

n

or

D

n

,resultswhi hsupportAlev's onje ture.Thenwearefo usingthe interestontheparti ular asesofranks

2

and

3

,by omputingthePoissonhomologyspa eindegree

0

inthe ases where

g

isoftype

B

2

(

so

5

),

D

2

(

so

4

),then

B

3

(

so

7

),and

D

3

= A

3

(

so

6

≃ sl

4

).Inordertodothis,wemakeuse ofafun tionalequationintrodu edbyY.Berest,P.EtingofandV.Ginzburg.Were over,byadierentmethod, the resultestablished by J.Alevand L. Foissy,a ording to whi hthe dimensionof

HP

0

(C[V ]

W

)

equals

2

for

B

2

.Thenwe al ulatethedimensionofthisspa eandweshowthatitisequalto1for

D

2

.Wealso al ulateit fortherank

3

ases,weshowthatitisequalto

3

for

B

3

− C

3

and

1

for

D

3

= A

3

.

Key-words

Alev's onje ture;Pfa;Poissonhomology;Weylgroup;invariants;Berest-Etingof-Ginzburgequation.

1 Introdu tion

Let

G

beanitesubgroupofthesymple ti group

Sp(V )

,where

V

isa

C−

ve torspa eofdimension

2n

.Then the algebraof polynomialfun tions on

V

, denoted by

C[V ]

, is a Poisson algebra for the standard symple ti bra ket,and as

G

is asubgroupof thesymple ti group,the algebraofinvariants,denotedby

C[V ]

G

,isalso a Poissonalgebra.

Severalarti les weredevotedtothe omputation ofPoissonhomologyand ohomology ofthealgebraof invari-ants

C[V ]

G

. In parti ular, Y. Berest, P. Etingof and V. Ginzburg, in [BEG04℄, prove that the

0−

th spa e of Poissonhomologyof

C[V ]

G

isnite-dimensional.

Aftertheirworks[AL98 ℄and[AL98℄,J.Alev,M.A.Farinati,T.LambreandA.L.Solotarestablishafundamental resultin[AFLS00 ℄ :they omputeall thespa es ofHo hs hildhomology and ohomologyof

A

n

(C)

G

for every nitesubgroup

G

of

Sp

2n

C

.

Besides, J.Alevand L.Foissyshowin[AF06 ℄thatthe dimensionof thePoissonhomologyspa eindegree

0

of

C[h ⊕ h

]

W

isequal to theoneof the Ho hs hildhomology spa e indegree

0

of

A

2

(C)

W

, where

h

is aCartan subalgebra ofasemi-simpleLiealgebraofrank

2

withWeylgroup

W

.

Inthe following,givenanite-dimensionalsemi-simpleLiealgebra

g

,aCartansubalgebra

h

of

g

,and itsWeyl group

W

, we are interested in the Poisson homology of

C[V ]

G

in the ase where

V

is the symple ti spa e

V := h ⊕ h

and

G := W

.

Thegroup

W

a ts diagonallyon

V

,this indu esana tion of

W

on

C[V ]

.Wedenote by

C[V ]

W

thealgebraof invariants underthis a tion.Endowedwith thestandard symple ti bra ket, thisalgebra is aPoisson algebra. Thea tionofthegroup

W

on

V

alsoindu esana tionof

W

ontheWeylalgebra

A

n

(C)

.

Tobeginwith,wewill givegeneralresultsaboutthePoissonhomologyspa eindegree

0

of

C[V ]

W

forthetypes

B

n

− C

n

and

D

n

,resultswhi hsupportAlev's onje tureandestablishaframeworkforapossibleproof.Se tions 2.3,2.4 and2.5 ontainthemainresultsofthisstudy.

Nextwewilluse theseresults inorderto ompletely al ulatethePoisson homologyspa e indegree

0

,denoted by

HP

0

(C[V ]

W

)

,inthe asewhere

g

is

so

5

(i.e.

B

2

)sowere over,byadierentmethod,theresultestablished byJ.AlevandL.Foissyfor

so

5

inthearti le[AF06 ℄,namely

dim HP

0

(C[V ]

W

) = 2

theninthe ase where

g

is

so

4

(i.e.

D

2

= A

1

× A

1

)byshowingthat

dim HP

0

(C[V ]

W

) = 1

.Finallywewill provetheimportantproperty forrank

3

:

Proposition1 (Poissonhomologyindegree

0−

for

g

ofrank

3

) Let

HP

0

(C[V ]

W

)

bethePoissonhomologyspa eindegree

0

of

C[V ]

W

and

HH

0

A

n

(C)

W



theHo hs hild homol-ogyspa e indegree

0

of

A

n

(C)

W

.

For

g

oftype

B

3

(

so

7

),we have

dim HP

0

C[V ]

W



= dim HH

0

A

n

(C)

W



= 3

. For

g

oftype

D

3

= A

3

(

so

6

≃ sl

4

),wehave

dim HP

0

C[V ]

W



= dim HH

0

A

n

(C)

W



= 1

. 1

UniversitédeLyon,UniversitéLyon1,CNRS,UMR5208,InstitutCamilleJordan, 43blvddu11novembre1918,F-69622Villeurbanne-Cedex,Fran e

(3)

above.

2 Results about

B

n

− C

n

and

D

n

Asindi atedabove,weareinterestedinthePoissonhomologyof

C[h ⊕ h

]

W

,where

h

isaCartansubalgebraofa nite-dimensionalsemi-simpleLiealgebra

g

,and

W

itsWeylgroup.Wewillstudythetypes

B

n

and

D

n

.Re all thattherootsystemoftype

C

n

isdualtotherootsystemoftype

B

n

.SotheirWeylgroupsareisomorphi ,and thestudyofthe ase

C

n

isredu edtothestudyofthe ase

B

n

.

2.1 Denitions and notations

Set

S := C[x, y] = C[x

1

, . . . , x

n

, y

1

, . . . , y

n

]

.

For

m ∈ N

,wedenoteby

S(m)

theelementsof

S

ofdegree

m

. For

B

n

,wehave

W = (±1)

n

⋊ S

n

= (±1)

n

· S

n

(permutationsofthevariablesandsign hangesofthevariables). For

D

n

,wehave

W = (±1)

n−1

⋊ S

n

= (±1)

n−1

· S

n

(permutationsofthevariablesandsign hangesofaneven numberofvariables).

Everyelement

(a

1

, . . . , a

n

) ∈ (±1)

n

isidentiedwiththediagonalmatrix

Diag(a

1

, . . . , a

n

)

,andeveryelement

σ ∈ S

n

isidentiedwiththematrix

i,σ(j)

)

(i,j)∈[[1, n]]

.Wewilldenoteby

s

j

the

j−

thsign hange,i.e.

s

j

(x

k

) = x

k

if

k 6= j

,

s

j

(x

j

) = −x

j

,and

s

j

(y

k

) = y

k

if

k 6= j

,

s

j

(y

j

) = −y

j

. Asfortheelementsof

(±1)

n−1

,theyareidentiedwiththematri esoftheform

Diag((−1)

i

1

, (−1)

i

1

+i

2

, (−1)

i

2

+i

3

, . . . , (−1)

i

n−2

+i

n−1

, (−1)

i

n−1

),

with

i

k

∈ {0, 1}

.Wewilldenoteby

s

i,j

thesign hangeofthevariablesofindi es

i

and

j

. So,all theseelementsare in

O

n

C

,andbyidentifying

g ∈ W

with



g

0

0

g



,weobtain

W ⊂ Sp

2n

C

.

The(right)a tionof

W

on

S

isdenedfor

P ∈ S

and

g ∈ W

by

g · P (x, y) := P

n

X

j=1

g

1j

x

j

, . . . ,

n

X

j=1

g

nj

x

j

,

n

X

j=1

g

1j

y

j

, . . . ,

n

X

j=1

g

nj

y

j

!

.

Sowehave

h · (g · P ) = (gh) · P

.

Intheparti ular asewhere

σ ∈ S

n

,wehave

σ · P (x, y) = P (x

σ

−1

(1)

, . . . , x

σ

−1

(n)

, y

σ

−1

(1)

, . . . , y

σ

−1

(n)

)

.

On

S

,wedenethePoissonbra ket

{P, Q} := h∇P, ∇Qi = ∇P · (J ∇Q) = ∇

x

P · ∇

y

Q − ∇

y

P · ∇

x

Q,

where

h·, ·i

isthestandardsymple ti produ t,asso iatedtothematrix

J =



0

I

n

−I

n

0



. Asthe group

W

is asubgroupof

Sp(h·, ·i) = Sp

2n

C

,thealgebraofinvariants

S

W

isaPoisson algebraforthe bra ketdenedabove.

WedenetheReynoldsoperatorasthelinearmap

R

n

from

S

to

S

determinedby

R

n

(P ) =

1

|W |

X

g∈W

g · P.

Weset

A = C[z, t] = C[z

1

, . . . , z

n

, t

1

, . . . , t

n

]

and

S

:= A[x, y]

,andweextendthemap

R

n

asa

A−

linearmap from

S

to

S

. Remark 2

Inthe aseof

B

n

,every elementof

S

W

hasanevendegree.(It isfalsefor

D

n

). 2.2 Poisson homology

Let

A

bea Poissonalgebra. We denoteby

p

(A)

the

A−

module ofKählerdierentials, i.e. theve torspa e spannedbytheelementsoftheform

F

0

dF

1

∧ · · · ∧ dF

p

,wherethe

F

j

belongto

A

,and

d : Ω

p

(A) → Ω

p+1

(A)

(4)

We onsiderthe omplex

. . .

5

/

/

4

(A)

4

/

/

3

(A)

3

/

/

2

(A)

2

/

/

1

(A)

1

/

/

0

(A)

withBrylinsky-Koszulboundaryoperator

p

(See[B88 ℄):

p

(F

0

dF

1

∧ · · · ∧ dF

p

)

=

p

X

j=1

(−1)

j+1

{F

0

, F

j

} dF

1

∧ · · · ∧ d

dF

j

∧ · · · ∧ dF

p

+

X

1≤i<j≤p

(−1)

i+j

F

0

d{F

i

, F

j

} ∧ dF

1

∧ · · · ∧ d

dF

i

∧ · · · ∧ d

dF

j

∧ · · · ∧ dF

p

.

ThePoissonhomologyspa eindegree

p

isgivenbytheformula

HP

p

(A) =

Ker

p

/

Im

p+1

.

Inparti ular,wehave

HP

0

(A) = A / {A, A}.

Inthesequel,wewilldenote

HP

0

(C[V ]

W

)

by

HP

0

(W )

and

HH

0

(C[V ]

W

)

by

HH

0

(W )

.

2.3 Ve tors of highest weight

0

Theaimofthis se tionis toshowthat

S

W

(2)

is isomorphi to

sl

2

and thattheve torswhi hdonotbelongto

{S

W

, S

W

}

,areamongtheve torsofhighestweight

0

ofthe

sl

2

module

S

W

,anobservationwhi hwillsimplify the al ulations.

Proposition3

For

B

n

(

n ≥ 2

)and

D

n

(

n ≥ 3

), thesubspa e

S

W

(2)

is isomorphi to

sl

2

. More pre isely

S

W

(2) = hE, F, Hi

with therelations

{H, E} = 2E, {H, F } = −2F

and

{E, F } = H

, where theelements

E, F, H

are expli itly givenby

E =

n

2

R

n

(x

2

1

) =

1

2

x

· x

F = −

n

2

R

n

(y

2

1

) = −

2

1

y

· y

H = −n R

n

(x

1

y

1

) = −x · y.

For

D

2

,wehave

S

W

(2) = hE, F, Hi ⊕ hE

, F

, H

i

(dire tsumoftwoLiealgebrasisomorphi to

sl

2

). Sothespa es

S

and

S

W

are

sl

2

modules. Proof:

Wedemonstratethepropositionfor

B

n

,theproofbeinganalogousfor

D

n

.

As

x

2

1

isinvariantundersign hanges,wemaywrite

R

n

(x

2

1

) =

n!

1

P

σ∈S

n

σ · x

2

1

.Moreover,wehavethepartition

S

n

=

`

n

j=1

A

j

,where

A

j

:= {σ ∈ S

n

/ σ(1) = j}

has ardinality

(n − 1)!

. Thus

R

n

(x

2

1

) =

(n−1)!

n!

P

n

j=1

x

2

j

.Wepro eedlikewisewith

R

n

(y

2

1

)

and

R

n

(x

1

y

1

)

.

Weobviouslyhave

S

W

(2) ⊃ hE, F, Hi

. Moreover,

R(x

2

j

) = R(x

2

1

)

,

R(y

2

j

) = R(y

1

2

)

and

R(x

j

y

j

) = R(x

1

y

1

)

.Last, if

i 6= j

, then

x

i

x

j

,

y

i

y

j

and

x

i

y

j

are mappedtotheiroppositebythe

i−

thsign hange

s

i

,and

W = s

i

· hs

1

, . . . , s

i−1

, s

i+1

, . . . , s

n

i · S

n

⊔ hs

1

, . . . , s

i−1

, s

i+1

, . . . , s

n

i · S

n

, thus

R

n

(x

i

x

j

) = R

n

(y

i

y

j

) = R

n

(x

i

y

j

) = 0

.Hen e

S

W

(2) ⊂ hE, F, Hi

.

Wehave

∇E =



x

0



, ∇F =



0

−y



and

∇H =



−y

−x



, so

{E, F } = H, {H, E} = 2E

and

{H, F } = −2F

.



Wedenoteby

S

sl

2

thesetofve torsofhighestweight

0

,i.e.thesetofelementsof

S

whi hareannihilatedbythe a tionof

sl

2

.

For

j ∈ N

,wedenoteby

S(j)

sl

2

theelementsof

S

sl

2

ofdegree

j

.

As the a tion of

W

and the a tion of

sl

2

ommute, we may write

(S

W

)

sl

2

= (S

sl

2

)

W

= S

sl

W

2

and likewise for

S

W

(j)

sl

2

. Proposition4

If

S

W

ontainsnoelementofdegree

1

,thentheve torsofhighestweight

0

ofdegree

0

donotbelongto

{S

W

, S

W

}

.

Let

W

be oftype

B

n

(

n ≥ 2

)or

D

n

(

n ≥ 3

).If

S

W

ontainsnoelement of degree

1, 3,

, thentheve tors of highestweight

0

ofdegree

4

donot belongto

{S

W

, S

W

}

(5)

ThePoissonbra ketbeinghomogeneousofdegree

−2

,wehave

S

W

(0) ∩ {S

W

, S

W

} = {S

W

(2), S

W

(0)} = {0}

.

Similarly,

S

W

(4) ∩ {S

W

, S

W

} = {S

W

(0), S

W

(6)} + {S

W

(2), S

W

(4)} = {sl

2

, S

W

(4)}

,a ording to Proposi-tion3.Withthede ompositionofthe

sl

2

modules,wehave

S

W

(4) =

L

m∈N

V (m)

,with

{sl

2

, V (m)} = V (m)

if

m ∈ N

and

{sl

2

, V (0)} = {0}

.Soif

a ∈ S

W

(4) ∩ {S

W

, S

W

}

,then

a ∈

L

m∈N

V (m)

.



Proposition5

Forevery monomial

M = x

i

y

j

,wehave

{H, M }

=

(|i| − |j|)M = (

deg

x

(M ) −

deg

y

(M ))M

{E, M }

=

P

n

k=1

j

k

x

i

1

1

. . . x

i

k−1

k−1

x

i

k

+1

k

x

i

k+1

k+1

. . . x

i

n

n

y

1

j

1

. . . y

j

k−1

k−1

y

j

k

−1

k

y

j

k+1

k+1

. . . y

j

n

n

,

{F, M }

=

P

n

k=1

i

k

x

i

1

1

. . . x

i

k−1

k−1

x

i

k

−1

k

x

i

k+1

k+1

. . . x

i

n

n

y

j

1

1

. . . y

j

k−1

k−1

y

j

k

+1

k

y

j

k+1

k+1

. . . y

j

n

n

.

Inparti ular,everyve torofhighestweight

0

isofevendegree. Proof:Thisresultsfromasimple al ulation.

Remark 6

Let

j ∈ N

and

P ∈ S

W

(j)

. A ording to thede omposition of

sl

2

module

S

W

(j)

inweight subspa es, we may write

P =

P

m

k=−m

P

k

with

{H, P

k

} = k P

k

. Sowe have

S

W

(j)

{S

W

, S

W

}∩S

W

(j)

=

S

W

(j)

sl2

{S

W

, S

W

}∩S

W

(j)

sl2

. Thustheve tors whi hdonot belongto

{S

W

, S

W

}

are tobefound amongtheve torsof highestweight

0

. ThefollowingpropertyisageneralizationofProposition3provedbyJ.AlevandL.Foissyin[AF06 ℄.Itenables ustoknowthePoin aréseriesofthealgebra

S

sl

2

.

Proposition7 For

l ∈ N

,we have

S

sl

2

(2l + 1) = {0}

and

dim S

sl

2

(2l) = (C

n−1

l+n−1

)

2

− C

n−1

l+n

C

n−1

l+n−2

.

ThefollowingresultisimportantforsolvingtheequationofBerest-Etingof-Ginzburg,be auseitgivesa des rip-tionof thespa eof ve torsof highestweight

0

,spa e inwhi hwewill sear hthesolutionsof thisequation.In theproofofthisproposition,weusethearti les[DCP76 ℄and[GK04 ℄ on erningthepfaanalgebras.

Proposition8

For

i 6= j

, set

X

i,j

:= x

i

y

j

− y

i

x

j

.Thenthealgebra

C[x, y]

sl

2

isthealgebra generated bythe

X

i,j

'sfor

(i, j) ∈

[[1, n]]

2

.Wedenotethisalgebraby

ChX

i,j

i

.

Thisalgebraisnotapolynomialalgebrafor

n ≥ 4

(e.g.

X

1,2

X

3,4

− X

1,3

X

2,4

+ X

2,3

X

1,4

= 0

). Proof:

Thein lusion

ChX

i,j

i ⊂ C[x, y]

sl

2

being obvious,allthatwehavetodoistoshowthatthePoin aréseriesof bothspa esareequal,knowingthattheonefor

C[x, y]

sl

2

isalreadygivenbyProposition7.

Consider the ve tors

u

j

:=



x

j

y

j



for

j = 1 . . . n

, inthe symple ti spa e

C

2

endowedwith the standard symple ti form

h·i

denedbythematrix

J :=



0

1

−1

0



.Let

{T

i,j

/ 1 ≤ i < j ≤ n}

beasetofindeterminates, andlet

T

e

betheantisymmetri matrixthegeneraltermofwhi his

T

i,j

if

i < j

.Then,a ording tose tion6of [DCP76 ℄,theideal

I

2

ofrelationsbetweenthe

hu

i

, u

j

i

(i.e.betweenthe

X

i,j

)isgeneratedbythepfaanminors of

T

e

ofsize

4 × 4

.Set

P F := ChX

i,j

i

.Sowehave

P F ≃ C[(T

i,j

)

i<j

] / I

2

=: P F

0

,i.e.thealgebra

P F

isisomorphi tothepfaanalgebra

P F

0

.ItsPoin aréseriesisgiveninse tion 4of[GK04 ℄by

dim P F

0

(m) = (C

m+n−2

m

)

2

− C

m+n−2

m−1

C

m+n−2

m+1

.

Sowehave

dim P F (2l) = (C

l

l+n−2

)

2

− C

l−1

l+n−2

C

l+1

l+n−2

.Weverifythat

dim P F (2l) = (C

l+n−1

n−1

)

2

− C

l+n

n−1

C

l+n−2

n−1

= dim C[x, y]

sl

2

(2l).

Wehaveobviously

dim P F (2l + 1) = 0 = dim C[x, y]

sl

(6)

Westudythefun tionnalequationintrodu edbyY.Berest,P.EtingofandV.Ginzburgin[BEG04℄.Thepoint isthatsolvingthisequation,inthespa e

S

W

sl

2

,isequivalenttothedeterminationofthequotient

S

W

{S

W

, S

W

}

,that istosaythe omputationofthePoissonhomologyspa eindegree

0

of

S

W

. Lemma 9 (Berest-Etingof-Ginzburg)

We onsider

C

2n

,endowedwithitsstandardsymple ti form,denoted by

h·, ·i

.Let

j ∈ N

. Let

S := C[x, y] = C[z]

,andlet

L

j

:=



S

W

(j)

{S

W

, S

W

}∩S

W

(j)



bethelineardualof

S

W

(j)

{S

W

, S

W

}∩S

W

(j)

. Then

L

j

isisomorphi totheve torspa eof polynomials

P ∈ C[w]

W

(j)

satisfying thefollowingequation:

∀ w, w

∈ C

2n

,

X

g∈W

hw, gw

i P (w + gw

) = 0

(1) Proof:

For

w

= (u, v) ∈ C

2n

and

z

= (x, y) ∈ C

2n

,weset

L

w

(z) :=

P

g∈W

e

hw, gzi

. Sowehave

{L

w

(z), L

w

(z)} = ∇

x

L

w

(z) · ∇

y

L

w

(z) − ∇

y

L

w

(z) · ∇

x

L

w

(z)

Wededu etheformula

{L

w

(z), L

w

(z)} =

X

g∈W

hw, gw

iL

w+gw

(z).

(2)

Moreover,

L

w

(z)

isapowerseriesin

w

,the oe ientsofwhi hgenerate

S

W

:

L

w

(z) =

X

p=0

|W |

p!

R

n

"

X

n

i=1

y

i

u

i

− x

i

v

i

!

p

#

(3) The oe ientsoftheseriesaretheimagesby

R

n

oftheelementsofthe anoni albasisof

S

.

Remark:inthe aseof

B

n

,thereisnoinvariantofodddegree,sowehave

L

w

(z) =

P

g∈W

h

(hw, gzi)

.

Set

M

p

(z) = {z

i

/ |i| = p}

and

M

p

(w) = {w

i

/ |i| = p}

. Foramonomial

m = x

i

y

j

∈ M

p

(z)

,let

m = u

e

j

v

i

. Similarly,foramonomial

m = u

i

v

j

∈ M

p

(w)

,let

m = x

j

y

i

.

So,for

m ∈ M

p

(z)

,wehave

m = m

e

,andfor

m ∈ M

p

(w)

,wehave

m = m

e

. Theseries

L

w

(z)

maythenbewrittenas

L

w

(z) = |W | +

X

j=1

X

m

j

∈M

j

(w)

α

m

j

R

n

(m

j

)m

j

= |W | +

X

j=1

X

m

j

∈M

j

(z)

α

g

m

j

R

n

(m

j

)

m

f

j

= |W | +

X

j=1

L

j

w

(z),

(4) with

α

m

j

∈ Q

.

Now

P

n

i=1

y

i

u

i

− x

i

v

i



p

=

P

|a|+|b|=p

(−1)

|b|

C

a,b

p

x

b

y

a

u

a

v

b

,

where

C

a,b

p

=

a

1

!...a

n

p!

!b

1

!...b

n

!

isthemultinomial oe ient,thereforea ordingtoformula (3),wehave

L

w

(z) = |W | +

X

p=1

X

|a|+|b|=p

(−1)

|b|

|W |

p!

C

a,b

p

R

n



x

b

y

a



u

a

v

b

(5)

By olle tingtheformulae(4)and(5),weobtain

α

u

a

v

b

= (−1)

|b|

|W |

p!

C

a,b

p

.

(6)

Weidentify

L

j

withtheve torspa eoflinearformson

S

W

(j)

whi hvanishon

{S

W

, S

W

} ∩ S

W

(j)

. Denethemap

π : L

j

{P ∈ C[w]

W

(j) / ∀ w, w

∈ C

2n

,

X

g∈W

hw, gw

i P (w + gw

) = 0}

f

7→

π

f

:= f (L

j

w

).

(7)

Then

π

is welldened:indeed

L

j

w

isapolynomialin

z

ofdegree

j

with oe ientsin

C[w]

,and expli itly,we have

f (L

j

w

) =

X

m

j

∈M

j

(z)

(7)

If two monomials

m

j

, m

j

∈ M

j

(z)

belong to a same orbit under the a tion of

S

n

, then the oe ients

α

m

g

j

f (R

n

(m

j

))

and

α

g

m

j

f (R

n

(m

j

))

of

m

j

and

m

j

arethesame,thus

f (L

j

w

)

isinvariantunder

W

.

Besides,

π

f

is solution of

E

n

(P ) = 0

: indeed, we may extend

f

as a linear map dened on

S

W

{S

W

, S

W

}

=

L

i=0

S

W

(i)

{S

W

, S

W

}∩S

W

(i)

,bysetting

f = 0

on

S

W

(i)

{S

W

, S

W

}∩S

W

(i)

for

i 6= j

. Then,a ordingto(2),wehavetheequality

0 = f ({L

w

, L

w

}) =

P

g∈W

hw, gw

if (L

w+gw

)

, hen e

P

g∈W

hw, gw

if



L

j

w+gw



= 0

.So,thepolynomial

f (L

j

w

) ∈ C[w]

satisesequation(1).

Denethemap

ϕ : {P ∈ C[w]

W

(j) / ∀ w, w

∈ C

2n

,

X

g∈W

hw, gw

i P (w + gw

) = 0}

L

j

P =

X

m

j

∈M

j

(w)

β

m

j

m

j

7→



ϕ

P

: R

n

(m

j

) 7→

β

mj

α

mj



.

(9)

For

f ∈ L

j

,wehave

ϕ

π

f

(R

n

(m

j

)) =

α

mj

f

(

R

n

(m

j

)

)

α

mj

= f (R

n

(m

j

))

, thus

ϕ

π

f

= f

.

For

P =

X

m

j

∈M

j

(w)

β

m

j

m

j

∈ C[w]

W

(j)

,wehave

P =

X

m

j

∈M

j

(z)

β

g

m

j

m

f

j

,soif

m

j

∈ M

j

(z)

,then

ϕ

P

(R

n

(m

j

)) =

β

mj

g

α

mj

g

. Consequently,

π

ϕ

P

=

P

m

j

∈M

j

(z)

α

g

m

j

ϕ

P

(R

n

(m

j

))

m

f

j

=

P

m

j

∈M

j

(z)

α

g

m

j

β

mj

g

α

mj

g

m

f

j

= P.

So

π

isbije tiveanditsinverseis

ϕ

.

Allwehavetodoistoshowthat

ϕ

P

vanisheson

{S

W

, S

W

} ∩ S

W

(j)

. Let

P ∈ C[w]

W

(j)

beasolutionofequation(1).Thenas,

π

ϕ

P

= P

,wehavefor

k + l = j

,

0 =

P

g∈W

hw, gw

iP (w + gw

) = ϕ

P

{L

k

w

, L

l

w

}



But

{L

k

w

, L

l

w

} =

P

m

k

∈M

k

(w)

P

µ

l

∈M

l

(w

)

α

m

k

α

µ

l

m

k

µ

l

{R

n

(m

k

), R

n

l

)},

sothat

P

m

k

∈M

k

(w)

P

µ

l

∈M

l

(w

)

α

m

k

α

µ

l

m

k

µ

l

ϕ

P

({R

n

(m

k

), R

n

l

)}) = 0.

Thislastequalityisequivalentto

∀ k + l = j, ϕ

P

({R

n

(m

k

), R

n

l

)}) = 0,

whi hshows that

ϕ

P

vanisheson

{S

W

, S

W

} ∩ S

W

(j)

.



Thefollowing orollaryenablesustomaketheequationofBerest-Etingof-Ginzburgmoreexpli it. Corollary 10

Weintrodu e

2n

indeterminates,denotedby

z

1

, . . . , z

n

, t

1

, . . . , t

n

,andweextendtheReynoldsoperatorinamap from

C[x, y, z, t]

toitselfwhi his

C[z, t]−

linear.Thentheve torspa e

L

j

isisomorphi totheve torspa eof polynomials

P ∈ S

W

(j)

satisfyingthefollowingequation :

R

n



X

n

i=1

z

i

y

i

− t

i

x

i



P (z

1

+ x

1

, . . . , z

n

+ x

n

, t

1

+ y

1

, . . . , t

n

+ y

n

)



= 0

(10) i.e.

E

n

(P ) := R

n



(z · y − t · x) P (x + z, y + t)



= 0

(11) Proof: Wehave

hw, w

i = w · (Jw

) =

P

n

i=1

(w

i

w

n+i

− w

n+i

w

i

)

.Thenequation(10)isequivalentto

(8)

X

g∈W

n

X

i=1

(z

i

n

X

j=1

g

ij

y

j

− t

i

n

X

j=1

g

ij

x

j

) P



z

1

+

n

X

j=1

g

1j

x

j

, . . . , z

n

+

n

X

j=1

g

nj

x

j

, t

1

+

n

X

j=1

g

1j

y

j

, . . . , t

n

+

n

X

j=1

g

nj

y

j



(13) iszero. Thisisequivalentto

n

X

i=1

(z

i

g · y

i

− t

i

g · x

i

)

X

g∈W

g ·



P (z

1

+ x

1

, . . . , z

n

+ x

n

, t

1

+ y

1

, . . . , t

n

+ y

n

)



= 0,

(14) thatistosay

R

n



n

X

i=1

z

i

y

i

− t

i

x

i



P (z

1

+ x

1

, . . . , z

n

+ x

n

, t

1

+ y

1

, . . . , t

n

+ y

n

)



= 0,

(15)

where

R

n

istheReynoldsoperatorextendedina

C[z, t]−

linearmap.



Remark 11

Caseof

B

n

: fora monomial

M ∈ C[x, y]

,

either there existsasign hangewhi hsends

M

toitsopposite,andthen

R

n

(M ) = 0

or

M

isinvariantunder everysign hangeandthen

R

n

(M ) =

P

σ∈S

n

σ · M

.

If

Q = R

n

(P )

with

P ∈ C[x, y]

,thenwe mayalwaysassume thatea h monomialof

P

,inparti ular

P

itself,is invariantunderthesign hanges.

Caseof

D

n

:wehavethesameresult,by onsideringthistimethesign hangesofanevennumberofvariables.

The aimof Proposition12and its orollary is to redu edrasti ally the spa e inwhi hwe sear hthe solutions of equation(11) :indeed, insteadof sear hingthe solutions in

S

W

,we maylimit ourselvestothe spa e ofthe elementswhi hareannihilatedbythea tionof

sl

2

.

Proposition12 Let

P ∈ C[x, y]

W

.We onsidertheelement

E

n

(P )

denedbytheformula(11)asapolynomialinthe indetermi-nates

z, t

andwith oe ientsin

C[x, y]

.

Thenthe oe ientof

z

1

t

1

in

E

n

(P )

is

−1

n

{H, P }

,thatof

t

2

1

is

−1

n

{E, P }

andthatof

z

2

1

is

1

n

{F, P }

. Proof:

We arryouttheprooffor

B

n

.Themethodisthesamefor

D

n

.

Wedenote by

c

z

1

t

1

(P )

the oe ient of

z

1

t

1

in

E

n

(P )

. Sin ethe maps

P 7→ c

z

1

t

1

(P )

and

P 7→ {H, P }

are linear, allwehavetodoistoprovethepropertyfor

P

oftheform

P = R

n

(M )

,where

M = x

i

y

j

isamonomial whi hwemayassumeinvariantunderthesign hangesthankstoremark11.

Thentheformula(11)maybewritten

|W | E

n

(M )

=

|W | R

n

(z · y − t · x)(x + z)

i

(y + t)

j



=

X

c∈(±1)

n

X

σ∈S

n

c ·

"

(z

1

y

σ

−1

(1)

+ · · · + z

n

y

σ

−1

(n)

)

n

Y

k=1

(z

k

+ x

σ

−1

(k)

)

i

k

(t

k

+ y

σ

−1

(k)

)

j

k

#

X

c∈(±1)

n

X

σ∈S

n

c ·

"

(t

1

x

σ

−1

(1)

+ · · · + t

n

x

σ

−1

(n)

)

n

Y

k=1

(z

k

+ x

σ

−1

(k)

)

i

k

(t

k

+ y

σ

−1

(k)

)

j

k

#

Sothe oe ientof

z

1

t

1

isgivenby

(9)

Sin e

P =

1

n!

P

σ∈S

n

Q

n

k=1

x

i

σ(k)

k

y

j

σ(k)

k

,wededu ethat

n! c

z

1

t

1

(P )

=

X

σ∈S

n

c

z

1

t

1

n

Y

k=1

x

i

σ(k)

k

y

j

σ(k)

k

!

=

X

σ∈S

n

(j

σ(1)

− i

σ(1)

) R

n

n

Y

k=1

x

i

σ(k)

k

y

j

σ(k)

k

!

=

X

σ∈S

n

(j

σ(1)

− i

σ(1)

) R

n

(M ) = (n − 1)!

n

X

k=1

(j

k

− i

k

) R

n

(M )

=

(n − 1)! (

deg

y

(M ) −

deg

x

(M )) R

n

(M ) = −(n − 1)! {H, P }.

Wepro eedasfor

z

1

t

1

,bydenotingby

c

t

2

1

(P )

the oe ientof

t

2

1

in

E

n

(P )

.Thenwehave

|W | c

t

2

1

(M )

=

X

c∈(±1)

n

X

σ∈S

n

c ·

h

x

σ

−1

(1)

n

Y

k=1

x

i

k

σ

−1

(k)

!

j

1

y

σ

j

1

−1

−1

(1)

n

Y

k=2

y

j

k

σ

−1

(k)

!

i

=

−|(±1)

n

| j

1

X

σ∈S

n

x

i

1

+1

σ

−1

(1)

y

j

1

−1

σ

−1

(1)

n

Y

k=2

x

i

k

σ

−1

(k)

y

j

k

σ

−1

(k)

!

=

−|W | j

1

R

n

x

i

1

1

+1

y

1

j

1

−1

n

Y

k=2

x

i

k

k

y

j

k

k

!!

.

Thus

n! c

t

2

1

(P )

=

X

σ∈S

n

c

t

2

1

n

Y

k=1

x

i

σ(k)

k

y

j

σ(k)

k

!

= −

X

σ∈S

n

j

σ(1)

R

n

x

i

σ(1)

+1

1

y

j

σ(1)

−1

1

n

Y

k=2

x

i

σ(k)

k

y

j

σ(k)

k

!!

=

n

X

p=1

X

σ∈S

n

σ(1)=p

j

σ(1)

R

n

x

i

σ(1)

+1

1

y

j

σ(1)

−1

1

n

Y

k=2

x

i

σ(k)

k

y

j

σ(k)

k

!!

=

−(n − 1)!

n

X

p=1

j

p

R

n



x

i

1

1

. . . x

i

p

+1

p

. . . x

i

n

n

y

j

1

1

. . . y

j

p

−1

p

. . . y

j

n

n



.

But

n! {E, P }

=

X

σ∈S

n

{E, x

i

σ(1)

1

. . . x

i

σ(n)

n

y

j

σ(1)

1

. . . y

j

σ(n)

n

}

=

X

σ∈S

n

n

X

p=1

j

σ(p)

x

i

σ(1)

1

. . . x

i

σ(p)

+1

p

. . . x

i

σ(n)

n

y

j

σ(1)

1

. . . y

j

σ(p)

−1

p

. . . y

j

σ(n)

n

=

n

X

p=1

n

X

q=1

X

σ∈S

n

σ(p)=q

j

σ(p)

x

i

σ(1)

1

. . . x

i

σ(p)

+1

p

. . . x

i

σ(n)

n

y

j

σ(1)

1

. . . y

j

σ(p)

−1

p

. . . y

j

σ(n)

n

=

n

X

q=1

j

q

n

X

p=1

X

σ∈S

n

σ(p)=q

x

i

σ(1)

1

. . . x

i

σ(p)

+1

p

. . . x

i

σ(n)

n

y

j

σ(1)

1

. . . y

j

σ(p)

−1

p

. . . y

j

σ(n)

n

=

n!

n

X

q=1

j

q

R

n



x

i

1

1

. . . x

i

q

+1

q

. . . x

i

n

n

y

j

1

1

. . . y

j

q

−1

q

. . . y

j

n

n



.

So

c

t

2

1

(P ) =

−1

n

{E, P }

.Similarlyweshowthat

c

z

2

1

(P ) =

1

n

{F, P }

.



Corollary 13

Let

P ∈ C[x, y]

W

.If

P

satisesequation(11),then

P

isannihilatedby

sl

2

,i.e.

P ∈ S

W

sl

2

.

Therefore the ve tor spa e

L

j

is isomorphi to the ve tor spa e of the polynomials

P ∈ S

W

sl

2

(j)

satisfying equation(11).

Thusthedeterminationof

S

W

{S

W

, S

W

}



=

S

W

sl2

{S

W

, S

W

}∩S

W

sl2



isequivalenttotheresolution,in

S

W

sl

2

,ofequation(11). Proof:

Let

P ∈ C[x, y]

W

satisfyingequation(11).Thenallthe oe ientsofthepolynomial

E

n

(P ) ∈ (C[x, y])[z, t]

are zero.Inparti ular,a ordingtoProposition12,wehave

{H, P } = {E, P } = {F, P } = 0

.Hen e

P ∈ S

W

sl

2

. These ondpointresultsfromCorollary10andfromtherstpoint.



(10)

Wedenethe (intermediate)map

s

n

int

: C[x, y, z, t]

C[x, y, z, t]

P

7→

P (0 y z t

1

, 0),

andwe set

E

n

int

(P ) := s

n

int

(E

n

(P )).

(16) Similarly,wedenethemap

s

n

: C[x, y, z, t]

C[x, y, z, t]

P

7→

P (0 y

1

, 0 z t

1

, 0),

andwe set

E

n

(P ) := s

n

(E

n

(P )).

(17) Thislastequation isequation (11)afterthesubstitution

x

1

= · · · = x

n

= y

2

= · · · = y

n

= t

2

= · · · = t

n

= 0

.

Remark 15

If

P

satisesequation(11),itsatisesobviouslyequation (17).

Inthe asewhere

n

isanoddinteger,theve torsofhighestweight

0

ofevendegreearethesamefor

B

n

and

D

n

, and equations (17) are identi al for bothtypes.Moreover, the linkbetweenequations (11) for

B

n

and

D

n

en-ablesustoprovetheinequality

dim HP

0

(D

n

) ≤ dim HP

0

(B

n

)

.Itisthepurposeofthetwofollowingpropositions. Proposition16

Byabuseofnotation,wedenoteby

S

B

n

(2p)

(resp.

S

D

n

(2p)

)thesetofinvariantelementsofdegree

2p

intype

B

n

(resp.

D

n

).Then we have

S

B

2n+1

(2p) = S

D

2n+1

(2p)

,

S

B

2n+1

sl

2

(p) = S

D

2n+1

sl

2

(p)

,and equations (17) in

S

B

2n+1

sl

2

=

S

D

2n+1

sl

2

asso iatedtobothtypesare thesame.

Thisresult isfalsefortheevenindi es: ounter-example :

dim S

D

4

sl

2

(6) = 1

whereas

S

B

4

sl

2

(6) = {0}

. Proof:

Weset

Φ

2n+1

(P ) =

X

σ∈S

2n+1

σ · P,

Ψ

B

2n+1

(P ) =

X

g∈(±1)

2n+1

g · P,

Ψ

D

2n+1

(P ) =

X

g∈(±1)

2n

g · P,

sothat

R

B

2n+1

(P ) =

1

|B

2n+1

|

Φ

2n+1

◦ Ψ

B

2n+1

,

and

R

D

2n+1

(P ) =

1

|D

2n+1

|

Φ

2n+1

◦ Ψ

D

2n+1

.

Weobviouslyhave

Ψ

B

2n+1

(S(2p)) ⊂ Ψ

D

2n+1

(S(2p))

. Conversely,sin e

Ψ

D

2n+1

(S(2p))

is spanned by the elementsof the form

Ψ

D

2n+1

(m)

with

m

∈ S(2p)

monomial, all we havetodoistoshowthat

Ψ

D

2n+1

(m)

belongsto

Ψ

B

2n+1

(S(2p))

,i.e.

Ψ

D

2n+1

(m)

is invariantunderthesign hanges. Now

m

= x

i

1

1

. . . x

i

2n+1

2n+1

y

j

1

1

. . . y

j

2n+1

2n+1

with

P

2n+1

k=1

(i

k

+ j

k

) = 2p

,therefore atleastoneofthe

i

k

+ j

k

is even.Let'sdenoteby

l

the orrespondingindex.

So,forevery

k 6= l

,wehave

s

k

(m) = (−1)

i

k

+j

k

m

= s

k,l

(m)

and

s

l

(m) = m

.But

Ψ

D

2n+1

(m) =

X

q

1

=0,1...q

2n+1

=0,1

(−1)

q

1

[(i

1

+j

1

)+(i

2

+j

2

)]+q

2

[(i

2

+j

2

)+(i

3

+j

3

)]+···+q

2n

[(i

2n

+j

2n

)+(i

2n+1

+j

2n+1

)]

|

{z

}

a

m

m,

therefore

s

k

Ψ

D

2n+1

(m)



=



a

m

s

k,l

(m) = s

k,l

(a

m

m) = s

k,l

Ψ

D

2n+1

(m)



si

k 6= l

a

m

m

si

k = l



= Ψ

D

2n+1

(m)

.

Sowehave

S

D

n

(2p) = Φ

2n+1

Ψ

D

2n+1

(S(2p))



= Φ

2n+1

Ψ

B

2n+1

(S(2p))



= S

B

n

(2p)

. Hen e

S

B

n

sl

2

(2p) = S

D

n

sl

2

(2p)

.Besides,a ordingtoProposition5,

S

B

n

sl

2

(2p + 1) = S

D

n

sl

2

(2p + 1) = {0}

.

For

P ∈ S

B

n

sl

2

,equation(17)maybewritten

(11)

Let

P

beinvariantbysign hanges.If

P

issolution ofequation (11)for

D

n

,then

P

issolution ofequation(11) for

B

n

.

Inparti ular,wehave

dim HP

0

(D

2n+1

) ≤ dim HP

0

(B

2n+1

)

. Proof:

Let

SB

n

(resp.

SD

n

)bethegroupofsign hangesof

B

n

(resp.

D

n

).Wemaywrite

SB

n

= SD

n

⊔ SD

n

· s

1

. Let

P

beinvariantbysign hanges.Sowehave

P = R

B

n

(P ) = R

D

n

(P )

,andequation(11)for

B

n

(resp.

D

n

)may bewritten

E

B

n

(P ) = R

B

n

(Q)

(resp.

E

D

n

(P ) = R

D

n

(Q)

),with

Q = (z · y − t · x) P (x + z y + t)

. If

P

issolutionofequation(11)for

D

n

,thenwehave:

R

B

n

(Q)

=

X

h∈SB

n

X

σ∈S

n

(σh) · Q =

X

h∈SB

n

h ·

X

σ∈S

n

σ · Q

!

=

X

g∈SD

n

g ·

X

σ∈S

n

σ · Q

!

+

X

g∈SD

n

(gs

1

) ·

X

σ∈S

n

σ · Q

!

=

X

g∈SD

n

g ·

X

σ∈S

n

σ · Q

!

+ s

1

·

"

X

g∈SD

n

g ·

X

σ∈S

n

σ · Q

!#

=

R

D

n

(Q) + s

1

· R

n

D

(Q) = 0.

So,

P

issolutionofequation(11)for

B

n

.

Wededu ethe laimedinequality,knowingthat,a ordingtoProposition16,

S

B

2n+1

sl

2

= S

D

2n+1

sl

2

.



2.5 Constru tion of graphs atta hed to the invariant polynomials Letus re alltheequalityofProposition8:

S

W

sl

2

= R

n

(ChX

i,j

i)

.Moreover,a ording toCorollary 13,the om-putationof

HP

0

(S

W

)

anberedu estosolvingEquation(11)inthespa e

S

W

sl

2

.

Inordertohaveshorterandmorevisualnotations,werepresentthepolynomialsofthisspa ebygraphs,bythe methodexplainedindenition21.

Butbefore, letusquote,for theparti ular asethat weare interestedin, thefundamentalresultestablishedby J.Alev,M.A.Farinati,T.LambreandA.L.Solotarin[AFLS00℄:

Theorem 18 (Alev-Farinati-Lambre-Solotar) For

k = 0 . . . 2n

,thedimensionof

HH

k

(A

n

(C)

W

)

isthenumberof onjuga y lassesof

W

admittingtheeigenvalue

1

withthemultipli ity

k

.

Byspe ializingtothe asesof

B

n

and

D

n

,weobtain: Corollary 19 (Alev-Farinati-Lambre-Solotar)

Fortype

B

n

,thedimensionof

HH

0

(A

n

(C)

W

)

isthenumberof partitions

π(n)

of theinteger

n

.

Fortype

D

n

, thedimensionof

HH

0

(A

n

(C)

W

)

isthenumberofpartitions

eπ(n)

oftheinteger

n

havinganeven number ofparts.

The onje tureofJ.Alevmaybesetforthasfollows : Conje ture 20 (Alev)

Forthetype

B

n

,thedimensionof

HP

0

(S

W

)

equalsthenumberofpartitions

π(n)

oftheinteger

n

.

Forthe type

D

n

, the dimensionof

HP

0

(S

W

)

equals thenumber of partitions

eπ(n)

of theinteger

n

having an evennumberofparts.

Now,letusshowhowto onstru t

π(n)

solutionsofequation(11)forthe aseof

B

n

. Denition 21

For

i 6= j

, wenote

X

i,j

= x

i

y

j

− y

i

x

j

. Toea helementof theform

M :=

Q

n−1

i=1

Q

n

j=i+1

X

2a

i,j

i,j

,we asso iate the(non-oriented)graph

g

Γ

M

su h that

theset ofverti esof

g

Γ

M

istheset ofindi es

{k ∈ [[1, n]] / ∃ i ∈ [[1, n]] / a

i,k

6= 0

or

a

k,i

6= 0}

,

twoverti es

i, j

of

Γ

g

M

are onne ted bytheedge

i

a

i,j

j

if

a

i,j

6= 0

.

If

σ ∈ S

n

,thenthegraph

Γ

]

σ·M

isobtainedbypermutingtheverti esof

g

Γ

M

.

So,byrepla ingea hvertexbythesymbol

,weobtainagraph

Γ

M

su hthatthemap

M 7→ Γ

M

is onstanton ev-eryorbitunderthea tionof

B

n

(resp.

D

n

).Sowemayasso iatethisgraphtotheelement

R

n

(12)

Toalinear ombination

P

p

k=1

α

k

M

k

,weasso iatethegraph

P

p

k=1

α

k

Γ

M

k

.

We may extend this denition to elements of the form

M :=

Q

n−1

i=1

Q

n

j=i+1

X

b

i,j

i,j

by denoting an edge by

bi,j

2

if

b

i,j

isevenandby

bi,j +1

2

if

b

i,j

isodd.Be areful!Wehavefor example

• = 0

.

Example 22 Thepolynomial

R

4

(X

4

1,2

X

1,3

2

X

1,4

2

)

isrepresented bythegraph

.

Ifagraph ontainsonlyevenedges(i.e.oftheform

a

i,j

),thenitisrepresentedin

B

n

andin

D

n

bythe sameelement.

Thisresultisnotvalidinthe aseofgraphswhi h ontainoddedges:forexample,theelement

iszeroin

B

4

,butdierentfromzeroin

D

4

. Remark 23

The graphs orresponding topolynomialsobtainedbyoperatingtheReynoldsoperator fordierentindi esonthe same elementsof thealgebrageneratedbythe

X

i,j

'sarethesame.

For example, the elements

R

3

(X

2

1,2

)

and

R

44

(X

2

1,2

)

are represented in this way by the same graph

. Propositions25and26showthatthis hasnoee tonthestudy ofequation (11)for

B

n

.

Proposition24 Forevery

n ∈ N

,the numberoflineargraphswithoutloopsandwithoutisolatedverti esisequaltothenumber of partitionsof

n

. (Amultipleedgeisviewedasaloop).

Proof:immediate.Toea hpartition

p

of theform

n = 1p

1

+ 2p

2

+ 3p

3

+ · · · + np

n

,weasso iate thegraph having

p

j

linear onne ted omponentswith

j

verti es.

Proposition25

Let

P ∈ C[x

1

, . . . , x

n

, y

1

, . . . , y

n

]

. If

R

n

(P ) 6= 0

then

R

n+1

(P ) 6= 0

.

Let

P

1

, . . . , P

m

∈ C[x

1

, . . . , x

n

, y

1

, . . . , y

n

]

.If

R

n

(P

1

), . . . , R

n

(P

m

)

arelinearlyindependent,then

R

n+1

(P

1

), . . . , R

n+1

(P

m

)

are linearlyindependent.

Proof:

We arryouttheprooffor

B

n

.Wepro eedlikewisefor

D

n

.

Let

P ∈ C[x

1

, . . . , x

n

, y

1

, . . . , y

n

]

su hthat

R

n

(P ) 6= 0

.A ordingtoremark11,wemayassumethattheterms of

P

areinvariant undersign hanges.

We onsider theset

T

n

ofthetermsof

R

n

(P )

that wepartitioninto orbitsunderthea tionof

S

n

:so wehave theequality

T

n

=

`

r

j=1

O

j

.Consequently,

R

n

(P )

maybewritten

R

n

(P ) =

r

X

j=1

α

j

R

n

(M

j

),

where

M

j

∈ O

j

.

Let

c

n+1

:= (1, . . . , n + 1) ∈ S

n+1

,and

s

n+1

the

(n + 1)−

th sign hange, so that

B

n+1

= hs

n+1

, c

n+1

i · B

n

. Againbytheinvarian eundersign hanges, wededu e

R

n+1

(P ) =

1

n + 1

r

X

j=1

α

j

n

X

k=0

c

k

n+1

· R

n

(M

j

)

!

|

{z

}

t

j

.

Nowif

i 6= j

,then

t

i

and

t

j

belongtotwodistin torbitsunderthea tionof

S

n+1

,Thereforethe

t

j

'sarelinearly independent.So

R

n+1

(P ) 6= 0

.

Letbe

P

1

, . . . , P

m

∈ C[x

1

, . . . , x

n

, y

1

, . . . , y

n

]

su hthat

R

n

(P

1

), . . . , R

n

(P

m

)

arelinearlyindependent.Let's onsider a zero linear ombination

P

m

j=1

λ

j

R

n+1

(P

j

) = 0

, i.e.

R

n+1

P

m

j=1

λ

j

P

j



Références

Documents relatifs

3.2. Decomposition in Hochschild homology. In this section we define and study the Hodge decomposition for Hochschild homology of C ∞ -algebras.. Proof : The proof is similar to the

• Section 3 is devoted to the proof of proposition 1 that asserts that every C 0 - convergent sequence of Tonelli Hamiltonians satifies the hypotheses of the simple principle.. •

is only one homotopy class of triangles that connect the old with the new contact element and that the associated moduli space is a one-point space..

For example, many recent works deal with F I -modules (functors from the category of finite sets with injec- tions to abelian groups, see [1]); finitely generated F I -modules

Histograms showing cell count versus CFSE ¯uorescence intensity of efferent lymph cells collected from a prefemoral efferent lymphatic before in vivo labeling (A), and a 2-h

After controlling for multiple testing, the following discordant site associations were signi ficant at α = 0.05: oral and pharyngeal cancer and FH of laryngeal cancer (OR =

The first two authors have recently defined for such an exact contact embedding Floer homology groups RF H∗ M, W for the Rabinowitz action functional [10].. We refer to Section 3 for

the stabilizers have the same reductive part and hence have the same homology (see the discussion following the proof of Corollary 3.2). It follows that the restriction of Fq to