• Aucun résultat trouvé

From finite-gap solutions of KdV in terms of theta functions to solitons and positons

N/A
N/A
Protected

Academic year: 2021

Partager "From finite-gap solutions of KdV in terms of theta functions to solitons and positons"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00466159

https://hal.archives-ouvertes.fr/hal-00466159v2

Preprint submitted on 25 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de

From finite-gap solutions of KdV in terms of theta functions to solitons and positons

Pierre Gaillard

To cite this version:

Pierre Gaillard. From finite-gap solutions of KdV in terms of theta functions to solitons and positons.

2010. �hal-00466159v2�

(2)

From finite-gap solutions of KdV in terms of theta functions to solitons

and positons

+

Pierre Gaillard,

+

Universit´e de Bourgogne, Dijon, France : e-mail: Pierre.Gaillard@u-bourgogne.fr,

March 18, 2010

Abstract

We degenerate the finite gap solutions of the KdV equation from the general formulation in terms of abelian functions when the gaps tends to points, to recover solutions of KdV equations given a few years ago in terms of wronskians called solitons or positons. For this we establish a link between Fredholm determinants and Wronskians.

1 The KdV equation and solutions in terms of theta functions

We consider the Riemann surface Γ of the algebraic curve defined by ω2 =

Q2g+1

j=1 (z−Ej), with Ej 6= Ek, j 6= k. Let D be some divisor D = Pgj=1Pj, Pj ∈Γ. The so-called finite gap solution of the KdV equation

ut= 6uux−uxxx (1)

can be expressed in the form [7]

u(x, t) =−2 d2

dx2 lnθ(xg+tv+l) +C. (2) We recall briefly, the notations. In (2),θ is the Riemann function defined by

θ(z) = X

kZg

exp{πi(Bk|k) + 2πi(k|z)}, (3)

(3)

constructed from the matrix of the B-periods of the surface Γ, and the vectors g, v, l are defined by

gj = 2icj1, (4)

vj = 8i(cj1 2

2g+1

X

k=1

Ek+cj2), (5)

lj =−

g

X

k=1

Z Pk

dUj + j 2 − 1

2

g

X

k=1

Bkj, (6)

C=

2g+1

X

k=1

Ek−2

g

X

k=1

Z

ak

zdUk, (7)

the coefficients cjk being relating with abelian differential dUj by dUj =

Pg

k=1cjkzgk

q Q2g+1

k=1 (z−Ek)

dz, (8)

and coefficients cjk can be obtained by solving the system of linear equations

Z

ak

dUjjk, 1≤j ≤g, 1≤k≤g.

2 Degeneracy of solutions

We suppose thatEj are real,Em < Ej ifm < j and try to evaluate the limits of all objects in formula (2) when E2m, E2m+1 tends to −αm, −αm = κ2m, κm > 0, for 1 ≤m ≤ g, and E1 tends to 0 (these ideas were first presented by A. Its and V.B. Matveev, exposed for example in [1]).

2.0.1 Limit of P(z) = Q2g+1j=1 (z−Ej)

The limit ofP(z) =Q2g+1j=1 (z−Ej) is evidently equal to ˜P(z) =zQgj=1(z+αj)2 2.0.2 Limit of dUm =

Pg

k=1cmkzg−k

qQ2g+1 k=1 (zEk)

dz

The limit ofdUmis equal to ˜dUm = zQϕgm(z)

j=1(z+αj)dz, whereϕm(z) =Pgk=1˜cmkzgk. The normalization condition takes the form in the limit

Z

ak

dUj → 2πiϕj(−αk) κkQ

m6=km−αk) =δkj, (9)

(4)

which proves that the numbers−αm,m 6=k are the zeros of the polynomials ϕk(z), and soϕk(z) can be written as ϕk(z) = ˜ck1Qm6=k(z+αm). By (9), we get in the limit

˜

ck1 = κk

2πi. So

dU˜k= κk 2πi√

z(z+αk)dz 2.0.3 Limit of vk and gk

By identification of the powers of zg2 in (10)

˜ ϕk= ˜ck1

Y

l6=k

(z+αl) =

g

X

j=1

˜

ckjzgj, (10) we get in the limit

˜ ck1

g

X

l=1

−αl+ ˜ck2 = κ3k 2πi. So we have the limit values of vk and gk :

˜ vk = 4

πκ3k and

˜ gk= 1

πκk. 2.0.4 Limit of Uj(P) and Bmk

For λ0 = −αm = κ2m, I = Rλ00dUk12mk. The integral I can be easily evaluate along the real axis on the upper sheet of surface Γ and we get

I → i 2π ln

κmk κm−κk

. So we have the limit values of matrix B :

mk = i π ln

κmk κm−κk

. So iBkk tends to −∞. As previously, we have

Z P

dUj → − i 2πln

κj−√zP κj+√zP

. (11)

(5)

2.0.5 Limit of argument of exponential in θ(p)

Let us denote A the argument of θ(p) =PkZgexp{πi(Bk|k) + 2πi(k|p)}. A can be rewritten in the form

A=πi

g

X

j=1

Bjjkj(kj−1) + 2πiX

j>m

Bmjkmkj +

g

X

j=1

πi(2pj +Bjj)kj. (12) Using the inequality kj(kj −1) ≥ 0 for all k ∈ Zg and the fact that iBkk

tends to −∞, we can reduce the limit ˜θ of θ(p) to a finite sum taken over vectors k ∈Zg such that each kj must be equal to 0 or 1.

So, A can be rewritten in the form A=πi

g

X

j=1

Bjjkj(kj −1) + 2πi X

j>m

Bmjkmkj +

g

X

j=1

kj[2πi(gjx+vjt)

−πi(−j+ 2

g

X

k=1

Z Pk

dUj+ X

m6=j

Bmj)].

In other words A =πi

g

X

j=1

Bjjkj(kj −1) + 2πiX

j>m

Bmjkmkj+

g

X

j=1

kjQj,

with

Qj = 2πi(gjx+vjt) +βj

and

βj =−πi(−j+ 2

g

X

k=1

Z Pk

dUj + X

m6=j

Bmj).

The quantity βj has a finite limit value ˜βj independent from x and t.

2.0.6 Limit of θ(p)

By means of the inequality Kj(Kj −1)≥0 for all K ∈Zg and the previous relation iBkk tends to −∞, it turns out that the limit ˜θ of θ(xg +tv+l) reduce to a finite sum taken over vectorsk ∈Zg with the property that each kj must be equal to 0 or 1.

θ˜= X

kZg, kj=0or1

exp{X

m>j

2 ln

κm−κj κmj

kmkj+i(

g

X

j=1

jx+ 8κ3jt+ 2κjxj+πj

(6)

X

m6=j

iln

κmj

κm−κj

)kj}, with

xj =xjj) = 1 2iκj

g

X

k=1

ln

κj −√zk κj+√zk

. It can be rewritten as

θ˜= X

J⊂{1,...,g}

Y

jJ

Y

j,kJ j<k

κj−κk κjk

2

exp 2iX

jJ

jx+ 4κ3jt+κjxj). Y

jJ k6=j

κjk κj −κk

.(13)

Using the equality

Y

j,kJ j<k

κj −κk

κjk

2

Y

jJ k6=j

κjk

κj −κk

= Y

jJ k /J

κjk

κj −κk

,

it can be reduced to θ˜= X

J⊂{1,...,g}

Y

jJ

Y

jJ k /J

κjk

κj−κk

exp 2iX

jJ

jx+ 4κ3jt+κjxj). (14)

3 1-positon of order 1

A 1-positon of order 1 is given by (see [11]), u=−2∂x2logW(φ, ∂Kφ), where W is the classical wronskian, and φ the function

φ=φ(x, K) = sin(K(x+x1(K) + 4K2t)) In this case

W = 1

2(sin 2Θ−2Kγ), where Θ =K(x+x1(K) + 4K2t) and γ =∂KΘ.

We consider here a Riemann surface of genus 2.

Using the previous section, when we take the limit as Ej tend to Kj2 the function θ tends to ˜θ which takes the form

θ˜= 1− KK22+KK11 exp 2i(K1 + 4K13t+K1x1(K1)) + KK2+K1

2K1 exp 2i(K2+ 4K23t+K2x2(K2))

−exp 2i((K1+K2) + 4(K13+K23)t+K1x1(K1) +K2x2(K2)).

(7)

It can be rewritten as

θ˜= 1 + (K2+K1)exp 2i(K2+4K23t+K2x2(KK2))exp 2i(K1+4K13t+K1x1(K1))

2K1

−exp 2i((K1 +K2) + 4(K13+K23)t+K1x1(K1) +K2x2(K2)). (15) Now, it is clear that when K2 tends toK1 =K, we get

θ˜= 1 + 2Kiexp(2iΘ)2i∂KΘ−exp(4iΘ). (16) It can be reduced to

θ˜=−2iexp(2iΘ)(sin 2Θ−2Kγ) =−4iexp(2iΘ)×W. (17) Since Θ is a linear function of x, we recover exactly the 1-positon

u(x, t) = −2∂x2ln ˜θ =−2∂x2W(φ, , ∂Kφ) = 16K2sin Θ(sin Θ−Kγcos Θ) (sin 2Θ−2Kγ)2 .

4 1-positon of order 2

We define a 1-positon of order 2 by (see [11]),

u=−2∂x2logW(φ, ∂Kφ, ∂K2 φ), where W is the classical wronskian, and φ the function

φ=φ(x, K) = sin(K(x+x1(K) + 4K2t)) In this case

W = 4γ2K2cos Θ−2Kγsin Θ−48K3tsin Θ−sin 2Θ sin Θ, where Θ =K(x+x1(K) + 4K2t) and γ =∂KΘ.

Here we consider a Riemann surface of genus 3.

We can write the function θ using the previous section. When we take the limit as Ej tend to Kj2 the function θ tends to ˜θ which takes the form

θ˜= 1−

K1+K2

K1K2

K1+K3

K1K3

exp 2i(K1+ 4K13t+K1x1(K)) +

K2+K1

K2K1

K2+K3

K2K3

exp 2i(K2+ 4K23t+K2x2(K))

KK33+KK11

K3+K2

K3K2

exp 2i(K3+ 4K33t+K3x3(K))

K1+K3

K1K3

K2+K3

K2K3

exp 2i(K1+ 4K13t+K1x1(K) +K2 + 4K23t+K2x2(K)) +KK1+K2

1K2

K3+K2

K3K2

exp 2i(K1+ 4K13t+K1x1(K) +K3+ 4K33t+K3x3(K))

K2+K1

K2K1

K3+K1

K3K1

exp 2i(K2+ 4K23t+K2x2(K) +K3 + 4K33t+K3x3(K))

+ exp 2i(K1+ 4K13t+K1x1(K) +K2+ 4K23t+K2x21(K) +K3+ 4K33t+K3x3(K))

(8)

Now, it is clear that when K2 and K3 tends to K1 =K, we get

θ˜= 1−exp(2iΘ)−2K2(−4γ2+ 48iKγt) exp(2iΘ)−4iKγexp(2iΘ) + 16K2γ2exp(4iΘ)

−exp(4iΘ) + exp(6iΘ) + 4iKγexp(4iΘ) + 2K2(−4γ2+ 48iγKt) exp(4iΘ).

It can be reduced to

θ˜=−4 exp(3iΘ)(4γ2K2cos Θ−2Kγsin Θ−48K3tsin Θ−sin 2Θ sin Θ).(18) As Θ is linear in x, we recover exactly the 1-positon of order 2

u(x, t) =−2∂x2ln ˜θ=−2∂x2W(φ, ∂Kφ, ∂K2 φ).

5 From Theta to Wronskian

5.1 From Theta to Fredholm

We consider the following matrix A= (ajk)1j,kN defined by ajk =Y

l6=k

Kl+Kj

Kl−Kk

exp(i(Kjx+ 8Kj3t+ 2Kjxj), (19) where xj is an arbitrary parameter. Then det(I+A) has the following form det(I+A) = X

J⊂{1,...,N}

Y

jJ

Y

jJ k /J

Kj +Kk

Kj−Kk

exp(2iX

jJ

(Kjx+ 4Kj3t+Kjxj).(20) By the previous section,

θ˜= X

J⊂{1,...,g}

Y

jJ

Y

jJ k /J

κjk κj−κk

exp 2iX

jJ

jx+ 4κ3jt+κjxj). (21) If we compare the expression (20) to (21), we have clearly the equality

θ˜= det(I+A). (22)

It remains to find the link between this Fredholm determinant and a certain wronskian.

(9)

5.2 From Fredholm to Wronskians

In this section, we consider the following functions

φj(x) = sin(Kjx+ 4Kj3t+Kjxj), (23) where Kj are real numbers such that K1 ≤ . . . ≤ KN, and xj an arbitrary constant independent of x.

We use the following notations : θj =Kjx+ 4Kj3t+Kjxj.

W =W(φj, . . . , φN) is the classical WronskianW = det[(∂xj1φi)i, j[1,...,N]].

We consider the matrix A= (ajk)j, k[1,...,N] defined by ajk =Y

l6=k

Kl+Kj Kl−Kk

exp(i(Kjx+ 8Kj3t+ 2Kjxj). (24) Then we have the following statement

Theorem 5.1

det(I +A) = 2NiN(N+5)2 exp(iPNj=1θj)

QN

j=2

Qj1

i=1(Kj −Ki) W(φ1, . . . , φN) (25) Proof : We start to remove the factor (2i)1ej in each row j in the Wronskian W for 1≤≤N.

Then

W =

N

Y

j=1

ej(2i)N ×W1, (26) with

W1 =

(1−e2iθ1) iK1(1 +e2iθ1) . . . (iK1)N1(1 + (−1)Ne2iθ1) (1−e2iθ2) iK2(1 +e2iθ2) . . . (iK2)N1(1 + (−1)Ne2iθ2)

... ... ... ...

(1−e2iθN) iKN(1 +e2iθN) . . . (iKN)N1(1 + (−1)Ne2iθ2N)

The determinant W1 can be written as

W1 = det(αjkejjk),

(10)

where αjk = (−1)k(iKj)k1, ej =e2iθj, and βjk = (iKj)k1.

Denoting U = (αij)i, j[1,...,N], V = (βij)i, j[1,...,N], the determinant of U is clearly equal to

det(U) = (−1)N(N+1)2 (i)N(N2−1) Y

Nl>m1

(Kl−Km). (27) Then we use the following Lemma

Lemma 5.1 Let A= (aij)i, j[1,...,N], B = (bij)i, j[1,...,N],

(Hij)i, j[1,...,N], the matrix formed by replacing the jth row ofA by the ith row of B

Then

det(aijxi+bij) = det(aij)×det(δijxi+det(Hij)

det(aij)) (28) Proof : For ˜A = (˜aij)i, j[1,...,N] the matrix of cofactors of A, we have the well known formula A×tA˜= detA×I.

So it is clear that det( ˜A) = (det(A))N1.

The general term of the product (cij)i,j[1,..,N]= (aijxi+bij)i,j[1,..,N]×(˜aij)i,j[1,..,N]

can be written as

cij =PNs=1(aisxi+bis)טajs

=xiPN

s=1ais˜ajs+PNs=1bis˜ajs

ijdet(A)xi+ det(Hij).

We get

det(cij) = det(aijxi+bij)×(det(A))N1 = (det(A))N ×det(δijxi+ det(Hdet(A)ij)).

Thus det(aijxi+bij) = det(A)×det(δijxi+det(Hdet(A)ij)).

2

Using the previous lemma (28), we get :

det(αijeiij) = det(αij)×det(δijei+det(Hij) det(αij)),

where (Hij)i, j[1,...,N] is the matrix formed by replacing the jth row of U by the ith row of V defined previously.

We compute det(Hij) and we get

det(Hij) = (−1)N(N+1)2 +1(i)N(N2−1) Y

Nl>m1, l6=j, m6=j

(Kl−Km)Y

l<j

(Kk−Kl)Y

l>j

(Kk−Kl).(29)

(11)

We can simplify the quotient q= det(Hdet(αij)

ij) : q=

Q

l6=k(Kl+Kk)

Q

l6=k(Kl−Kk). (30)

So det(δjkej +det(Hdet(αjk)

jk)) can be expressed as det(δjkej +det(Hjk)

det(αjk)) =

N

Y

j=1

e2iθjdet(δjk+Y

l6=k

Kl+Kk

Kl−Kk

e2iθj), and therefore

det(δjkej+ det(Hjk) det(αjk)) =

N

Y

j=1

e2iθjdet(I+A).

The Wronskian can be written as W(φ1, . . . , φN) =

N

Y

j=1

ej(2i)N(−1)N(N+1)2 (i)N(N2−1)

N

Y

j=2 j1

Y

i=1

(Kj−Ki)

N

Y

j=1

e2iθjdet(I+A) It follows that

det(I+A) = eiP

N j=1θj

(2)N(i)N(N+5)2

QN j=2

Qj1

i=1(Kj −Ki) W(φ1, . . . , φN) (31) 2

6 Positons of arbitrary order

Now it is clear how to get multi-positons. It is the same strategy used for the preceding examples.

If we want to get the following general positon

u=−2∂x2lnW(φ1, . . . , φ(k11), φ2, . . . , φ(k2 2), . . . , φl, , . . . , φ(kl l)), (32) we consider a Riemann surface of genus g =Plj=1kj +l.

As defined in the first section, we suppose thatEj are real, Em ≤Ej ifm < j and we evaluate the limits of all objects in formula (2).

We consider Ki >0, for 1≤m≤g such thatKm ≤Kj if m < j.

(12)

First, we choose the following limits : E1 tends to 0.

for 1≤i≤k1+ 1, E2i, E2i+1 tends toKi2;

for 1≤i≤k2+ 1, E2(k1+1)+2i,E2(k1+1)+2i+1 tends toKk21+1+i; we continue until;

for 1≤i≤kl+1,E2(k1+...kl−1+l1)+2i,E2(k1+...kl−1+l1)+2i+1tends toKk21+...+kl−1+l1+i. Then from the results (20), (22) and (25), we get

θ˜= det(I+A) = X

J⊂{1,...,g}

Y

jJ

(−1)j Y

jJ k /J

Kj +Kk Kj −Kk

expX

jJ

(i(2Kjx+8Kj3t+2Kjxj).

= 2gig(g+5)2 exp(iPgj=1θj)

Qg j=2

Qj1

i=1(Kj−Ki) W(ϕ1, . . . , ϕl), with

θj =Kjx+ 4Kj3+Kjxj, and

ϕj = sin(θj).

We use the following notations : for 1≤i≤k1+ 1, ϕi =ϕ(Ki);

for 1≤i≤k2+ 1, ϕk1+1+i =ϕ(Kk1+1+i);

and so on until;

for 1≤i≤kl+ 1, ϕk1+...+kl−1+l1+i =ϕ(Kk1+...+kl−1+l1+i).

We make here the following choice for Kj, 1≤j ≤g : for 1≤i≤k1+ 1, Ki1+ (i−1)h;

for 1≤i≤k2+ 1, Kk1+1+i2+ (i−1)h);

and so on until;

for 1≤i≤kl+ 1, Kk1+...+kl−1+l1+il+ (i−1)h.

Then we consider the the classical difference derivative operator ∆h defined by the formula :

hf(x) = f(x+h)−f(x)

h .

It is easy to prove that

jhf(x) = 1 hj

j

X

k=0

(−1)kCjkf(x+ (j−k)h), (33)

(13)

and it is obvious that for any function f(x)∈ Cj, (i.e. having j continuous derivatives),

hlim0jhf(x) = f(j)(x). (34) We consider W :=W(ϕ1, . . . , ϕ2, . . . , ϕl).

Combining the columns, W can be written as

W =

l

Y

i=1

hki(ki+1)2

×W(ϕ(κ1),∆ϕ(κ1), . . . ,k1ϕ(κ1), ϕ(κ2),∆ϕ(κ2), . . . ,k2ϕ(κ2), . . . , ϕ(κl),∆ϕ(κl), . . . ,klϕ(κl)).

Then ˜θ can be expressed as

θ˜=c×W(ϕ(κ1),∆ϕ(κ1), . . . ,k1ϕ(κ1), ϕ(κ2),∆ϕ(κ2), . . . ,k2ϕ(κ2), . . . , ϕ(κl),∆ϕ(κl), . . . ,k1ϕ(κl)),

with

c=c1×c2. The coefficient c1 defined by

c1 = 2gig(g+5)2 exp(i

g

X

j=1

θj) is such that θj is linear in x, and so verify 2∂x2lnc1 = 0.

The coefficient c2 is defined by

c2= 1

Ql

j=12!. . . ki!Qk2+1 m=1

Qk1+1

i=1 (Kk1+1+mKi). . .Qkl+1 m=1

Qk1+...+kl

1+l−1

i=1 (Kk1+kl−1+l−1+mKi).

By definition of the terms Kj, the coefficient c2 tends to a finite value inde- pendent of xwhen h tends to 0, and so verify 2∂x2lnc2 = 0.

If we denote φj =ϕ(κj), then whenh tends to 0

W(ϕ(κ1),∆ϕ(κ1), . . . ,∆k1ϕ(κ1), ϕ(κ2),∆ϕ(κ2), . . . ,∆k2ϕ(κ2), . . . , ϕ(κl),∆ϕ(κl), . . . ,∆k1ϕ(κl)) tends to

W(φ1, . . . , φ(k1 1), φ2, . . . , φ(k22). . . , φl, , . . . , φ(kl l)).

So we get when h tends to 0

u(x, t) = −2∂x2ln(˜θ) =−2∂x2ln(W) =−2∂x2lnW(φ1, . . . , φ(k1 1), φ2, . . . , φ(k22). . . . , φl, , . . . , φ(kl l)).

We get clearly in the limit the positon defined by (32).

(14)

7 Conclusion

• This work takes its origin in the seminal paper of A. Its and V.B.

Matveev in 1975 [7], in the study of V.B. Matveev in 1976 of abelian functions and solitons [13] and other papers like [16], [12], [14], [15], [17].

This result is based on two remarks. First, it was essential to express the degenerate θ function into an explicit Fredholm determinant; this remark was initiated by the works of Kirillov and Van Diejen [22]. The second step was to get the transformation of the Fredholm determinant into a Wronskian.

• As a byproduct, we get the result for the case of a soliton; it is more simple.

If we want to get the following soliton

u= 2∂x2lnW(φ1, . . . , φl), (35) we consider a Riemann surface of genus g =l.

We choose Ej real such thatEm < Ej if m < j.

We consider Ki >0, for 1 ≤m ≤g. We choose the following limits : E1 tends to 0.

for 1≤i≤l, E2i, E2i+1 tends to−αi =Ki2;

Then we get clearly in the limit the soliton defined by (35).

• We can also mentioned that we can get the famous DPT potential.

Let n and d be some non negative integers, m = n +d, If we choose the coefficients Kj defined by

Kp =p, if d6= 0, 1≤p≤m−n,

Kj =n−m+ 2j, if n 6= 0, m−n+ 1 ≤j ≤m,

Takingt = 0 andxj = 0, thenu= 2∂x2lnW(φ1, . . . , φm), is exactly the DPT potential

m(m+ 1)

sin2(x) + n(n+ 1) cos2(x) .

Its a consequence of a previous work. We refer the reader to the paper [4] for the details or to an another forthcoming publication containing a different approach.

(15)

References

[1] E.D. Belokolos, A.I. Bobenko, A.R. Its, V.Z. Enolskij and V.B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer series in nonlinear dynamics, Springer Verlag, 1-360, (1994).

[2] R. Beutler, A. Stahlhofen, V.B. Matveev, What do solitons, breathers and positons have in common? Physica Scripta, V. 50, 9-12, (1994).

[3] B.A. Dubrovin, V.B. Matveev, S.P. Novikov, in Lond. Math. Soc. Lect.

Notes Ser., V. 60, 55-136, Cambridge University Press, (1981).

[4] P. Gaillard, V.B. Matveev, Wronskian addition formula and its appli- cations, Max-Planck-Institut f¨ur Mathematik, Bonn, MPI 02-31, 1-17, (2002).

[5] P. Gaillard, A new family of deformations of Darboux-P¨oschl-Teller potentials, Letters in Mathematical Physics, V 68, 77-90, (2004).

[6] R. Hirota, Phys. Rev. Letters, V.27, 1192, (1971).

[7] A.R. Its, V.B. Matveev, Hill’s operator with finitely many gaps, Funct.

Anal. i Prilozhen, V. 9., 69-70, (1975).

[8] M. Kovalyov, M.H Ali Abadi, An explicit formula for a class of solutions of KdV equation, University of Alberta, Canada, (1997).

[9] M. Jaworski, J. Zagrodzinski, Positon and positon-like solution of the Korteweg-de Vries and Sine-Gordon equations, Chaos Solitons Fractals, V. 5, N. 12, 2229-2233, (1995).

[10] V.B. Matveev, Lett. Math. Phy., V. 3, 213-216, 217-222, (1979).

[11] V.B. Matveev, Asymptotics of the multipositon-soliton τ function of the Korteweg-de Vries equation and the supertransparency, J. Math.

Phys., V. 125, N. 6, 2955-2970, (1994).

[12] V.B. Matveev, Theory of positons, Max Planck Institut f¨ur Metall- forschung, (1992).

[13] V.B. Matveev, Abelian functions and solitons, Preprint N. 313, Insti- tute of Th. Physics, Univ. of Wroclow, (1976).

(16)

[14] V.B. Matveev, Multi positons solutions of the KdV equation. Positon- positon and soliton-positon interactions, Preprint, (1998).

[15] V.B. Matveev, Positon-positon and soliton-positon collisions : KdV case, Phys. Let. A, V. 166, 208-212, (1992).

[16] V.B. Matveev, Asymptotics of mulpositon-solution τ function of the Korteweg-de Vries equation and the supertransparency, J. Math. Phys., V. 35, N. 6, (1994).

[17] V.B. Matveev, Positon : slowly decreasing analogues of solitons, Th.

And Math. Phys. V. 131, N. 1, (2002).

[18] C. Rasinariu, U. Sukhatme, A. Khare, Negaton and positon solutions of the KdV and the mKdV hierarchy, J. Phys. A, V. 29, 1803-1823, London, (1996).

[19] A.A. Stahlhofen, V.B. Matveev, Positons for the Toda lattice and related spectral problems, J. Phys. A. : Math. Gen., V 28, 1957-1965, (1995).

[20] J.F. Van Diejen, A.N. Kirillov, Formulas for q-Spherical functions using inverse scattering theory of reflectionless Jacobi operators, Commun.

Math. Phys., V. 210, 335-369, (2000).

[21] Van Diejen, J. F.: Integrabilty of difference Calogero-Moser systems, Jour. of Math. Physics, V. 35 N. 6, 2983-3004, (1999).

[22] J.F. Van Diejen, A. N. Kirillov Determinantal formulas for zonal spher- ical functions on hyperboloids, Math. Ann., V. 319, 215-234, (2001).

[23] A. Zabrodin, Finite-gap difference operators with elliptic coefficients and their spectral curves, in ”Physical Combinatorics”, M. Kashiwara and T. Miwa (eds), Birkhauser Ser. Progress in Mathematics, V. 191, ISBN 0-816-4175-0, Birkhauser-Boston, 301-317, (2000).

[24] H. Zhao, Z. Zhu, Multi-soliton, multi-positon, multi-negaton, and multi- periodic solutions of the coupled Volterra lattice equation, arXiv : 0911.3458v1 [nlin.S1], 18 nov 2009

Références

Documents relatifs

The time scaling coefficients studied in the previous section have given an insight into the convergence of the perturbative expansion as an asymptotic behaviour for small values of

When considering propagation times with an order of mag- nitude larger than 1/ε 3 , these secularities must be removed, and this is achieved, according to the mul- tiple time

Explicit examples of smooth, complex–valued solutions defined for x, t ∈ R of the Korteweg–de Vries equation (1.2) that blow up in finite time have been given in [2, 9, 15, 19]..

The scaling coefficients of the higher order time variables are explicitly computed in terms of the physical parame- ters, showing that the KdV asymptotic is valid only when the

In Section 9 we first compute the asymptotics of the Casimir functionals of the Toda lattice (Proposition 9.1) and then, using Theorem 2.1, obtain the asymptotics of the discriminant

Sanz-Serna and Christi di- vis d a modified Petrov-Galerkin finite elem nt method, and compared their method to the leading methods that had been developed to date:

This paper concerns the inverse problem of retrieving the principal coefficient in a Korteweg-de Vries (KdV) equation from boundary measurements of a single solution.. The

Optimal decay and asymptotic behavior of solutions to a non-local perturbed KdV equation.. Manuel Fernando Cortez,