• Aucun résultat trouvé

2 ) 2 where is the (onstant) osillation period of the eletrons

N/A
N/A
Protected

Academic year: 2022

Partager "2 ) 2 where is the (onstant) osillation period of the eletrons"

Copied!
19
0
0

Texte intégral

(1)

SYSTEM TO THE INCOMPRESSIBLE EULER

EQUATIONS

Yann Brenier

Resume

Onetudie la onvergene du systeme de Vlasov-Poisson vers les equations

d'Euler des uides inompressibles dans deux regimes asymptotiques : la

limitequasi-neutreetla limitegyroinetique.

Abstrat

The onvergene of the Vlasov-Poisson system to theinompressible Euler

equationsisinvestigatedintwoasymptotiregimes: thequasi-neutrallimit

andthe gyrokinetilimit.

A paraitre dans Comm. PDEs

InstitutUniversitairedeFrane,etLaboratoired'analysenumerique,UniversiteParis

6,Frane,brenierann.jussieu.fr

(2)

We onsider the displaement of an eletroni loud generated by the

loal dierene of harge with a uniform neutralizing bakground of non-

moving ions. The equations are given by the Vlasov-Poisson system, with

a oupling onstant = (

2 )

2

where is the (onstant) osillation period

of the eletrons. In the so-alled quasi-neutral regime, namely as ! 0,

theurrent is expeted to onverge to a solutionof theinompressible Eu-

ler equations, at least in the ase of a vanishinginitial temperature. This

result isproved byadaptingan argument usedbyP.-L. Lions[Li℄ to prove

theonvergene of the Leray solutions of the3d Navier-Stokes equation to

theso-alleddissipativesolutionsoftheEulerequations. Forthispurpose,

thetotal energyofthesystem ismodulatedbyatest-funtion. Analterna-

tive proof is given, based on the onept of measure-valued (mv) solutions

introdued by DiPerna and Majda [DM ℄ and already used by Brenier and

Grenier [BG ℄, [Gr2 ℄ for the asymptoti analysis of the Vlasov-Poisson sys-

teminthequasi-neutralregime. Throughthisanalysis,alinkisestablished

between Lions' dissipative solutions and Diperna-Majda's mv solutions of

the Euler equations. A seond interesting asymptoti regime, still leading

totheEulerequations,knownasthegyrokinetilimitoftheVlasov-Poisson

system, is obtained when the eletrons arefored by a strong onstant ex-

ternalmagnetieldand hasbeeninvestigatedbyGrenier[Gr3 ℄,Golseand

Saint-Raymond [GSR℄. As for the quasi-neutral limit, we justify the gy-

rokinetilimitbyusingtheoneptsof dissipativesolutionsand modulated

total energy.

1 Formal analysis

1.1 The Vlasov-Poisson system

Aftersuitablenormalizations,theVlasov-Poissonsystemreads(see[BR℄for

example):

t

f+:r

x

f r

x :r

f =0; (1)

Z

R d

f(d)=1 (2)

where (x;) 2 R 2d

is the position/veloity variable, with d = 1;2 or 3,

f(t;x;) 0 the eletroni density, (t;x) 2 R the eletri potential and

>0theouplingonstantbetweentheVlasovequation(1)andthePoisson

equation (2). Toompletethissystem, initialonditions

f(0;x;)=f

0

(x;)0 (3)

(3)

and Z d

periodiityin x are presribed. Up to a hange of sign, we all

harge and urrent thetwo rst moments

(t;x)= Z

f(t;x;d); J(t;x)= Z

f(d): (4)

Eletronsarealled old eletronswhen thetemperature, proportionalto

Z

j J

j

2

f(t;x;d); (5)

vanishes.

The onservation of total energyreads

Z

1

2 jj

2

f(t;dx;d)+ Z

2

jr(t;x)j 2

dx (6)

(where integrals in x are performed on the unit ube [0;1℄

d

), and the

onservation laws forhargeand urrent are:

t Z

f(d)+r

x :

Z

f(d)=0 (7)

(or, equivalentlybeause of(2),

r

x :

Z

f(d)=

t

); (8)

t Z

f(d)+r

x :

Z

f(d)+r (9)

=r:(rr)

2

r(jrj 2

):

ByomputingthedivergeneofthelastequationsandusingthePoisson

equation,

(

tt

+1) r

2

x :

Z

f(d)= (10)

= r

2

:(rr)+

2

(jrj 2

)

isobtainedfor theeletripotential.

The mathematial analysis of the Vlasov-Poisson system is now well

known, in partiular after the reent ontributions of Batt and Rein [BR ℄,

Lions and Perthame [LP℄, Pfaelmoser [Pf℄, et... Global existene and

uniqueness of smooth solutions have been proved for smooth initial data

f

0

(x;), suÆientlydeayingat innityin . Then, all the formal ompu-

tationswehave performedare fullyjustied.

(4)

1.2 The quasi-neutral regime

Theasymptotianalysis!0isdiÆultand onlypartialresultshave been

obtained,inpartiularbyGrenierin[Gr1℄, [Gr2℄,[Gr3℄(see also[Br℄). The

osillatory behaviour of thelinear part of equation (10) is one of themain

diÆulties.

Letusstartbyapurely formalanalysisof thelimit!0. ThePoisson

equation (2)beomes

Z

f(d)=1 (11)

and we getfrom equations(8), (9)

r

x :

Z

f(d)=0 (12)

t Z

f(d)+r

x :

Z

f(d)+r=0: (13)

For thepotential,wend

=r

2

x :

Z

f(d): (14)

For perfetyold eletrons, the probablity measure (in ) f(t;x;) is a

delta funtion,whihexatlymeans

f(t;x;)=Æ( J(t;x)); (15)

sine J is the urrent and the harge is identially equal to 1. In this

partiularase, we obtain

r:J =0 (16)

t

J+r:(JJ)+r=0; (17)

whih is nothing but the lassial Euler equations for an inompressible

uid(withveloityJ andpressure),forwhihwereferto[AK℄,[Ch℄,[Li℄,

[MP ℄...

Theaseofoldeletronsispreiselytheoneforwhihwegetarigorous

asymptotiresultinthe present paper.

(5)

2 The onvergene result

Theorem 2.1 Let T >0 and J

0

(x) bea given divergene-free, Z d

periodi

in x, square integrable vetor eld. Assume the initial data f

0

(x;) 0 to

be smooth, Z d

periodi in x, niely deaying as ! 1, with total mass 1.

In addition, we assume

Z

f

0

(x;)d=1+o(

1=2

); !0; (18)

in the strong senseof the spae H 1

(R d

=Z d

) and

Z

j v

0 (x)j

2

f

0

(x;)dxd! Z

jJ

0 v

0 (x)j

2

dx; (19)

for all squareintegrable,divergene-free,Z d

periodi, vetor eld v

0 .

Then,uptotheextrationofa sequene

n

!0, thedivergene-freeom-

ponent of the urrent J

onverges in C 0

([0;T℄;D 0

(R d

=Z d

)) to a dissipative

solution J 2C 0

([0;T℄;L 2

(R d

=Z d

) w) of the Euler equations, in the sense

of Lions [Li℄, with initial ondition J

0

. In partiular, if J

0

is smooth and

d =2 (or d =3 and T small), the entirefamily (without extration of any

subsequene)onvergestothe uniquesmooth solutionof the Eulerequations

withJ

0

as initial ondition.

Remark 1

Following Lions [Li℄, we say that J is a dissipative solution with initial

onditionJ

0

if,forallsmoothvetordivergene-freevetoreldsvon[0;T℄

R d

=Z d

,almost every t2[0;T℄,

Z

jJ(t;x) v(t;x)j 2

dx Z

jJ

0

(x) v(0;x)j 2

dxexp(

Z

t

0

2jjd(v())jj)d (20)

+2 Z

t

0 exp(

Z

t

s

2jjd(v())jjd)(

Z

A(v)(s;x):(v J)(s;x))dsdx;

whered(v) is thesymmetri partof Dv=((Dv)

ij )=(

j v

i )

d

ij (v)=

1

2 (

xi v

j +

xj v

i

); (21)

(6)

jjd(v(t))jjisthesupremuminxofthespetralradiusofd(v)(t;x), andA(v)

istheaeleration operator

A(v)=

t

v+(v:r)v: (22)

Notie a slight hange of denitionwith respet to [Li℄, sine here we use

thespetralradius oftheentirematrix d(v),not onlyits negative part.

Remark 2

Thequasi-neutralityassumption (18)exatly means,beause of(2),

Z

jr

(0;x)j 2

dx!0: (23)

Assumption(19) means that the eletrons are old and the initial urrent

onverges to J

0

. Indeed, we have(take v

0

=J

0 and v

0

=0)

Z

j J

0 (x)j

2

f

0

(x;)dxd !0; (24)

Z

jj 2

f

0

(x;)dxd! Z

jJ

0 (x)j

2

dx (25)

3 Proofs

The proof is a simple adaptation of the way that Lions follows in [Li℄ to

show the onvergene of Leray solutions of the Navier-Stokes equations to

the so-alled dissipative solutions of the Euler equations. To do that, the

total energyof thesystemis modulatedbyatest-funtion.

3.1 Control of the modulated total energy

LetusomputethetimederivativeofthetotalenergyoftheVlasov-Poisson

system,modulatedbyatestfuntion(t;x)!v(t;x);Z d

periodi,divergene-

freeinx,

H

v (t)=

Z

1

2

j v(t;x)j 2

f

(t;x;)dxd+ Z

2 jr

(t;x)j 2

dx: (26)

Letustemporarily dropthe index. Beause of thetotal energy onserva-

tion,we have,fortheharge and theurrent J,

d

dt H

v (t)=

d

dt Z

1

2

jv(t;x)j 2

(t;x)dx Z

t

(J(t;x):v(t;x))dx: (27)

(7)

Elementaryalulationsleadto

d

dt H

v (t)=

Z

d(v)(t;x):( v(t;x))( v(t;x))f(t;x;)dxd (28)

+ Z

d(v)(t;x):r(t;x)r(t;x)dx

+ Z

A(v)(t;x):((t;x)v(t;x) J(t;x))dx

whered(v)is thesymmetrizedgradient ofvdenedby(21)andA(v) isthe

aeleration operator(22). Thus, we get, afterrisingindex,

d

dt H

v

(t)2jjd(v(t))jjH

v (t)+

Z

A(v)(

v J

)dx; (29)

where H

v

is dened by (26) and jjd(v(t))jj is the supremum in x of the

spetralradiusof d(v)(t;x). We dedue,after integrating (29) int,

H

v

(t)H

v

(0)exp ( Z

t

0

2jjd(v())jj)d (30)

+ Z

t

0 exp(

Z

t

s

2jjd(v())jjd)(

Z

A(v)(s;x):(

v J

)(s;x))dsdx:

Inpartiular,inthe asev=0, we reover thetotal energybound

H

0 (t)=

Z

1

2 jj

2

f

(t;x;)dxd+ Z

2 jr

(t;x)j 2

dxH

0

(0): (31)

Remark

Here we use the spetral radius of the entirematrix d(v) and notonly its

negative part (as in Lions' denition for dissipative solutions of the Euler

equations). Indeed, in theright-hand side of (28), the rst and theseond

termsinvolved(v) withoppositesigns!

3.2 A priori bounds

The assumptions on the initial onditions and equations (18), (7), imply

that

Z

f

(t;x;)dxd= Z

0

(x)dx=1; (32)

(8)

Z

jj 2

f

0

(x;)dxd+ Z

jr

(0;x)j 2

dx! Z

jJ

0 (x)j

2

dx: (33)

From (31), wededue that

Z

jj 2

f

(t;x;)dxd+ Z

jr

(t;x)j 2

dxC : (34)

ThusJ

is boundedinL 1

([0;T℄;L 1

(R d

=Z d

))sine

( Z

jJ

(t;x)jdx) 2

Z

jj 2

f

(t;x;)ddx Z

f

(t;x;)ddxC :

Up to the extration of a sequene (

n

), we an assume that J

has a

vague limit J, in the sens of (Radon) measures on [0;T℄R d

=Z d

. Simi-

larly, from (32), (7) and (34), we get that

(t;x) 0 onverges to 1 in

C 0

([0;T℄;D 0

(R d

=Z d

))and therefore in thevague senseof measures. Let us

now onsidertheonvexfuntionalof (Radon) measures

K(;m)=sup

b Z

1

2

jb(t;x)j 2

(dtdx)+b(t;x):m(dtdx);

where b spans the spae of all ontinuous funtions from [0;T℄R d

=Z d

to

R d

and,mrespetivelydenotenonnegativeandvetor-valuedmeasureson

[0;T℄R d

=Z d

. When(t;x)=1(the Lebesguemeasure), wesimplyobtain

2K(;m)= Z

jm(t;x)j 2

dtdx;

ifmis asquare integrable funtionand +1otherwise. FuntionalK isls

withrespetto thevagueonvergeneof measures. Sine, foreahnonneg-

ative funtionz2C 0

([0;T℄),

2K(z

;zJ

)= Z

jJ

(t;x)j 2

(t;x)

z(t)dtdx

Z

jj 2

f

(t;x;)z(t)dtdxd C Z

T

0

z(t)dt;

we deduethat

2K(z;zJ)C Z

T

0

z(t)dt;

whih exatly means that J belongs to L 1

([0;T℄;L 2

(R d

=Z d

)). From (8),

we get thatJ is divergene-freein x and, from (9), that

t

J is boundedin

(9)

L 1

([0;T℄;D 0

(R d

=Z d

)), sine J is divergene-free(whih allows usto ignore

r

in (9), although this term ould be of size O(

1=2

)). It follows that

thevaguelimit J(t;x)of J

(t;x) isa divergene-free vetor eld belonging

to C 0

([0;T℄;L 2

(R d

=Z d

) w). Forthesame reasons, thedivergene-free (or

solenoidal) part of J

onverges toward J, not only in the vague sense of

measures, butalso inC 0

([0;T℄;D 0

(R d

=Z d

)).

3.3 Convergene

We an rewrite(29) inweak form

Z

H

v (t)z

0

(t)dt z(0)H

v (0)

Z

2jjd(v(t))jjH

v

(t)z(t)dt (35)

+ Z

A(v)(

v J

)(t;x)z(t)dtdx;

forall test funtionz0 inD 0

([0;T[), where H

v

(t)isdened by (26). Let

usintrodue

h

v (t)=

Z

jJ

(t;x) v(t;x)

(t;x)j 2

2

(t;x)

dx (36)

=sup

b Z

[ 1

2 jb(x)j

2

(t;x)+b(x):(J

v

)(t;x)℄dx;

wherebspansthespaeofallontinuousfuntionsfromR d

=Z d

toR d

,whih

is, for eah xed t, a onvex fution of J

(t;:) and

(t;:). (It is a just a

modulated version of funtional K, with a test funtion v.) By Cauhy-

Shwarz inequality,we have

h

v (t)

Z

1

2

j v(t;x)j 2

f

(t;x;)dxd Z

H

v (t):

The a priori bound previously obtained show that, for xed v, H

v

(t) and

h

v

(t) are bounded funtions in L 1

([0;T℄) and, up to the extration of a

sequene (

n

), respetively onverge, in the weak-* sense, to some limits

H

v

(t)andh

v

(t),withH

v h

v

. Sine

!1andJ

!J inthevaguesense

ofmeasures, byonvexity ofthefuntionaldened by(36), weget

Z

jJ(t;x) v(t;x)j 2

dx2h

v

(t): (37)

Theassumptionson theinitialonditions mean

2H

v (0)=

Z

j v(0;x)j 2

f

0

(x;)dxd+ Z

jr

(0;x)j 2

dx!2H

0;v (38)

(10)

wherewe set

H

0;v

= 1

2 Z

jJ

0

(x) v(0;x)j 2

dx: (39)

Then,we an pass to thelimitin(35) to get

Z

H

v (t)z

0

(t)dt z(0)H

0;v

Z

2jjd(v(t))jjH

v

(t)z(t)dt (40)

+ Z

A(v)(v J)(t;x)z(t)dtdx:

Byintegrating int, we get

H

v

(t)H

0;v exp(

Z

t

0

2jjd(v())jj)d (41)

+ Z

t

0 exp(

Z

t

s

2jjd(v())jjd)(

Z

A(v)(s;x):(v J)(s;x))dsdx:

Thus

h

v

(t)H

0;v exp(

Z

t

0

2jjd(v())jj)d (42)

+ Z

t

0 exp(

Z

t

s

2jjd(v())jjd)(

Z

A(v)(s;x):(v J)(s;x))dsdx

and,therefore,(20) holdstrue,whih onludesthe proof.

4 An alternative proof

Letusskethanalternativeproof,whihanbeseenasanaturalextension

of the analysis made in [BG ℄ (stationary ase) and [Gr2 ℄ (general ase) to

studythedefetmeasuresoftheVlasov-Poissonsysteminthequasi-neutral

regime.

After adaptatingtheproof(whih requiresanaprioriL 1

boundforf

,

whihisnotaeptableintheframeworkofthepresentpaper),weanshow

1)theexisteneoff(t;x;),anonnegativemeasuref in(x;)2R d

=Z d

R d

,

measurableint,asthevaguelimitoff

,withenoughtightnessin toallow

thezero and rst order momentsin (namelythe harge and the urrent)

to pass to the limit; 2) the existene of

K

(t;x;) and

E

(t;x;), two de-

fet measures in (x;) 2 R d

=Z d

S d 1

, measurable in t, that orrespond

respetivelyto the defetof kinetiand potentialenergies; 3) the existene

of two defet eletri elds E

+

(t;x) and E (t;x) 2 L 1

([0;T℄;L 2

(R d

=Z d

)),

taking into aount the temporal osillationsof the eletri eld generated

by(10);4) theonvergeneofthesolenoidalpartofJ

towardJ = R

f(d)

(11)

in C 0

([0;T℄;D 0

(R d

=Z d

)). This is enough to enfore 1) the onservation in

timeof thetotal energywithdefets

2H(t)= Z

jj 2

f(t;dx;d)+ Z

(

K +

E

)(t;dx;d) (43)

+ Z

(jE

+ (t;x)j

2

+jE (t;x)j 2

)dx;

2) thefollowingproperties fortheurrent J(t;x)= R

f(t;x;d) :

r:J =0; (44)

t

J+r:Q=0; (45)

where

Q= Z

f(d)+ Z

(

K

E

)(d) (46)

E

+ E

+

E E :

(Notethehangeofsignbetween

K +

E and

K

E

whenweswithfrom

theenergyonservation to theurrent onservation.) From these relations,

we deduethattheweak-* L 1

limitofthemodulatedtotal energyH

v (t)is

givenby

2H

v (t)=

Z

j v(t;x)j 2

f(t;dx;d)+ Z

(

K +

E

)(t;dx;d) (47)

+ Z

(jE

+ (t;x)j

2

+jE (t;x)j 2

)dx:

Thus, we diretlyget

d

dt H

v (t)=

Z

d(v)(t;x):( v(t;x))( v(t;x))f(t;dx;d) (48)

Z

d(v)(t;x):(

K

E

)(t;dx;d)

+ Z

d(v)(t;x):(E

+ E

+

+E E )(t;x)dx

+ Z

A(v)(t;x):(v(t;x) J(t;x))dx

2jjd(v(t))jjH

v (t)+

Z

A(v)(t;x):(v(t;x) J(t;x))dx; (49)

and we onludeasintherst proof.

(12)

5 Comparison of dissipative and mv solutions to the Euler

equations

OuranalysismakesalinkbetweenLions'oneptofdissipativesolutions[Li℄

and Diperna-Majda's onept of measure-valued solutions (\mv solutions)

[DM ℄,bothintroduedtodesribethevanishingvisositylimitoftheNavier-

Stokesequations[Li℄. Ifwegetbakto[DM ℄,weobtain,asbefore,twolimits

f,J = R

f(d), and a kineti defet measure

K

(the only relevent defet

measurewhenapproahingtheEulerequationsfrom theNavier-Stokesside

andnot fromtheVlasov-Poisson side). We getforJ (44) and(45) with,

Q= Z

f(d)+ Z

K

(d): (50)

Inaddition,thetotal kinetienergy,inluding defets,namely :

= Z

jj 2

f(t;dx;d)+ Z

K

(t;dx;d) (51)

isdeayingintime. Thus, after thesame kindof manipulationswealready

used,we see that J is a dissipative solution of the Eulerequations. Thus,

themv solutions are notas dierent from thedissipative solutions asthey

look. Anyway, the onept of dissipative solutions larify the relationship

between mv solutions and lassial solutions, whih was not disussed in

[DM ℄.

6 The gyrokineti limit

There is a seond asymptoti regime of the Vlasov-Poisson system leading

to the Euler equations, the so-alled gyrokineti limit. We onsider, as in

[Gr3 ℄(seealsotheinludedreferenes)orin[GSR℄(withadierentsaling),

theeetof alargeexternalmagnetield. Ifthismagneti eldisparallel

to thethirdoordinate x

3

,wegetthefollowingtwo-dimensional(in bothx

and ) Vlasov-Poisson system

t f

+:r

x f

+ 1

( r

+

?

):r

f

=0; (52)

=1

; Z

(t;x)dx =1; (53)

wherex 2R 2

=Z 2

, 2R 2

, and

?

=(

2

;

1

) is the additionalterm dueto

theexternal magneti eld. We assume thetotal mass of

to be equalto

oneattime0toenfore globalneutrality. Thetotalenergyisstillonserved

and,here,denedby

(13)

Z

1

2 jj

2

f

(t;dx;d)+ Z

1

2 jr

(t;x)j 2

dx (54)

(notie thatthemagneti eld isnotinvolved). Inaddition, we get

t

+r:J

=0; (55)

t J

+r

x :

Z

f

(d) (56)

= 1

(

r

+

?

J

):

Byombining(56) and(55), we alsoget

t (

?

r:J

)+

?

r:(

r

) (57)

=

?

r:(r

x :

Z

f

(d)):

Formally, as goes to zero, we expet for the limits , J and , the

self-onsistent system:

t

+r:J =0; (58)

r+

?

J =0; =1 ; (59)

whih is nothing but the Eulerequations written inthe so-alled vortiity

formulation, with 1 standing for the vortiity and for the stream-

funtion. The limit ! 0 has been suessfully investigated in [Gr3 ℄ for

monokinetidataand smalltime, aswellasin[GSR℄fora dierentsaling

andglobalweak solutionsoftheEulerequation inDelort's sense(see [De ℄).

We an performthesame kindofanalysis asforthequasi-neutrallimit,

and show:

Theorem 6.1 Let T > 0 and J

0 (x) =

?

r

0

be a given divergene-free,

Z 2

periodi in x, square integrable vetor eld. Assume the initial data

f

0

(x;)0 tobe smooth, Z 2

periodi in x, nielydeaying as !1, with

totalmass 1. In addition, we assume

Z

jj 2

f

0

(x;)ddx!0; (60)

Z

jr

(0;:)

?

J

0 (x)j

2

dx!0: (61)

(14)

Then, up to the extration of a sequene

n

! 0,

?

r

onverges in

C 0

([0;T℄;L 2

(R 2

=Z 2

) w) to a dissipative solution J of the Euler equations

with initial ondition J

0

. In partiular, if J

0

is smooth, the entire family

onverges to the unique smooth solution of the Euler equations with J

0 as

initial ondition.

To provethisresult,we usethesame tehnique asforthequasi-neutral

limitbyintroduingamodulatedtotalenergy,denedinthefollowingway.

Given a smooth divergene-freevetor eld v(t;x)=

?

r (t;x), we set

H

v (t)=

Z

2

j v(t;x)j 2

f

(t;x;)dxd+ Z

1

2 jr(

)(t;x)j 2

dx: (62)

A straightforward but lengthy alulation (using (56) in a ruial way, see

thedetailsintheappendix),leadsto

d

dt H

v

(t)= Z

d(v)(t;x):( v(t;x))( v(t;x))f

(t;x;)dxd (63)

+ Z

d(v)(t;x):r(

)(t;x)r(

)(t;x)dx

+ Z

A(v)(t;x):(

(t;x)v(t;x) J

(t;x))dx

+ Z

A(v)(t;x):(v(t;x)+

?

r

(t;x))dx

whered(v), A(v) arestilldenedby(21), (22).

We also getthefollowingbounds: r

is boundedin

L 1

([0;T℄;L 2

(R 2

=Z 2

));

and 1=2

J

areboundedin

L 1

([0;T℄;L 1

(R 2

=Z 2

))

(beauseoftheonservationofhargeandenergy). Next,

r

isbounded

in

L 1

([0;T℄;D 0

(R 2

=Z 2

)):

Indeed,forall smoothvetor eld g(x), beause of(2),

Z

g(x):

(t;x)r

(t;x)dx= Z

g:r

(15)

+ Z

( 1

2 jr

j 2

r:g+(r

:r)g:r

)dxCjjgjj

C 1

(R 2

=Z 2

) :

Then,beauseof (57),

?

r:J

isompat in

C 0

([0;T℄;D 0

(R 2

=Z 2

)):

Sine

?

r:J

= 0(

1=2

) in L 1

([0;T℄;D 0

(R 2

=Z 2

)), we dedue that

, and

thereforer

,arealsoompatinC 0

([0;T℄;D 0

(R 2

=Z 2

)). Thus,weonlude

that, up to the extration of a sequene

n

! 0, H

v

and r

onverge to

some limitsH

v

and r,respetivelyinL 1

([0;T℄)weak-* and

C 0

([0;T℄;L 2

(R 2

=Z 2

) w):

Then,we an pass to thelimitin(62) and(63) to get

Z

jr( )(t;x)j 2

dxH

v

(t); (64)

Z

H

v (t)z

0

(t)dt z(0)H

0;v

Z

2jjd(v(t))jjH

v

(t)z(t)dt (65)

+ Z

A(v):(v+

?

r)(t;x)z(t)dtdx;

forall smoothnonnegative z(t) ompatlysupportedin0t<T,where

H

0;v

= Z

jr(

0

(0;:))(x)j 2

dx (66)

is,byassumption,the limitof H

v

(0). By integrating int, we get

H

v

(t)H

0;v exp(

Z

t

0

2jjd(v())jj)d (67)

+ Z

t

0 exp(

Z

t

s

2jjd(v())jjd)(

Z

A(v)(s;x):(v +

?

r)(s;x))dsdx;

and,nally,byusing(64), we onludethat

?

risadissipativesolution

oftheEulerequationswithinitialonditionJ

0

=

?

r

0

,whihonludes

theproof.

(16)

7 Appendix

Inthisappendix, we prove theruialidentity(63). Beause ofthe onser-

vation of energy,weget fromdenition(62) :

d

dt H

v

=I

1 +I

2 +I

3 +I

4 +I

5 +I

6 +I

7

;

whereindexhasbeendroppedand

2I

1

= Z

jvj 2

t

; 2I

2

= Z

t jvj

2

;

I

3

=

Z

v:

t J; I

4

=

Z

J:

t v;

2I

5

= Z

t jvj

2

; I

6

= Z

r:

t

r ; I

7

= Z

r :

t r:

We have

I

7

= Z

t

= Z

t

= Z

r:J = Z

J:r

I

3

= Z

v:(r: Z

f)+ Z

v:r Z

v:

?

J

=

Z

d(v): Z

f

Z

v:r+

Z

J:r

=

Z

d(v): Z

f + Z

d(v):rr I

7 :

Thus

I

3 +I

7

=Q

1 +Q

2 +Q

3 +Q

4 +Q

5 +Q

6 +Q

7

where

Q

1

=

Z

d(v): Z

( v)( v)f + Z

d(v):r( )r( );

Q

2

=

Z

Dv:Jv; Q

3

=

Z

Dv:vJ

(17)

Q

4

= Z

Dv:r r; Q

5

= Z

Dv:rr

Q

6

= Z

Dv:vv; Q

7

= Z

Dv:r r :

Then,

Q

3

=

Z

j v

i J

j v

i

= 1

2

Z

r:Jjvj 2

= 1

2

Z

t jvj

2

= I

1 :

Next,weobserve that

I

2 +I

4 +Q

2 +Q

6

= Z

A(v):(v J)

and

I

5 +I

6 +Q

4 +Q

5 +Q

7

= Z

A(v):(v+

?

r)+R ;

where

R=R

1 +R

2 +R

3 +R

4

;

R

1

= Z

Dv:( vv)= Z

v

i v

j

j v

i

=0;

R

2

= Z

Dv:r( )r ;

R

3

= Z

Dv:(r r

?

rv):

Sinev=

?

r and(

?

) 2

= 1,,we get

R

3

= Z

(rv):( v

?

r+r

?

v)

= Z

(r

?

v):(vr rv)= Z

(rr ):(vr rv)

= Z

(rr) :(vr rv)=0:

Similarly,aftersetting = ,

R

2

= Z

(rv):r r

= Z

( r

?

r ):r r= Z

(rr ):r

?

r

(18)

= Z

(rr) :r

?

r= Z

r(

1

2 jr j

2

):

?

r=0:

Thus, R=0 andwe nallyget

d

dt H

v

=Q

1 +

Z

A(v):[v+

?

r+(v J)℄;

whihis thedesired result.

Aknowledgments

The author thanks Franois Golse and Emmanuel Grenier for many stim-

ulatingdisussionsonerningthegyrokinetilimit. Thisworkhasbeensup-

portedbytheprogramonChargedPartileKinetisattheErwinShroedinger

Institute.

Referenes

[AK℄ V.I.Arnold, B.Khesin, Topologial methods in hydrodynamis,

Springer,New York,1998.

[BR℄ J.Batt, G.Rein, Global lassial solutions of the periodi Vlasov-

Poisson system,C.R.Aad. Si.Paris313 (1991) 411-416.

[Br℄ Y.Brenier, Quelques lois of onservations issues de modeles

inetiques,JourneesEquationsauxDeriveesPartielles(Saint-Jean-

de-Monts, 1995), Exp. No.I, Eole Polyteh., Palaiseau,1995.

[BG℄ Y.Brenier, E.Grenier, Limite singuliere du systeme de Vlasov-

Poisson, C.R. Aad. Si.Paris, 318 (1994) 121-124.

[Ch℄ J.-Y.Chemin, Fluides parfaits inompressibles, Asterisque 230

(1995).

[De℄ J.-M.Delort,Existenedenappes detourbillonendimensiondeux,

J. Amer.Math. So.4(1991) 553-586.

[DM℄ DiPerna, R., and Majda, A., Osillations and onentrations in

weak solutions of the inompressible uidequations,Comm.Math.

Phys.108 (1987) 667-689.

[GSR℄ F.Golse, L.Saint-Raymond, L'approximation entre-guide pour

l'equationdeVlasov-Poisson 2D,C.R.Aad.Si.Paris,327(1998)

865-870.

(19)

[Gr1℄ E.Grenier, Osillations in quasineutral plasmas, Comm. PDE 21

(1996) 363-394.

[Gr2℄ E.Grenier, Defet measures of the Vlasov-Poisson system, Comm.

PDE 20 (1995)1189-1215.

[Gr3℄ E.Grenier, Pseudodierential estimates of singular perturbations,

Comm. Pureand Appl.Math. 50(1997) 821-865.

[Gr4℄ E.Grenier, On the stability of boundarylayers for Euler equations,

preprint,1997.

[Li℄ P.-L. Lions, Mathematial topis in uid mehanis. Vol. 1. In-

ompressible models,Oxford LetureSeriesinMathematisandits

Appliations,Oxford UniversityPress, New York,1996.

[LP℄ P.-L. Lions, B. Perthame, Propagation of moments and regularity

for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105

(1991) 415-430.

[MP℄ C.Marhioro, M.Pulvirenti, Mathematial theory of inompressible

nonvisous uids, Springer,New York,1994.

[Pf℄ K. Pfaelmoser, Global lassial solutions of the Vlasov-Poisson

system in three dimensions for general initial data, J.Dierential

Equations 95(1992) 281-303.

Références

Documents relatifs

Dans une stru ture d'évaluation, les opérations des joueurs sont, par. dénition, monotones ( roissantes) dans tous

Moreover, the semi-infinite linear programming method described in Section 7 shows that the best numerical results are obtained when the irreducible algebraic curves of low

Explicit examples of smooth, complex–valued solutions defined for x, t ∈ R of the Korteweg–de Vries equation (1.2) that blow up in finite time have been given in [2, 9, 15, 19]..

The goal of this article is to study the exponential stability of 2 × 2 systems of conservation laws on a finite interval, by means of boundary feedbacks, in the context of weak

Note also that in the setting of the MHD equations, He and Xin [13] studied uniform gradient estimates and extended the work of Caffarelli, Kohn and Nirenberg [1] to the

In the past two decades several in- novative RCTs have repeatedly shown that interventions on modifiable risk factors can reduce the incidence of diabetes in high-risk groups..

Abstract The general form of continuous, sym- metric, increasing, idempotent solutions of the bisymmetry equation is established and the fam- ily of sequences of functions which

Here, we intend to present a short survey of the new results of [BRS06], about the asymptotic behavior in time of the global solutions, then always assuming the existence of a