• Aucun résultat trouvé

Cours Chapitre2ModélisationdesSystèmesLinéairesContinusInvariants–TransforméedeLaplace Partie2 DécouvertedesSystèmesLinéairesContinusetInvariantsAnalyse,Modélisation,Résolution

N/A
N/A
Protected

Academic year: 2022

Partager "Cours Chapitre2ModélisationdesSystèmesLinéairesContinusInvariants–TransforméedeLaplace Partie2 DécouvertedesSystèmesLinéairesContinusetInvariantsAnalyse,Modélisation,Résolution"

Copied!
11
0
0

Texte intégral

(1)

P ar tie 2 Découverte des Systèmes Linéaires Continus et Invariants Analyse, Modélisation, Résolution

Sciences

Industrielles de l’Ingénieur

Cours

Chapitre 2

Modélisation des Systèmes Linéaires Continus Invariants – Transformée de Laplace

Savoirs et compétences :

p Mod-C2.1 Modélisation par équations différentielles.

p Mod-C2.2 Représentation par fonction de transfert (formalisme de Laplace).

1 Modélisation d’un système par équations différen-

tielles 2

1.1 Modélisation d’un filtre du premier ordre . . . 2

1.2 Modélisation d’un système du second ordre . . . 2

1.3 Équation différentielle généralisée . . . 3

2 Propriétés des systèmes asservis 4 2.1 Systèmes linéaires . . . 4

2.2 Systèmes continus . . . 4

2.3 Systèmes invariants . . . 4

2.4 Systèmes non linéaires . . . 5

3 Transformée de Laplace 5 3.1 Définition . . . 5

3.2 Propriétés des transformées de Laplace . . . 6

3.3 Théorèmes usuels . . . 7

4 Fonctions usuelles 7 4.1 Transformée de Laplace de signaux d’entrée . . . 7

4.2 Transformée de Laplace de fonctions usuelles . . . 8

5 Transformée de Laplace inverse 10 5.1 Propriétés mathématiques . . . 10

(2)

Les notions mathématiques abordées dans ce chapitre n’ont pas pour but de se substituer à un cours de ma- thématiques mais de donner des propriétés et des définitions utiles pour l’étude des systèmes continus linéaires invariants.

1 Modélisation d’un système par équations différentielles

1.1 Modélisation d’un filtre du premier ordre

On considère le circuit électrique ci-contre. On cherche à connaître le comportement du système vis à vis de différents types de signaux.

D’après la loi des mailles, on a :

e(t) =uR(t) +uC(t)

Connaissant la relation de comportement aux bornes d’un condensateur (i(t) =Cd uc

d t )et d’une résistance (uR(t) = R·i(t))on a donc :

e(t) =R·i(t) +uC(t)⇐⇒e(t) =R·C·d uC(t)

d t +uC(t) On cherche donc à résoudre l’équation différentielle suivante :

d uC(t) d t + 1

RCuC(t) = 1 RCe(t)

On cherche la réponse du système lorsquee(t)est une fonction échelon définie ainsi :

¨ e(t) =0 si t<0 e(t) =E0sinon

Question Recherche d’une solution particulière de l’équation complètesp(t) =E0est une solution particulière de l’équation complète.

Question Recherche d’une solution générale de l’équation sans second membresg(t)est de la formesg(t) = αe

1

RCtα∈R.

Question Résolution de l’équation différentielleOn a donc

uC(t) =sp(t) +sg(t) =E0+αe 1 RCt

At=0, le condensateur est déchargé. On a donc ent=0 :

uC(0) =0⇐⇒E0+α=0⇐⇒α=−E0

On a donc :

uC(t) =E0E0e 1 RCt

1.2 Modélisation d’un système du second ordre

On considère le circuit électrique ci-contre. On cherche à connaître le comportement du système lors du déchargement du condensateur dans la bobine.

D’après la loi des mailles, la loi de comportement de la tension aux bornes d’un condensateur, la loi d’Ohm et la loi de Faraday, on a :

uC(t)−uL(t)−uR(t) =0⇐⇒uC(t)−Ld i(t)

d tRi(t) =0⇐⇒uC(t) +LCd2uC(t)

d t2 +RCd uC(t) d t =0

(3)

Afin de savoir le comportement du système, il faut donc étudier l’équation différentielle suivante : d2uC(t)

d t2 +R L

d uC(t) d t + 1

LCuC(t) =0

Question Résolution de l’équation homogène et de l’équation différentielleL’équation homogène associée à cette équation est de la forme :

λ2+R + 1

LC =0 Le discriminant vaut :

∆ =R2 L2−4 1

LC

Suivant le signe de∆, on peut alors déterminer la solution de l’équation différentielle...

Objectif Avec la complexité croissante des systèmes, il devient de plus en plus difficile de trouver directement des solutions aux équations différentielles qui traduisent le comportement des systèmes. En SII, la résolution directe des équations différentielles ne sera jamais demandée.

1.3 Équation différentielle généralisée

Lorsque le système se complexifie, on peut alors obtenir une équation différentielle qui régit la sortie du système s(t)en fonction de l’entréee(t). La forme générale d’une équation différentielle d’ordrenest donnée par :

a0·s(t) +

n

X

i=1

ai·dis(t)

d t =b0·e(t) +

m

X

i=1

bi·dis(t) d t

R Les systèmes étudiés impliqueront quenm. Deux problèmes peuvent alors se poser :

• il n’existe pas toujours de solution simple et analytique pour les équations différentielles, notamment lorsque l’ordre est supérieur à 2 ;

• il est difficile de résoudre ces équations en particulier lorsqu’on va chercher à modifier le type d’entrée.

L’outil mathématique qui va nous permettre d’analyser le comportement de systèmes complexes asservis est la transformation de Laplace. Cette transformation va nous permettre de passer d’une équation différentielle à une équation polynomiale, plus aisée à manipuler :

S(p

n

X

i=0

cipi=E(p

m

X

i=0

dipi

Dans le domaine temporel, la variable est le temps, notét. Dans le domaine de Laplace, la variable est notéep(ous dans les pays anglo-saxons).

P ar t. 2 Ch. 2

(4)

Méthode de résolution d’une équation du second ordre dans le domaine temporel

Méthode de résolution d’une équation dans le domaine de Laplace

2 Propriétés des systèmes asservis

2.1 Systèmes linéaires

Définition Système linéaire

Soit un système d’entréee(t)et de sorties(t)caractérisé par sa fonctionFtelle queF(e(t)) =s(t). Le système est dit linéaire s’il satisfait les conditions suivantes :

• il est proportionnel :∀k∈R,F(k·e(t)) =k·s(t);

• il obéit au principe de superposition :F(e1(t) +e2(t)) =s1(t) +s2(t).

2.2 Systèmes continus

Un système estcontinu, par opposition à un systèmediscret(ou échantillonné, ou numérique), si les grandeurs physiques le caractérisant sont des fonctions continues du temps. On parle aussi de systèmesanalogiques.

La plupart des systèmes physiques, du point de vue macroscopique, sont continus. En revanche, un système informatique a besoin d’un temps non nul pour réaliser un traitement de l’information. On ne peut donc pas le qualifier de système continu. Il ne peut que traiter des valeurs prises sur des échantillons de signaux constants qui lui sont soumis. On parle alors de système échantillonné.

2.3 Systèmes invariants

Définition Système invariant

Un système est invariant lorsque les relations entre l’entrée et la sortie ne se modifient pas au cours du temps.

(5)

Le système ne vieillit pas.

Ainsi,∀T∈R:

F(e(t+T)) =s(t+T)

2.4 Systèmes non linéaires

On peut vérifier la linéarité des systèmes en traçant sur un graphe l’entrée en abscisse et la sortie en ordonnée. Le système est linéaire si la courbe tracée est une droite passant par l’origine du repère.

Certains comportements physiques des systèmes ne sont pas linéaires :

• les phénomènes d’hystérésis ;

• les phénomènes de saturation ;

• les phénomènes de seuil ;

• ...

Les outils que nous développerons par la suite ne sont pas capable de modéliser ces phénomènes. Dans le cas où il faudrait impérativement modéliser ces comportements, il faudrait les linéariser autour des points de comportements.

3 Transformée de Laplace

3.1 Définition

Définition Transformée de Laplace

À toute fonction du tempsf(t), nulle pourt≤0 (fonction causale), on fait correspondre une fonctionF(p)de la variable complexeptelle que :

L f(t)

=F(p) = Z

0+

f(t)ep td t

On noteL f(t)

la transformée directe etL1 F(p)

la transformée inverse.

La transformée de Laplace permet de passer du domaine temporel au domaine dit de Laplace.

La variablep(ous) est un nombre complexe. On pose parfoisp=σ+. R Notation

De manière générale, une fonction temporelle est nommée avec une lettre minuscule et sa transformée de Laplace avec une lettre majuscule. Dans le cas où la fonction temporelle est déjà une lettre majuscule, on conserve la même lettre. On a donc, par exemple :

• L f(t)

=F(p)

• L[e(t)] =E(p)

• L[s(t)] =S(p)

• L[C(t)] =C(p)

• L[ω(t)] = Ω(p)

• L[θ(t)] = Θ(p)...

Unicité

• La transformée de Laplace def(t)est unique.

• La transformée de Laplace inverse deF(p)est unique.

„Exemple Calcul deL f(t)

avecf(t) =kt>0etk∈R.

L f(t)

=L[k] = Z+∞

0+

k·ep td t=k· Z+∞

0+

ep td t=k

−1 pep t

+∞

0+

=k p

AinsiL[k] =k p.

P ar t. 2 Ch. 2

(6)

Dans la pratique la transformée de Laplace des fonctions usuelles ne se recalculera pas. Il faudra les connaître par cœur.

„

3.2 Propriétés des transformées de Laplace Linéarité

SoitL f(t)

=F(p)etL g(t)

=G(p). On démontre que :

L

f(t) +g(t)

=L f(t)

+L g(t)

=F(p) +G(p) et que :

L

K·f(t)

=K· L f(t)

=K·F(p)

! Attention :

L

f(t)·g(t)6=L f(t)

· L g(t) Cette remarque sera importante lors du calcul des transformées inverses.

Conditions de Heaviside

Une fonction temporellef(t)vérifie les conditions de Heaviside lorsque les dérivées successives nécessaires à la résolution de l’équation différention sont nulles pourt=0+:

f(0+) =0 d f(0+)

d t =0 d2f(0+) d t2 =0...

On parle de conditions initiales nulles.

Transformée de Laplace de la dérivation

La transformée de Laplace d’une dérivée première est donnée par : L

d f(t) d t

=p F(p)−f(0+) La transformée de Laplace d’une dérivée seconde est donnée par :

L

d2f(t) d t2

=p2F(p)−p f(0+)−d f(0+) d t Dans les conditions de Heaviside,

L d f(t)

d t

=p F(p) et L

d2f(t) d t2

=p2F(p) et L

dnf(t) d tn

=pnF(p)

„Exemple Le schéma RLC présenté précédemment est régit par l’équation différentielle suivante : d2uC(t)

d t2 +R L

d uC(t) d t + 1

LCuC(t) =0 On donne les conditions initiales suivantes :uC(0) =αetd uC(0)

d t =β. Dans le domaine de Laplace, cette équation est donc :

p2Uc(p)−αpβ+R

L pUc(p)−α + 1

LCUc(p) =0 Dans la pratique, on aura souventα=0 etβ=0 (conditions de Heaviside) et donc :

p2Uc(p)R

LpUc(p) + 1

LCUc(p) =0

„

Intégration dans les conditions de Heaviside :

L

t

Z

0+

f(t)d t

= 1 pF(p)

(7)

3.3 Théorèmes usuels

Théorème Théorème de la valeur initiale lim

t0+f(t) =lim

p→∞p F(p)

Théorème Théorème de la valeur finale

tlim→∞f(t) =lim

p0p F(p)

Théorème Théorème du retard L

f (tt0)

=et0pF(p)

Tout retard temporelt0sur une fonction se traduit par un facteur multiplicatifet0psur sa transformée de Laplace.

Théorème Théorème de l’amortissement L

ea tf(t)

=F(p+a)

4 Fonctions usuelles

4.1 Transformée de Laplace de signaux d’entrée Réponse impulsionnelle

Lorsqu’un système est soumis à, son entrée à une impulsion, on parle de réponse impulsionnelle. Il s’agit de générer un signal d’amplitude infinie pendant un temps infinitésimal.

Définition On note l’impulsion de Diracδ(t).

t6=0 δ(t) =0.

La transformée de Laplace d’un Dirac est : F(p) =L[δ(t)] =1

Cette fonction n’a pas de sens physique. Elle permet de modéliser un choc mécanique, un flash ...

Réponse indicielle

Définition La réponse indicielle d’un système est la réponse d’un système à une fonction échelon :

t∈R+ f(t) =k aveck∈R

La transformée de Laplace d’un échelon d’amplitudekest donnée par :

F(p) =L f(t)

=k p

P ar t. 2 Ch. 2

(8)

Réponse à une rampe et une fonction puissance

Définition Une rampe est une fonction linéaire définie par :

t∈R+ f(t) =t

La transformée de Laplace def se définit par : F(p) =L

f(t)

= 1 p2

Définition Par extensions, on peut définir les fonctions puissances telles que :

t∈R+ f(t) =tn La transformée de Laplace est alors :

t∈R+ F(p) =L f(t)

= n! pn+1 Calcul deL

f(t)

avecf(t) =tt>0.

L f(t)

=L[t] =F(p) = Z+∞

0

t·ep td t

D’après la formule d’intégration par partie :

b

R

a

u d v= [u v]ba

b

R

a

v d u.

On pose :

u =t et doncd u

d t =1 et doncd u=d t;

d v=ep td t et doncv=−1 pep t. On a donc :

F(p) = Z+∞

0

t·ep td t=

t1 pep t

+∞

0

− Z+∞

0

−1 pep td t

= 0−

1 p2ep t

+∞

0

= 1 p2

Au finalL f(t)

= 1 p2.

4.2 Transformée de Laplace de fonctions usuelles

Le calcul de la transformation de Laplace à partir des définitions des fonctions usuelles n’est pas à savoir. En revanche, les transformées les plus courantes doivent être connues. Dans d’autres cas, le tableau des transformées vous sera donnée. Dans les conditions de Heavisde, on a donc les transformées de Laplace suivantes :

(9)

Domaine temporelf(t) Domaine de LaplaceF(p) Domaine temporelf(t) Domaine de LaplaceF(p)

Diracδ(t) F(p) =1 Échelonu(t) =k U(p) =k

p

Puissancesf(t) =tn·u(t) F(p) = n!

pn+1 Créneau∀t∈]0,t1[ f(t) =A F(p) =A·1−ep t1 p

f(t) =sin(ω0tu(t) F(p) = ω0

p2+ω20

f(t) =cos(ω0tu(t) F(p) = p p2+ω20

f(t) =ea t·u(t) F(p) = 1

p+a f(t) =ea tsin(ω0tu(t) F(p) = ω0

p+a2

+ω20

f(t)estT périodique F(p) =L f0(t)

1−eT p ·u(t) f(t) =tnea tu(t) F(p) = n! p+an+1

Calcul deL f(t)

avecf(t) =ea tt>0.

L f(t)

=L ea t

=F(p) = Z+∞

0

ea t·ep td t= Z+∞

0

e(p+a)td t=

− 1

p+ae(p+a)t+∞

0

= 1

p+a Au finalL

f(t)

= 1

p+a. Calcul deL

f(t)

avecf(t) =sin(ωt) ∀t>0.

Calculons :

F(p) = Z+∞

0

sin(ωtep td t

On rappelle queR

u v0= [u v]−R u0v. On pose :

u(t) =sin(ωt)etu0(t) =ωcos(ωt)

v0(t) =ep t etv(t) =−1 pep t avecu etv C1surR+.

En conséquence,

F(p) = Z+∞

0

sin(ωtep td t=

−1

pep t·sin(ωt) +∞

0

− Z+∞

0

−1

pep tωcos(ωt)d t

=

−1

pep t·sin(ωt) +∞

0

+ω

p

Z+∞

0

ep tcos(ωt)d t

En réalisant une seconde intégration par partie, on posew(t) =cos(ωt)etw0(t) =−ωsin(ωt). On a doncR w v0= [w v]−R

w0v:

Z+∞

0

ep tcos(ωt)d t=

−1

pep t·cos(ωt) +∞

0

ω p

Z+∞

0

ep t·sin(ωt)d t

| {z }

P ar t. 2 Ch. 2

(10)

F(p) =

−1

pep t·sin(ωt) +∞

0

+ω p

−1

pep t·cos(ωt) +∞

0

ω p

ω pF(p)

⇐⇒ F(p)

1+ω2 p2

=

−1

pep t·sin(ωt) +∞

0

| {z }

0

+ω p

−1

pep t·cos(ωt) +∞

0

| {z } 1

p

⇐⇒ F(p) = ω p2· p2

p2+ω2= ω p2+ω2 Au finalL[sin(ωt)] = ω

p2+ω2.

5 Transformée de Laplace inverse

Après avoir trouvé la fonction de transfert du système auquel on ajoute la fonction de transfert du signal, on se retrouve avec une nouvelle fonction polynomiale qui est le produit des deux polynômes précédents.

Pour connaître la fonction globale du système dans le domaine temporel, on doit effectuer la transformée inverse de Laplace de ce nouveau polynôme.

La transformation inverse consiste à décomposer la fraction rationnelle (enp) en éléments simples (somme de plusieurs fractions simples enp) et à identifier chaque élément simple à une fonction élémentaire ent.

5.1 Propriétés mathématiques

Soitf une fonction rationnelle définie parf(x) =p(x)

q(x) oùpetqsont deux fonctions polynômes.

Soit

f(x) =p(x)

q(x)= p(x)

(xa1)(xa2)...(xan) avec deg(p)<deg(q)(ai6=aj,∀(i,j)∈ {1, 2, 3, ..n}2tel quei6=j).

Alorsf(x)peut se mettre sous la forme : f(x) =p(x)

q(x)= α1

(xa1)+ α2

(xa2)+· · ·+ αn

(xan) Propriété 2

Soit

f(x) =p(x)

q(x)= p(x)

(xa1)p1(xa2)p2· · ·(xan)p n avec deg(p)<deg(q)(ai6=aj,∀(i,j)∈ {1, 2, 3, ..n}2tel quei6=j).

Alorsf(x)peut se mettre sous la forme : f(x) =p(x)

q(x) = α11

(xa1)+ α12

(xa1)2+· · ·+ α1p1

(xa1)p1+ α21

(xa2)+ α22

(xa2)2+· · · + α2p2

(xa2)p2+ αn1

(xan)+ αn2

(xan)2+· · ·+ αn p n

(xan)p n soit :

f(x) =

n

X

i=1 p i

X

j=1

αi j

(xai)j

Propriété 3 Soit

f(x) =p(x)

q(x)= p(x)

n

Q

i=1

(xai)p1Qm

k=1

x2+bkx+c kq m

avec deg(p)<deg(q)(ai6=aj,∀(i,j)∈ {1, 2, 3, ..n}2tel quei6=j) etb2ka ck<0∀k∈ {1, 2, ..m}

(11)

Alorsf(x)peut se mettre sous la forme :

f(x) =p(x) q(x) =

n

X

i=1 p i

X

j=1

αi j

(xai)j +

m

X

k=1 q k

X

j=1

βk jx x2+bkx+ckj

P ar t. 2 Ch. 2

Références

Documents relatifs

à démontrer que les conditions nécessaires pour l’existence d’une intégrale Rx, t, régulière pour t =- a1, conditions que nous avons appris à former, sont

solutions de l’équation (G) en justifiant le résultat à l’aide de théorèmes clés.. Eléments pour un corrigé. Ecrire ce système. 5) Ecrire alors les solutions de

Écrire un script SCILAB pour calculer numériquement la solution avec le schéma d’Euler et comparer avec la solution exacte (prendre par exemple n = 1000)3. Représenter les

Graphiquement, ce cas correspond à deux équations d’une même droite, que l’on peut définir comme deux droites confondues. Tout point de la droite est alors

On considère un pendule pesant constitué d’une barre rigide homogène de longueur L et de masse m, lié en O à l’axe ∆ horizontal par une liaison pivot idéale. On donne le

Un système peut présenter une sortie divergente soit en raison du comportement dynamique intrinsèque du système commandé soit en raison du bouclage. Ce comportement est intolérable

Lorsque le système se complexifie, on peut alors obtenir une équation différentielle qui régit la sortie du système s ( t ) en fonction de l’entrée e ( t )... Dans le

a) Toutes les notions nécessaires à la résolution de problèmes sont des primitives d’un méta-langage L’. L’automatisation de cette résolution nécessite que ce langage L’