• Aucun résultat trouvé

Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels

N/A
N/A
Protected

Academic year: 2021

Partager "Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01137075

https://hal.archives-ouvertes.fr/hal-01137075v2

Submitted on 25 Jun 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Productivity and radiation use efficiency of lettuces

grown in the partial shade of photovoltaic panels

Hélène Marrou, Jacques Wéry, Lydie Dufour, Christian Dupraz

To cite this version:

Hélène Marrou, Jacques Wéry, Lydie Dufour, Christian Dupraz. Productivity and radiation use

efficiency of lettuces grown in the partial shade of photovoltaic panels. European Journal of Agronomy,

Elsevier, 2013, 44, pp.54-66. �10.1016/j.eja.2012.08.003�. �hal-01137075v2�

(2)

Europ.J.Agronomy44 (2013) 54–66

ContentslistsavailableatSciVerseScienceDirect

European

Journal

of

Agronomy

j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a

Productivity

and

radiation

use

efficiency

of

lettuces

grown

in

the

partial

shade

of

photovoltaic

panels

H.

Marrou

a,b,∗

,

J.

Wery

a

,

L.

Dufour

a

,

C.

Dupraz

a

aINRA,UMRSystem,2,PlaceViala,34060MontpellierCedex,France bSun’RSAS,7ruedeClichy,75009Paris,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18April2012

Receivedinrevisedform3August2012 Accepted5August2012

Keywords: Shade

RadiationInterceptionEfficiency RadiationConversionEfficiency Leafarea

Lettuce Agrivoltaicsystem

a

b

s

t

r

a

c

t

Combiningphotovoltaicpanels(PVPs)andcropsonthesamelandunitwererecentlyproposedasan alternativetotheconversionofcroplandintophotovoltaicplants.Thiscouldalleviatetheincreasing competitionforlandbetweenfoodandenergyproduction.Insuchagrivoltaicsystems,anupperlayerof PVPspartiallyshadescropsatgroundlevel.Theaimofthisworkwasto(i)assesstheeffectoncropyield oftwoPVPsdensities,resultingintwoshadelevelsequalto50%and70%oftheincomingradiationand (ii)identifymorphologicalandphysiologicaldeterminantsoftheplantresponsetoshade.Experiments wereconductedonfourvarietiesoflettuces(twocrispheadlettucesandtwocuttinglettuces),duringtwo seasons.Inallcases,therelativelettuceyieldatharvestwasequalorhigherthantheavailablerelative radiation.LettuceyieldwasmaintainedthroughanimprovedRadiationInterceptionEfficiency(RIE)in theshade,whileRadiationConversionEfficiency(RCE)didnotchangesignificantly.EnhancedRIEwas explainedby(i)anincreaseinthetotalleafareaperplant,despiteadecreaseinthenumberofleavesand (ii)adifferentdistributionofleafareaamongthepoolofleaves,themaximalsizeofleavesincreasing intheshade.Ourresultprovidesaframeworkfortheselectionofadaptedvarietiesaccordingtotheir morphologicaltraitsandphysiologicalresponsestoPVPshade,inordertooptimizeagrivoltaicsystems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Aconsensushasemergedontheemergencytofindalternative

energiesfromrenewablesources,inordertosatisfyan

increas-ingdemandforenergy(Escobaretal.,2009).Today,biofuelsare

claimedtobeapromisingsubstitutetofossilfuel(Hoogwijketal.,

2003).However,growingbiomasscropsonarablelandraisesdeep

concernsaboutfoodsecurity(Pimenteletal.,2009;Tilmanetal.,

2009;Walker,2009).Forexample,5.9%ofarablelandsinSouth

Americawereoccupiedin2007withenergeticcrops(Rathmann

etal.,2007).InSouthernEurope,thedevelopmentofhuge

ground-mounted solar power plants makes local farmers protest, and

alarmsauthorities(Nonhebel,2005).

Toconciliatethesetwocompetingusesofland,i.e.tosupplythe

planetwithbothenergyandfood,agrivoltaicsystemswererecently

proposed(Duprazetal.,2010).Theycombinephotovoltaicpanels

(PVPs)andfoodcropsonthesamelandunitandatthesametime.

Thefirstagrivoltaicarray(AVA)inFrancewasbuiltin2010,on

asimpledesignasproposedlongtimeagobyGoaetzbergerand

∗ Correspondingauthorat:INRA,UMRSystem,2,PlaceViala,34060Montpellier Cedex,France.Tel.:+33499612684.

E-mailaddress:marrou@supagro.inra.fr(H.Marrou).

Zastrow (1982).Photovoltaic panels(PVPs) weresettledwitha

clearancethatallowsmechanicalcultivationbelow.Therefore,the

layerofcropatgroundlevelispartiallyandintermittentlyshaded

bythecoverofPVPs.

Originally,anykindofcropcanbeconsideredforcultivationin

AVAsystemsbutprioritywasgiventohorticulturalproductionsas

alleycroppingismorecompatiblewiththegeometricalconstraints

resultingfromthesupportingstructure.Thesmallsizeof

mechani-calenginesusedinvegetableproductionalsomotivatedthischoice.

AmongthemajorvegetableproductionsinSouthernEurope,

let-tucewasaprioriparticularlyadequateforthesepioneersystems.It

canbeplantedatanyseasonoftheyear,bothinopenfieldsandin

greenhousesorshadehouses(Thicoïpé,1997),andcanthereforebe

consideredasadaptedtoawiderangeofradiativeenvironments.

ThekeypointforoptimizingAVAsystemsistomanagethe

limit-ingresource,i.e.light,sothatthecropcanmakethebestprofitfrom

thereducedlightavailablebelowthesolarpanels.Optimization

canbeachievedintwomanners.Firstly,playingwiththedensity

ofPVPs,itispossibletomodulatethedegreeofshadingappliedto

thecrop.Secondly,abetterknowledgeoftheresponseofcropto

lightwouldleadtoidentify(i)lightpatternsthatcropcanmanage

with,(ii)functionaltraitstobeselected.

Shadehas beenshown toaffectcrop yieldbyslowingdown

growth(Cantagalloetal.,2004;Workuetal.,2004)andreducing

1161-0301/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(3)

Fig.1. Experimentaldesign.B+|FC+|B−|FC−|indicateshowvarietiesweredistributedin2011fromEasttoWest.In2010,varietyB0wasplantedinplaceofB+andFC+, whileFC+wasplantedinplaceofB− andFC−.FD,FullDensityplot;HD,HalfDensityplot;CP-E,EastControlplot;andCP-W,WestControlplots.

totalbiomassproductionatmaturity(Dapoignyetal.,2000;Kitaya

etal.,1998;Wacquantetal.,1995).Shadealsoaffectsleafareaand

leafcharacteristicssuchastheleafweighttoarearatio(Bensink,

1971).Similarchangeswereobservedonpasturewhen

intermit-tentshadingiscausedbyatreeandshrublayer(Perietal.,2007).

Yieldvariationshavealsobeenexplainedbyamodificationofthe

radiationuseefficiency(Dapoignyetal.,2000;Rizzallietal.,2002).

In this study,we aimat understanding biomassproduction,

lightinterceptionandlightconversionintobiomassinthespecific

shadedconditionscreatedbyPVPs.

2. Materialsandmethods

2.1. Experimentalagrivoltaicarray(AVA)

Experimentswereconductedontheprototypeofagrivoltaic

systemdescribed inDupraz etal.(2010)in Montpellier,France

(43◦6N,3.8E).InthisAVA,PVPswerearrangedinEast–West

orien-tated,4maboveground.Thesestripswere0.8mwideandinclined

southwardwithatiltangleof25◦.Theprototypewasdividedinto

2subsystemsthatdifferedbythedistancebetweentwosuccessive

rowsofsolarpanels:1.6minthe“FullDensity”(FD)plotand3.2m

inthe“HalfDensity”plot(HD).Insideeachsub-system,the

mea-surementareawasfarenoughfromthebordersoftheAVAsothat

theycanbeconsideredhomogenous.

Two200m2controlplotsweresetup10mapartfromtheAVA,

ontheeastern(CP-E)andwestern(CP-W)sides.Controlplotswere

farenoughfromtheprototypesoasnottobeshaded,butclose

enoughtobeonsimilarsoil(27%clay,40%siltsandmorethan1m

depth).Foreachvariablemeasuredonthefield,theaverageofdata

collectedbothinCP-EandinCP-Wwasusedasthefullsun

ref-erence.Duetothelargesizeofanyagrivoltaicsystemrequiredto

avoidunwantedbordereffects(shadeprojectionsoncontrolplots,

andsunpenetrationfromthesideundershadedplots),

design-ingreplications would haveinvolved a huge landarea (several

hectares)andaverycostlyinvestment(>1millioneuros).Thiswas

notpossibleatthisearlystageoftheprototypedevelopment.We

howeverdesignedthesystemwithtwoimportantfeaturesforthe

statisticalvalidity oftheexperiment:(1)theshadedtreatments

werelargeenoughtoinvestigatespatialheterogeneityunderthe

panels;and(2)shadedtreatmentsweresurroundedbyseveralfull

suncontrolplotsthatallowedustocontrolsoilandcrop

manage-mentheterogeneity.Besides,thehomogeneityofsoilproperties,

likelytobehighinthisdeeploamysoilhadbeencheckedinthe

sameareaformerly(Ruelle,1995,PhDthesis).Theexperimental

fieldhadbeenuniformlycroppedwithcerealsandnotillagesince

then.Soilhygrometryinthe0–30cmfirstlayerwasevaluatedby

gravimetryon28soilsamplestakenevenlyoverthetotalareaofthe

experimentalfieldbeforethefirstplanting,in2010.Thevariation

coefficientofsoilhygrometrywasequalto9.4%only.Inaddition,

theexperimentwasconductedundernon-limitingconditionsfor

waterandnitrogentolimittheeffectofsoilfactorsoncrop.A

mon-itoringofthesoilwaterstatuswasperformedweeklyinallplots

(tensiometers andneutronprobemeasurements) tocontrolthe

uniformityoftheirrigationscheme.Avarianceanalysisoflettuce

yieldatfinalharvestwasperformedonthe2fullsunplotslocated

ontheEastern(CP-E)andWestern(CP-W)sidesoftheAVA.Each

plotwasdividedintothreeblocksintheNorth-Southdirection.

Varianceanalysisshowedthattherewasneithersignificantblock

norploteffects.Thesepreliminarycontrolsentitleustoconsider

thattheeffectsofnon-monitoredenvironmentalfactors–ifany–

werenegligible.

2.2. Cropmanagement

Twolettucevarieties(B0andFC+)wereplantedonJuly22,2010.

ThevarietyFC+wasplantedagainonMarch23,2011alongwith

threeothervarieties:B+,B−andFC−.VarietiesB0,B+andB−belong

tothesubspecies“Batavia”L.sativaacephalasp.,andcorrespondto

varieties“Tourbillon”(B0),“Model”(B+),and“Emocion”(B−).

Vari-etiesFC+andFC−belongtothesubspecies“FeuilledeChêne”(L.

sativa.acephala sp.)and correspondtovarieties“Kiribati”(FC+)

and“Bassoon”(FC−).

SeedlingswereplantedundertheAVAinblocksofrowswith

EasttoWestorientation.Eachblockwascomposedofsevenrows

in2010andsixrowsin2011(Fig.1).Thedistancebetweentwo

plantingrowswas33cmandthedistancebetweentwolettuceson

arowwas27cm.

Irrigationwasprovidedbysprinklers(2010)ordriplines(2011)

andnitrogenfertilizerswereappliedimmediatelybeforeplanting

andduringthecycle.Waterandnitrogenstatusweremonitored

weeklybytensiometersandchlorophyllmeterreadings(SPAD-502,

KonicaMinoltaInc.,Japan)inordertoensurethatlettuceswerenot

submittedtowaterornitrogenstressinanytreatments.

2.3. Microclimatemonitoring

Availableradiationatcropcanopylevelwasmeasuredhourly

ineach treatmentwithpyranometers(Quantumsensors–Skye

(4)

56 44 (2013) 54–66

sensorsconnectedtodataloggers(CR1000–CampbellScientific

Inc.,USA).Sensorswereinstalledjustabovelettuceheads,bothin

theFDandintheHDplotsalongNorth–Southtransectsbetween

twopanelstrips.In2010,3pyranometers,regularlyspacedwere

usedpertransectinFDandinHD.In2011,onesensorwassetabove

eachplantingrankinatransect.PARsensorsandpyranometers

wereconsideredtobeequivalentafterwecheckeditina

comple-mentaryexperimentduringwhichseveralpyranometersandPAR

sensorswereplacedtogetheratthesamelocations,inthefullsun,

andintheshadedtreatments.Bycomparingthehourlyrecordsof

thePARsensorsandtherelatedpyranometers,wecheckedthat

PAR/Globalratiowasfairlyclosedto0.48bothintheshadeandin

thefullsun,atanytimeoftheday(datanotshown).

Hemisphericalphotographswerealsotakenaboveeachrowof

lettuces.Decadalpercentagesofavailabletotalradiationwere

cal-culatedfromthephotographswiththeGapLightAnalysersoftware

(Frazeretal.,1999)forthetimeperiodwhensensorswereinthe field.

Meandailyair temperatureand relativehumidity2mabove

groundaswellascroptemperaturewerecheckedtobeuniform

betweenthetreatments(data notshown).Airtemperatureand

airrelativehumiditywererecordedhourly(HMP35andHMP45

probes,CampbellScientificInc.,USA).In2011,croptemperatures

were measured hourly by thermocouples (Copper-Constantan

thermocouples)directlyinsertedintotheplants,closetotheplant

axis,betweenthelargerlettuceleaves.

2.4. Simulationofradiationavailabletoplants

A radiative model was written and implemented in R

(http://cran.r-project.org/)usingaray-tracingalgorithmona3D

scene.The model used daily global radiation measured onthe

experimentalsiteasanentry,aswellasthelatitudeofthesite.

Globalradiationisallocatedtosectorsoftheskyaccordingtoa

StandardOvercastSkydistribution.Thescenerepresentsthepanel

stripswiththesamesizeandorientationasinthefieldprototype.

However,HDandFDsub-systemsaremodeledseparatelyandthe

supportingstructureisnottakenintoaccountbythemodel.Daily

availableradiationatagivenpointofthestageiscalculatedby

inte-gratingtheinterceptionofrayslaunchedtowardthispointfrom

eachskysectors.Calculationsareiteratedwithadailytimestepfor

eachpositiononthescenewithaspatialgridof10cm×10cm.The

outputradiationisexpressedasGlobalRadiationorPAR–

depend-ingonthespecificationoftheuser–usingaPAR/Globalratioequal

to0.48.ModelalgorithmsaredescribedinAppendixA.The

radia-tionmodelwasvalidatedin2010bycomparingmodeloutputsto

GLAcomputationsandpyranometersrecords.

2.5. Lettucesgrowthmeasurements

Lettuces were sampled for destructive measurements of

biomassatthreedatesin2010(21,34,and47daysafterplanting–

DAP),andin2011(23,44,and63DAP).Thelastharvestcorresponds

tothematuritystageforcommercialselling.

Threetofive(dependingonthesamplingdate)lettucesofeach

varietywerepickedrandomlyinCP-EandCP-Wateachsampling

date.InFDandHD,threetofivelettuceswerepickedineach

plant-ingrow(discardingexternalrows)inordertogetastratifiedsample

thattakeintoaccounttheradiativespatialheterogeneityunder

theAVA.Totalaerialdrymatterandleafnumberweremeasured

foreach lettuce.The lengthandthewidthof eachleaves were

measuredforatleastonelettuceperrowandpertreatment.In

2011,leaveswerestrippedofffivebyfive,foreachsampled

let-tuce.Eachgroupofleaveswasdriedupseparatelyaftermeasuring

thelengthandwidthofoneleaf,inordertocalculatespecificleaf

areaofeachgroupoffiveleaves.Onasubsampleoflettuces,adirect

measurementofeachleafareawasobtainedbyhorizontal

photog-raphyandimagetreatment(ImageJ,MD,USA)tochecktherelation

betweenlength,widthandexact areaoflettuce leaves.As

sug-gestedbyGay(2002),alinearregressionwasfittedbetweenexact

leafareaandwidth×length.Asingleallometricrelationwasfitted

forallvarietiestogetherwitharelativeRMSEof3.2%.

2.6. InterceptedPAR

LettuceCRwasassessedperiodically. In2011,threelettuces

pervarietyandpertreatmentweremonitoredwithvertical

pho-tographsataweeklyinterval.Afterimageprocessing(ImageJ,MD,

USA)thedynamicofcoverrateevolutionwithtimewasobtained

foreach lettuce. In2010,verticalphotographs weretakenonly

once,on18thAugustbutthediameteroftheplantswasmeasured

atthreedatesinthefieldoronsampledplants.Alinearrelation

(R2=0.83)wasfoundbetweenCRestimatedfromthephotographs

ononehandandfromthediametersmeasurementsinthesame

day,ontheotherhand.Thecorrespondinglineartransformation

wasappliedtoalltheCRestimates calculatedfromthe

diame-termeasurementsin2010,togetahomogenousandconsistent

datasetacrossthetwo years.In 2011,adirect measurementof

interceptedPARwasrealizedinthefieldeverytwoweeksonpartof

themarkedlettuces.Todoso,aradiationmeasurementwastaken

aboveeachlettucehead,atsolarnoon,byuseofaportablePAR

sen-sor(JYP1000–SDEC,France).Immediatelyafterthat,nineother

measurementsweretakenatgroundlevelsdistributedregularlyon

a27cm×33cmsquarearoundthesamelettuce.InterceptedPAR

wascalculatedastheratiobetweenmeangroundlevel

measure-mentandtheabovelettucecanopymeasurement.

2.7. Calculationofradiationuse

2.7.1. Generalframework

Biomassaccumulationwasanalyzedthroughalightcentered

approach.AccordingtoMonteith(1972,1977),biomass

produc-tionistheresultoftwosuccessiveprocesses:radiationinterception

ofincidentPAR(PARinc)andtheconversionofintercepted

radia-tion(PARint)intodrymatter.Theefficienciesoftheseprocesses

arenamedRadiationInterceptionEfficiency (RIE)and Radiation

ConversionEfficiency(RCE)respectively.InthecaseofAVA,

trans-missionofsunradiation(PAR0)throughsolarpanelsresultsinto

PARincandshouldbeaddedasthefirststepoftheprocess.

Radia-tionTransmissionEfficiency(RTE)dependsonPVPsarrangement

anddensity.

Hence,accumulationofdrymatter(DM)isgivenbyEq.(1).

DM=PAR0×RTE×RIE×RCE (1)

TocompareFDandHDtreatmentstofullsun,relativevariables

arecalculatedastheratiobetweenthevaluesinshadedtreatments

andinthefullsuncontrol.ConsideringthatPAR0isidenticalinfull

sunandunderPVPsandthatRTEinfullsunequalsoneleadsto

Eq.(2),inthecaseofFD.ThesamerelationcanbewrittenforHD.

Relativevariablesarenotedwiththesuffixletterr.

rDMFD=RTEFD×rRIEFD×rRCEFD (2)

Applying logarithmictransformation, log-relative dry matter

(LDM)intheshadecanbewrittenasthesumofthecontributionsof

lighttransmission,interceptionandconversion(Eq.(3)).This

equa-tionreferstoFDandasimilarequationcanbewrittenforHD.While

LRTEisalwaysnegativeunderPVPs,LRIEandLRCEcanbepositive

ornegative,dependingonwhetherinterceptionand conversion

efficienciesincreaseordecreaseinthePVPshade,comparedtothe

fullsuncontrol.

(5)

Table1

Estimatedparametersforalogisticaladjustmentofthecoverrateasafunctionofthermaltime(Eq.(8)).

2011 2010

Shade(FD,HD) Fullsun Shade(FD,HD) Fullsun

B0 FC+ B0 FC+

A 0.94 0.63 0.737 0.849 0.708 0.841

 0.007 0.010 0.013 0.010 0.012

 445.4 557.0 544.5 544.8 567.6

Fig.2.RelationbetweenthemeasuredfractionofinterceptedPARatsolarnoon andcoverrateestimatedfromphotographs,in2011.o,,♦,1standforvarieties B+,B−,FC+,FC−,respectively.Closedblacksymbols,closedgraysymbols,andopen symbolsrepresentplantintheFD,HD,andfullsunplots,respectively.

Fromfielddataandradiationsimulations,wecalculatedLRTE,

LRIE, andLRCE,foragiventime period(e.g.thetotalcropping

season),andagivenarea(e.g.thetotalmeasurementareaofHD,

FDandCPplots).

2.7.2. Radiationtransmissionefficiency

Overthecroppingseason,RTEwascalculatedaccordingtothe

followingformula:

RTE =

P

t=harvest

t=planting(PARinc,t)

P

t=harvest

t=planting(PAR0,t)

(4)

StandarderrorofRTEwascalculatedbypropagationofthe

stan-darderroronPARincsimulatedforeachplantingrowinFDandHD

plots.

2.7.3. RadiationInterceptionEfficiency

Overthecroppingseason,RIEiscalculatedaccordingtoEq.(5).

RIE =

P

t=harvest t=plantingPARint,t

P

t=harvest

t=plantingPARinc,t

(5)

Inthecaseoflettuce,thedailypercentageofincidentPAR

inter-cepted(PARint,t/PARinc,t)canbeassessedasalineartransformation

ofthecrop cover rate(CR),or CRn (De Tourdonnet,1998;Gay,

2002;Huntetal.,1984;Teietal.,1996).Wefittedourdatawitha

uniquelinearadjustment(Fig.2)withforcedto0origin,between

PARint,t/PARinc,tandCR,yieldingaRMSEof0.107(Eq.(7)).Unicity

oftheadjustmentamongstvarietiesandtreatmentswaschecked

withtestsofthemaximumof likelihoodperformedwiththeR

software(Eqs.(6)and (7)).Thevalueofthecoefficient(0.85)is

inthesamerangeasthosepreviouslyreported(seeabove)andis

consistentwithacropreflectanceof5–15%.

PARint,t PARinc,t =0.85×CRt (6) Then, RIE=

P

t=harvest

t=planting(0.85×CRt×PARinc,t)

P

t=harvest

t=plantingPARinc,t

(7)

CRtwasfittedasafunctionofthermaltimewithVanHolsteijn

equation(DeTourdonnet,1998;Gay,2002;Holsteijn,1980)using

measurementsofcoverratecollectedinthefieldin2010and2011

(Eq.(8)).

CRt= A

1+e(−×(TTt−)) (8)

whereTTisthethermaltimewithabasetemperatureof3.5◦C.

Thermaltimewascalculatedfromair temperature

measure-mentabovecontrolplots(CPs):indeednosignificantdifference

incumulated thermaltime wasmeasured betweenFD,HDand

thecontrolplots,whateverreferencetemperatureis used(crop

orairtemperature)(notshown).Datafrom2010and2011were

processedseparatelyasCRdynamicwasverydifferentinthetwo

years,duetoseasonaleffect.ParametersA,,and(Table1)were

adjustedwiththegnlsprocedureofR(http://cran.r-project.org/).

Testsofthemaximallikelihoodshowedthat,forboth2010and

2011,asingleadjustmentcanbeusedtopredictCRtfortreatments

FDandHDtogether,whereasadifferentsetofparametersmust

befittedfortreatmentCP(Fig.2).Concerningthefactorvariety,it

waspossibletofitasinglemodelforallvarietiesin2011,butnot

in2010.Standarderrorsofestimatedcoverrateswerecalculated

foreverydayaccordingtoSeberandWild(Pellegrinoetal.,2006;

SeberandWild,2003)(Fig.3).

UncertaintiesrelatedtomodeladjustmentsforCRtandPARint

andspatialvariabilityforPARincwerepropagatedthroughthe

cal-culation to getthe standard error of RIEand RCE. DM and CR

wereassumedtobeuncorrelatedasthecorresponding

measure-mentswererealizedondifferentplants,whileautocorrelationof

cumulatedvariables (PAR)wasaccountedfor inthecalculation

ofuncertainties.Model error(CRasa functionofTT) and

mea-suredvariabilitywereassumedtobeadditive.Uncertaintieswere

propagatedthroughnon-lineartransformationsbyderivation(Ku,

1966).

Studenttests wereperformedonmean estimatesof RIEfor

eachvariety,usingintra-treatmentvariabilityasvariance

estima-torsand(n−1)degreesoffreedom,wherenistheminimalsample

sizeforallthemeasuredorsimulatedvariablesinvolved inthe

(6)

58 44 (2013) 54–66

Fig.3. Dynamicsofthecoverrate(CR)versusthermaltimein2010(a)and2011(b)forshadedtreatments(solidline)andfullsun(dashedline).,♦,o,1,+,×represent coverratemeasuredforvarietiesB0andFC+(a),B+,B−,FC+,FC−(b)intheshade(closedsymbols)andinthefullsun(openedsymbols),respectively.Grayishstripsrepresent 95%confidenceintervaloftheadjustment.

2.7.4. RadiationConversionEfficiency

RCEwascalculatedaccordingtoEq.(9),overthecropping

sea-son.

RCE= D×DMt=harvest

P

t=harvest t=plantingPARint,t

(9)

whereDisplantingdensity(D=1/(0.27×0.33)=11.2plantm−2).

Drymatteroflettucewassupposedtobenegligibleatplanting

date(four leavesstage). StandarderrorofRCEwasobtainedby

propagatingstandarderrorofDMmeasuredonlettucesamplesat

harvestandstandarderrorofPARintcalculatedasexplainedabove.

3. Results

3.1. RadiationtransmittedbelowanAVA

3.1.1. Validationoftheradiativemodel

We comparedmodeloutputstofielddatabycalculatingthe

rootmeansquareerror(RMSE)andR2 coefficientbetween

sim-ulationsandfielddata(pyranometerrecordsandhemispherical

photographs).The analysis wasrepeated for differentlevels of

spatialandtemporalintegrationfromindividuallettuceonaday

tothetotalareaofeachtreatmentplotoverthewholeseason,to

evaluatethesensitivityofthemodeltothevariabilityintimeand

inspacewithineachshadedtreatments(Table2).Thecorrelation

betweenfield dataand theradiationmodel increasedwiththe

levelofintegrationwithtimeandspace.Exceptforthecoarsest

integration level using GLA computations, R2 was above 0.70

andtherelativeRMSEwasbelow18%.Theradiationmodelwas

thereforeconsideredasafairpredictoroftheavailableradiation

bellowthePVPs,withnoriskofbiaswhencomparingHDandFD

treatments.Model outputs,averagedspatially and/orover time

wereusedforfurthercalculations.

3.1.2. PredictedradiationundertheAVA

Therelativetransmitted(availableatplantlevel)radiation(RTE,

Eq.(4))duringthecroppingseasonaveraged53%inFDforboth

2010and2011(Fig.4).Itvariedfrom48%to56%dependingonthe

plantingrow,forthetwoyears.InHD,itvariedfrom68%insummer

2010to73%inspring2011.Variabilityofavailablelightbetween

plantingrowswashigherinthistreatment:itrangedbetween63%

and72%in2010andbetween71%and74%in2011.Besides,the

hourlypatternofradiationvariedfromonerowtoanotherand

differedbetweendaysforthesamerow(datanotshown).Inthe

fol-lowingsteps,wethereforeusethespatialaverageofPARinc,which

integratethisvariability,inordertocharacterizetheFDandHD

(7)

Table2

Qualityofthepredictionforradiationavailabilityatcroplevelatdifferenttimeandspaceintegratedscalesbytheray-tracingradiationmodel,comparedtotwofielddata sources:hemisphericalphotographsprocessedwithGLAsoftwareandpyranometerrecords.

Spaceintegration Timeintegration GLA Pyranometers

R2 CV(RMSE)% R2 RRMSE%

1sensorlocation 1day 0.80 22.0

Totalplotarea 1day 0.92 11.2

1sensorlocation 10days 0.56 27.3 0.80 17.8

Totalplotarea 10days 0.89 11.4 0.91 9.5

1sensorlocation 76days 0.93 6.6

Fig.4. CumulatedincidentPARinthefullsun(measurements)andforeachplanting rowposition(Rk2–Rk6in2010andRk2–Rk5in2011)intheFDandHDtreatments (simulations),duringthetwocroppingseasons(summer2010andspring2011). IncidentPARisexpressedinpercentofthecumulatedPARinthefullsun,attheend ofthecroppingseason.

3.2. Lettuceyieldandlightuse

3.2.1. YieldoflettucesintheshadeofanAVA

Theaverageyieldinthefullsunapproximatelyreached25gof

drymatterperplantinthetwoseasons.Freshweightinthefull

Fig.5.RelativeDrymatteroflettucesplottedversusrelativeavailablelight (PAR-inc/PAR0)atharvestingdate(47DAPin2010,and63DAPin2011).Filledsymbols correspondtoFDtreatment,whileopensymbolsrepresentHDtreatments.

sunwas561gperplantinsummer2010and312gin2011,for

allvarieties.AccordingtoThicoïpé(1997)minimalfreshweight

forlettucecommercializationinFranceis280gperplantinwinter

and400ginsummer.Thisisafurtherconfirmationthatplantswere

grownclosetotheirpotentialinthefullsunandthatlightwasthe

mainlimitingfactorintheFDandHDplots,astargetedwithour

monitoringandmanagementofwaterandnitrogenstatusofthe

crop(seeSection2.2).

In2010,yieldwasreducedsignificantlyto58%ofcontrol(all

varietiestogether),whenplantsweresubmittedtoheavyshading

(FD).InHD,yieldswereat81%ofthecontrolyieldforthesame

year.In2011,yieldreductionswerelower:theyequaled79%offull

suninFDand99%inHD.Thisindicatesthat,atleastinthespring

plantingconditionsof2011,yieldwashardlyaffectedwhenthe

shadewasmoderate(i.e.intheHDdesign).In2011,forvarietiesFC+

andB−,yieldinHDwereevenabovethatofthefullsun.Moreover

biomassreductionwaslessthantheavailablelightreduction,for

everysamplingdatewiththeexceptionofB0in2010(Fig.5).This

showsthecapacityoflettucetoproducebiomassmoreefficiently

whenthelightresourceisreduced.

ThespatialheterogeneityoflightatcroplevelinFDandHD

(seeSection3.1.2)wasnottranslatedinlettuceyield.Differencesin

yieldbetweenplantingrowswithinthesametreatmentwere

sig-nificantbutnegligiblecomparedtodifferencesbetweentreatments

(testofmaximumlikelihood).

Thecomparisonbetweenvarietieshighlighteddifferencesinthe

tolerancetoshade:in2011varietiesFC+andB−appearedtobeless

affectedbyshadethanthetwoothers.In2010,varietyFC+gave

(8)

60 44 (2013) 54–66

Fig.6. Contributionoftransmission,interceptionandconversionoflightintobiomassinFDandHDtreatments.Horizontalbarsrepresentlog-relativeefficienciesLRTE, LRIE,andLRCE.Errorbarsfeaturestandarddeviationofrespectiveefficiencies.‘++’indicatesvarietiesforwhichdrymatterinHDexceededdrymatterinthefullsun.

treatment,varietyFC+havingaloweryieldintheshadeinsummer

2010butahigheryieldintheshadein2011.

3.2.2. RIEandRCEinthePVPsshade

Therelativelightavailability(RTE)wassimilarin2010and2011

(Fig.6). In2010,RIEwasnotsignificantlydifferentinthePVPs

shade(neitherFDnorHD),comparedtothefullsun,accordingto

aStudent’stest.In2011,itwassignificantlyincreasedintheshade

(p-value=0.0036inFDand0.0023inHD,Student’stest),andwas

higherinFD(0.460)thaninHD(0.454).RIEisproportionaltoCR

(Eq.(6)),whichwassignificantlyhigherintheshade(0.94)than

inthefullsun(0.63)atfinalharvest(Fig.2).Wecouldnotshow

significantdifferencesinRCEundershadeforanyofthevarieties.

However,forvarietyFC+,whichisthemostproductive,RCEtended

toincreaseintheshadebothin2010and2011.

3.3. YieldcomponentsoflettuceinthePVPsshade

3.3.1. Numberofleaves

In 2010,thenumberofleaves(longerthan1cm)was

signif-icantlyreducedin theshade for eachsamplingdate(Fig.7). In

2011,thenumberofleaveswasalsoreducedsignificantlyinFDfor

eachvarietyandeverysamplingdate.InHD,thenumberofleaves

wasunchangedformostvarieties,butitdecreasedsignificantlyfor

varietyFC−(notshown).

3.3.2. Leafareaandthickness

In2011,thetotalleafareaincreasedsignificantlyinFD,

com-paredtoCP,foreachvariety,from43DAPto63DAPunlikethe

numberofleaves(Fig.8).InHD,leafareatendedtoincreasetoo,

butchangewassignificantonlyforvarietiesFC+andB−,at63DAP.

In2010,at47DAP,totalleafareawassmallerintheshade,butthe

differencewasnotsignificant.

Foreachvariety,in2011,themaximumofthelength×width

productaveragedoveragroupoffivecontinuousleaves(called

hereacrown)inaplant,wassignificantlyhigherintheshadethan

infullsun(Fig.9).Thereforethehigherplantleafareaintheshade

observedinspringplantingwastheconsequenceofanincreased

sizeof“matureleaves”oflettuces(Fig.8).Wecall“matureleaves”

thegroupofleaveswhoseareaoverpassed75%ofthesizeofthe

biggestleafoftheplant.Matureleavesarerepresentativeofthe

growthpotentialoftheplant(Bensink,1971)andtheydetermine

thecircumferenceofthelettucehead.

Thespecificleafarea(SLA=leafarea/leafdryweight)ofmature

leaveswassignificantlyhigherintheshadeforallvarieties.AsSLA

hasbeenshowntobecloselyrelatedtoleafthickness(Wilsonetal.,

1999),wecanmakethehypothesisthatleafthicknesshasbeen

reducedbytheshadeconditionscreatedbythePVPs.Onthe

con-trary,thelength/widthratioofmatureleaveswasnotmodifiedin

theshade.

4. Discussion

4.1. ContributionofRCEandRIEtothetoleranceoflettucesto

PVPsshade

Wefoundthatlettucescanmaintainrelativelyhighyieldsunder

PV,intheHDshadetreatmentand,forsomevarieties,intheFD

treatmentinspringgrowingconditions(Table3).Byuseof

Mon-teithequationadaptedtoAVA(Eq.(1)),weshowedthattolerance

toPVPsshademainlyreliedontheabilityoflettucestoimprove

theircapacitytointerceptlight(Fig.6).Thisresultisconsistent

withSinclairet al. (1999)and Gimenezet al.(2002).

Intercep-tionwasassumedtobeaphysicalprocess,directlyproportional

tothepercentageofgroundcover.Therelationbetweencoverrate

(9)

Fig.7.Numberofleaveslongerthan1cmperlettuce,forallvarietiestogetherat 21,34and47DAPin2010,and23,44and63DAPin2011.Verticalerrorbarsfeature standarddeviations.FDandHDbarsaremarkedwith‘**’whenthenumberofleaves issignificantlydifferentfromtheCPatthesamedate,accordingtoLSDtestwitha risk˛=5%.

grownintheshade.Consequently,improvedRIEcanbedirectly

attributedtoabetterabilityoftheplantfora higherandmore

rapidsoilcoveringunderthePVPsshade.Thiswasachievedwith

morphologicalchangescontributingto(i)anincreaseinthetotal

plantleaf area and (ii) an optimized leaf area arrangement to

harvest light more efficiently. The various plant strategies to

achievethisaresummarizedinFig.10andanalyzedbelowonthe

basisofourobservations.

4.1.1. Strategy1:increasingtotalplantleafarea

Thiscanbeobtained withan increasedmean sizeof leaves

and/ornumberofleaves.

Weshowedthattheindividualareaofmatureleavesincreased

whereasthenumberofleavesdecreasedsignificantlyintheshade

(FDandHD).Inthefullsun,CRcanbepredictedbyallometryas

alogistical functionof thenumber ofleaves (Gay, 2002). From

Fig.8.Totalleafarea,forallvarietiestogetherat21,34and47DAPin2010,and 23,44and63DAPin2011.Totalleafareaiscalculatedthroughdestructive mea-surementasthesumofthelength×widthproductofeveryleaflongerthan1cm. Verticalerrorbarsfeaturestandarddeviations.FDandHDbarsaremarkedwith‘**’ whenthetotalfoliarareaissignificantlydifferentfromtheCPatthesamedate, accordingtoLSDtestwitharisk˛=5%.

fielddata,twodifferentmodelswerefittedforplantsinthesun,

andplantsintheshade.Theyweretestedtobedifferentwiththe

likelihoodratiotest(p-value=4.7×10−4).Thisconfirmedthatthe

numberofleavescannotexplaintheincreaseofCRintheshade.

However,reducingleafnumbercouldhaveallowedtheproduction

oflargerleavesforthesameamountofcarbonassimilated.Bensink

(1971)showedthatintheshade,leafemissionratedecreasedand

leafgrowthduration increased,therebyresulting inlongerand

widerleaves.Thissuggeststhat,intheshade,carbonallocationis

preferentiallydirectedtofurtherleafgrowthinsteadofleaf

emis-sion(Bensink,1971).

4.1.2. Strategy2:betterarrangementofthelightharvestingarea

4.1.2.1. Increasing headdiameter. Groundprojectionof alettuce

headcanbeapproximatedasadisktheradiusofwhichisequal

Table3

Drymatter(g/plant),foreachvarietytestedinthetwoexperiments(2010,2011).Thestandarddeviation(inbrackets)isexpressedasapercentageofmeanyieldscalculated onthecorrespondingsample(i.e.threetofivelettuces).

2010(Summer) 2011(Spring)

B0 FC+ B− B+ FC− FC+

FD 13.9a(17%) 16.0a(12%) 17.8a(33%) 18.4a(21%) 18.9(23%) 21.6(25%)

HD 19.4a(26%) 21.7a(21%) 26.1a(17%) 23.9(32%) 21.9(13%) 23.7(24%)

CP 26.2(21%) 24.9(16%) 23.7(33%) 26.2(23%) 24.9(18%) 22.0(27%)

(10)

62 44 (2013) 54–66

Fig.9.Distributionofleafarea(meanofwidth×heightproduct)fromthebottomtothetopoftheplantforthefourlettucevarieties(B−,B+,FC−andFC+)testedin2011. Eachpointofthecurverepresentsthemeansizeofaleafwithinacrownoffivecontiguousleaves.Crownsarenumberedfromtheolderleaves(crown1)totheyoungest. Verticalbarrepresent95%confidenceintervalcalculatedforthecorrespondingcrownfromasampleofthreelettuces.Theblackhorizontalmarksthecrownscorresponding tomatureleaves.

tothemeanlengthofthematureleaves(Fig.9). Wefoundthat

these leaves are both wider and longer in the shade than in

thefull sun. Changesin leaf angle(i.e. the angle betweenthe

soiland theleaf midrib) inlettuce headcouldalsobe

respon-siblefor differences in CR. Leaf anglereduction in response to

shadingwasreportedfor grassesintercroppedinorchards(Peri

etal.,2007),asadirectconsequenceofleavesgettingbothlonger

and thinner, and thus less rigid under shade. Lettuces with a

leafangleclosetohorizontalorientationwouldbeabletocover

alargestproportion ofground and thereforetointercept more

light.Similarly,Wurret al.(1992)reportedlettuce headstobe

lesstightwhenplantaresubmittedtohighlevelsofsolar

radi-ation in thesecond part of thecycle (after hearting).In 2011,

weobservedthatplantaxesweresignificantlytallerandthinner

intheshade(7.4cmand2.0gofdrymatterperaxis)compared

to full sun (6.6cm and 2.5g per axis). Changes in axis shape

couldalsohavecontributedtoleafcrownbeinglooserandmore

horizontal.

4.1.2.2. Reducingselfshading. Differentadjustmentswerefittedto

CRasafunctionofthermaltime,intheshadeandinfullsun.In2010,

theinflexionpointofthecurve(representedbytheparameterin

Eq.(8)andTable1)isreachedearlierintheshadeforvarietyFC+,

whichseemstobethemoreshadetolerant.AccordingtoHolsteijn

(1980),itdenotesareductionofself-shadingandmutualshading

withneighboringlettuces.Self-shadingreferstoleavesofthesame

plantshadingeachotherand increaseswhen thelettuce leaves

twistandturn.ThisresultisconsistentwiththefindingofBensink

(1971), thatshading encouragestheelongationof leaf’scentral

vein at the expense of lamina expansion, creating spoonshape

leaves.

4.2. Perspectiveforoptimizingphotovoltaicsystem

4.2.1. AdequatelevelofshadingbyPVPs

OurresultsshowthatunderanAVAwithhalfthenumberof

PVPs,lettuceyieldwashardlyaffected.UnderastandardAVAwith

thefulldensityofPVPs,lettuceyieldwasstronglyreduced,down

to48%ofthepotentialyieldinthefullsunformostofthevarieties.

Iflettuceproductionisexpectedtobenotsignificantlyreduced,

thentheAVAshouldbedesignedtoallowatleast70%ofPAR0at

thecroplevel(HDdesign).Asmartsuggestiontomaintainahigh

levelofelectricityproductionwouldbetomountthePVPsona

mobilestructurethatwouldallowachangeinthetiltingangleof

thepanels.Thiswouldhelptomonitorlighttransmissionunder

thepanelstomaintainitabovetherequiredthreshold.Between

cropping periods,or when thecrops need less radiation, PVPs

couldbesetbacktotheiroptimumpositionformaximalelectricity

production.Itcouldbepossibletocalculatetheyearproductionof

electricityandcropproductsresultingfromsuchamanagement,

andtooptimizethesettingstakingintoaccountthecashvalueof

bothelectricityandcropproducts.

Decreasingthedensityofpanels(astestedinourexperimental

array)isanotheroption,butitislessflexible:thiswillleadtoreduce

theelectricproductivityofthePVPlayerforthewholeyear,

includ-ingwhencropsarenotpresent.Comparingthetwooptions(mobile

panelsversusreduceddensityofpanels)wouldalsorequiretotake

intoaccounttheinvestmentsintothearray,whicharehigherfora

FDarray(includingthecostofmobilepanels)thanforaHDarray.

Finally,theproductivityofagrivoltaicsystemshouldbetested

onlongerperiods,inordertoassessifthisproductionsystemis

economically and environmentallysustainable. Our experiment

includes other vegetable species (beans, cucumber) as well as

(11)

Fig.10.SummaryofdifferentleversforincreasingRIEbyplantadaptationtoPVPsshade.Leversingrayboxeshavebeentestedinourexperimentsandidentifiedasactually playingaroleintheresponsetoshade.Leverswithadoublethinborderhavebeenshowednottoparticipateinshadetolerance.

maybehavedifferentlyintheshadeofsolarPVs.Their

combina-tioninproperrotationwillalsobeneededtoensureasustainable

managementofweeds,pestanddiseaseandsoilquality.

There-fore,acomprehensiveassessmentoftheseagrivoltaicsystemswill

requireamulticriteriaanalysisofcroprotations.

4.2.2. Towardaselectionofspecificplanttraitsforagrivoltaic

systems

Thedifferentvarietiestestedinthetwoseasons(summerin

2010andspringin2011)respondeddifferentlytothesamelevel

ofshadecreatedbyPVPs.In2011,varietiesFC+andB−appeared

to be much more tolerant to shade. This result suggests that

functionaltraitsforshadetolerancecouldbeidentified(Fig.10)in

ordertoselectadaptedgenotypesforagrivoltaicsystems.Current

literatureonshadetolerancemainlyfocusesonRCEandpointsout

netphotosyntheticrate,leafmassarea,leafchlorophyllcontent,or

leaflife-spanasindicatorsofshadetolerance(Halliketal.,2009;

Niinemets, 2010; Poorter et al., 2009; Poorter, 2001; Seidlova

etal., 2009). However,weshowed thatRCE, which is likely to

beaffectedbythesetraits,is notthemainleverofadaptionto

shade for lettuces.Our results suggestthat adaptative traits of

leafdevelopmentandexpansioncouldleadtoanincreasedRIEin

PVPsshadewhichcouldcompensateforreducedlightavailability.

AssummarizedinFig.10,totalplantleafarea,coverrateandthe

harvestinglightabilitythroughadaptiveleafmorphologyarethe

mainlevers for theplanttohandle lightreduction by PVPs.In

HD,varietiesFC+andB−exhibitedsignificantmodificationofleaf

areadistribution(Fig.9)andkeptfinalyieldssimilartoyieldsin

thefullsun.Atthesametime,thesetwovarietieshadthelowest

individualleafareainthefullsun(Fig.9),indicatingthestrong

adaptivenatureofleafareatolightavailabilityinthesevarieties.

Thissuggestthattheselectionofvarietiesadaptedtoagrivoltaic

systemsshouldnotbebasedonleafgrowthpotentialinthefull

sun,butontheirplasticityinthespecificshadeconditionscreated

byPVPspanels(i.e.intermittentlightduringtheday)whichare

likelytobedifferenttopartialbutcontinuousshade.

5. Conclusion

Toourknowledgethisworkisthefirstattempttoanalyzeplant

productioninthespecificconditionsofshadecreatedbythePVPsof

anagrivoltaicsystem.Itshowsthatsomeplantslikelettucehave

theabilitytoadapttotheseconditionsandcompensatepartially

ortotallythereductionoflightavailabilitybyahigherlight

har-vestingcapability.Wewereabletorelatethisadaptivebehavior

tomorphologicalchangesin leafdevelopmentandmorphology.

Similarworkisconductedwithotherspecies(cucumber,French

beansanddurumwheat)(Marrou,PhDthesis)inordertoidentify

croprotationsadaptedtotheseconditions.Ourresultssuggestthat

theseagrivoltaïcsystemscanbeoptimizedbothbyplantbreeding

andbyspecificarrangementsofPVPspanelsinordertofindthe

bestcompromisebetweenfoodproductionandelectricity

produc-tiononthesamepieceofland.Inthissense,thisworkopensthe

scopeforanintegrateddesignofagrivoltaicsystemstooptimize

foodandenergyproductioninagiveneconomiccontext.

Acknowledgements

TheauthorsgratefullyacknowledgetheSun’Rsocietyfor

fund-ingthisresearchproject.Specialacknowledgmentsarededicatedto

thetechnicalstaff(J.F.Bourdoncle,A.Sellier,P.Parra),andtrainees

(A.Legendre,E.deMondenard,A.Calvet,andA.Franc¸ois)fortheir

essentialcontributiontodatacollectioninthefield.ThankstoG.

Talbot(INRA,Montpellier,France)forhishelpinsimulating

radi-ation,M.Tchamitchian(INRA,Avignon,France)forhisadvicein

ecophysiology,N.Hilgert(INRA,Montpellier,France)forherhelp

ongnlsadjustments,andP.Ruelle(IRSTEA,Montpellier,France)for

hissupportallalongthetwoexperimentalcampaigns.

AppendixA. Radiationmodelmathematicalformalisms

A.1. PartA:Buildingaskymap,atdailytimestep

Thefirstpartofthemodelusesmeasuredmeandailyglobal

radiation(Gr)tocreateaskymapforeverydayoftheperiodduring

whichthesimulationwillberun.Theskyisdividedintosectors

withananglestep˛fixedbytheuser(weranthesimulationswith

ananglestep˛=5◦).Eachskysectorisdefinedbytheazimuth(az)

(12)

64 44 (2013) 54–66

Themodel distributesdiffuse,directandtotal Gramongsky

sectors.TheglobalradiationGraz,el,dcomingfromasector(az,el),

forthedayd,iscalculatedfromEq.(A.1)

Graz,el,d=Grd×(PDIFd×DIFel+(1−PDIFd)×DIRaz,el,d) (A.1)

where

[1]PDIFdistheratioofdiffuseradiationRGdif,dabovetheglogal

radiationGrdforthedayd.PDIFdisgivenbyEq.(A.2)(

Varlet-Grancher,1975).

PDIFd=1.3−1.2× Grd G0d 0.01≤PDIFd≤1 (A.2)

withG0dtheextraterrestrialradiationforthedayd.

G0discalculatedaccordingtoFAO56(Allenetal.,1998)

for-malism(Eq.(A.3)).

G0d=

24×60

 ×Gsc×dr[ω×sin()×sin(ı)+cos()×cos(ı)

×sin(ω)] (A.3)

withGsc:solarconstant.Gsc=0.0820MJm−2min−1.

drinverserelativedistanceEarthSun[m]dr=1+0.0033

×cos



2

365d



(A.4)

ω:sunsethourangle[rad].ω=arcos(−tan()×tan(ı)) (A.5)

w:latitude[rad].

ı:solardecimation [rad].ı=0.409×sin



2

365×d−1.39



(A.6)

[2]DIFelistheproportionofdiffuseradiationincomingfromeach

skysector (az,el). Assky wasdiscretizedfollowing a

Stan-dartOvercastSky(SOC)distribution,asdescribedbyMoonand

Spencer,1942,DIFonlydependsontheskysectorelevation.

DIFel=67×n×



(sin(el+(˛/2))2−(sin(el−(˛/2))2

2 +2×(sin(el+(˛/2)) 3 −(sin(el−(˛/2))3 3



(A.7)

withnthenumberofskysectors.

[3]DIRel,az,distheproportionofdiffuseradiationincomingfrom

eachskysectors(az,el),forthedayd.Thisfractionofthedaily

radiationisincomingfromthesundirectionintwosteps:(1)

sunpositioniscalculatedanddirectradiationisallocatedto

skysectorsclosetothesunpositionwithatimestepinferioror

equalto1hand(2)thedirectradiationisintegratedoverthe

daylengthforeachskysector.

Timestepmustbecoherentwithanglestep:smallanglestep

requiresshorttimesteps.Weranthecalculationswithatime

stepof20min. DIRel,az,d=

X

t=sunset t=sunrise



sin(s,t)

P

t=sunset t=sunrisesin(s,t) ×

P

Wel,az,t el,azWel,az,t



(A.8) with

s,dthesundeclinationattimet,calculatedaccordingAllen

etal.(1998),aswellassunriseandsunsettimes

Wel,az,t aweightingtermthatdistributes thedirectenergy

amongtheskysectorsthataretheclosesttothesunposition.

Wel,az,tisequaltotheintersectionoftheskysector(el,az)witha

diskofsolidangleequalto2/n(n:numberofsectors),centered

onthesun.

Wel,az,t=2×



acos



˝el,az,t r



×r2(

q

(r2˝2 el,az,t)×˝el,az,t)



if ˝el,az,t≤r Wel,az,t=0 if ˝el,az,t>r (A.9) with ˝el,az,t=acos



cos(||az −azs,t||)×cos(||elels,t||) 2



and||az−azs and||az−azs,t||in[−;] (A.10)

r=acos



1−1

n



.

azs,t is thesunazimuth attime t, calculatedaccording to

Allenetal.(1998);els,tisthesunelevationattimet,calculated

accordingtoAllenetal.(1998).

A.2. PartB:sortinginterceptedandnoninterceptedbeams

Thesimulatedsceneis3Disorientatedina3Dorthogonal

ref-erential.xaxisisparalleltoNorth–Southdirection,pointingSouth

(azimuth=0),yaxisispointing East, and yaxisis pointing the

Zenith.

Forkvaryingfrom1tothenumberofPVPsstripsNp,PVPstrip

kisdefinedasafiniteplaneofEq.(B.1).

Pk:(x,y,z)/

sin( )×(x−Dk)+cos( )×(z−h)=0 h≤z≤h+l×sin( ) y0≤y≤y0+m (B.1)

where isthetiltangleofthePVPstripsfromthehorizontallevel

[rad];Dk isthepositionofthesouthernedgeofPVPstripk[m]

Dk=x0+(k−1)×e,wherex0isthepositionofthefirstPVPstrip

(southernedge) ontheNorth Southaxis, and e is thedistance

between2 PVPstrips.histheheightofthePVPstrips(bottom

edge);y0isthepositionoftheEasternendofthePVPstripsalong

theEast–Westaxis.

Raysincomingfromskysector(az,el)andhittingtheground

atthelocation(xM,yM,0)areassimilatedtostraightlinescoming

fromthecenteroftheskysector.TheyaredefinedbyEq.(B.2).

Daz,el,M:(x,y,z)/

∈R/

x−xM=cos(az) tan(el) × y−yM=−sin(az) tan(el)× z= (B.2)

TransmittedradiationTrdforthedaydattheposition(xM,yM,

0)forthedaydiscalculatedasthesumoftheraysthatarenot

interceptedbyanyofthePVPstrips.

TrM=

X

Daz,el,M∈TM

(13)

whereTMisthepoolofrayshittinggroundatthelocation(xM,yM,

0),andthatarenotinterceptedbyanyPVPstrips.

TM:(az,el)/

or tan( )×cos(az)

tan(el) =−1 and

k in[[1;Np]],

[sin( )×(Dk−xM)+cos( )×h]=/0 or

[sin( )×(Dk−xM)+cos( )×h]=0 and yM+tan(az)

×h

sin( ) <y0

or

[sin( )×(Dk−xM)+cos( )×h]=0 and yM+tan(az)

×h

sin( ) >y0+m

tan( )×cos(az)

tan(el) =/ −1 and

k in[[1;Np]]

sin( )×(Dk−xM)+cos( )×h sin( )×cos(az) tan(el) +cos( ) <h or sin( )×(Dk−xM)+cos( )×h sin( )×cos(az) tan(el) +cos( ) >h+l×sin( ) or yM−sin(az) tan(el) × sin( )×(Dk−xM)+cos( )×h sin( )×cos(az) tan(el) +cos( ) <y0 or yM−sin(az) tan(el) × sin( )×(Dk−xM)+cos( )×h sin( )×cos(az) tan(el) +cos( ) >y0+m References

Allen,R.G.,Pereira,L.S.,Raes,D.,Smith,M.,1998.CropEvapotranspiration– Guide-linesforComputingCropWaterRequirements.FAO–FoodandAgriculture OrganizationoftheUnitedNations,Rome.

Bensink,J.,1971.OnMorphogenesisofLettuceLeavesinRelationtoLightand Tem-perature.PhDthesis.VeenmanUniversity,Wageningen.

Cantagallo,J.E.,Medan,D.,Hall,A.J.,2004.Grainnumberinsunflowerasaffectedby shadingduringfloretgrowth,anthesisandgrainsetting.FieldCropsResearch 85(2–3),191–202.

Dapoigny,L.,DeTourdonnet,S.,Roger-Estrade,J.,Jeuffroy,M.-H.,Fleury,A.,2000. Effectofnitrogennutritionongrowthandnitrateaccumulationinlettuce (LactucasativaL.),under variousconditions ofradiationandtemperature. Agronomie20,843–855.

DeTourdonnet,S.,1998.Maîtrisedelaqualitéetdelapollutionnitriqueen pro-ductiondelaituessousabrisplastique:diagnosticetmodélisationdeseffets dessytèmesdeculture.In:Unitéd’AgronomieParis-Grignon,InstitutNational AgronomiquedeParis-Grignon,Paris-Grignon,pp.191.

Dupraz,C.,Marrou,H.,Talbot,G.,Dufour,L.,Nogier,A.,Ferard,Y.,2010.Combining solarphotovoltaicpanelsandfoodcropsforoptimisinglanduse:towardsnew agrivoltaicschemes.RenewableEnergy36(10),2725–2732.

Escobar,J.C.,Lora,E.S.,Venturini,O.J.,Yanez,E.E.,Castillo,E.F.,Almazan,O.,2009. Bio-fuels:environment,technologyandfoodsecurity.RenewableandSustainable EnergyReviews13(6–7),1275–1287.

Frazer,G.W.,Canham,C.D.,Lertzman,K.P.,1999.GapLightAnalyzer(GLA),Version 2.0:ImagingSoftwaretoExtractCanopyStructureandGapLightTransmission IndicesfromTrue-ColourFisheyePhotographs.In:Usersmanualandprogram documentation,SimonFraserUniversity,Burnaby,BritishColumbia,andthe InstituteofEcosystemStudies,Millbrook,NewYork.

Gay,F.,2002.Elaborationd’uneméthoded’évaluationdesrisquesdepollution nitriqueetdepertesderendementenparcellesagricolesPhDthesis.Ecole NationaleSupérieureAgronomiquedeMontpellier,Montpellier,pp.237. Gimenez,C.,Otto,R.F.,Castilla,N.,2002.Productivityofleafandrootvegetablecrops

underdirectcover.ScientiaHorticulturae94(1–2),1–11.

Goaetzberger,A.,Zastrow,A.,1982.Onthecoexistenceofsolar-energyconversion andplantcultivation.InternationalJournalofSolarEnergy1(1),55–69. Hallik,L.,Niinemets,U.,Wright,I.J.,2009.Arespeciesshadeanddrought

toler-ancereflectedinleaf-levelstructuralandfunctionaldifferentiationinNorthern Hemispheretemperatewoodyflora?NewPhytologist184(1),257–274. Holsteijn,H.M.C.,1980.GrowthofLettuce.I.CoveringofSoilSurface.Veenman,

Wageningen.

Hoogwijk,M.,Faaij,A.,VanDenBroek,R.,Berndes,G.R.,Gielen,D.,Turkenburg,W., 2003.Explorationoftherangesoftheglobalpotentialofbiomassforenergy. BiomassandBioenergy25(2),119–133.

Hunt,R.,Wilson,J.W.,Hand,D.W.,Sweeney,D.G.,1984.IntegratedAnalysisof GrowthandLightInterceptioninwinterlettuceI.Analyticalmethodsand envi-ronmentalinfluences.AnnalsofBotany54(6),743–757.

Kitaya,Y.,Niu,G.,Kozai,T.,Ohashi,M.,1998.Photosyntheticphotonflux, pho-toperiod,andCO2concentrationaffectgrowthandmorphologyoflettuceplug

transplants.HortScience33(6),988–991.

Ku,H.,1966.Notesontheuseofpropagationoferrorformulas.JournalofResearch ofNationalBureauofStandards–CEngineeringandInstrumentation70C(4), 263–273.

Monteith,J.L.,1972.Solarradiationandproductivityintropicalecosystems.Journal ofAppliedEcology9,747–766.

Monteith,J.L.,1977.ClimateandtheefficiencyofcropproductioninBritain. Philo-sophicalTransactionsoftheRoyalSociety281,277–294.

Niinemets,U.,2010.Areviewoflightinterceptioninplantstandsfromleaftocanopy indifferentplantfunctionaltypesandinspecieswithvaryingshadetolerance. EcologicalResearch25(4),693–714.

Nonhebel,S.,2005.Renewableenergyandfoodsupply:willtherebeenoughland? RenewableandSustainableEnergyReviews9(2),191–201.

Pellegrino,A.,Gozé,E.,Lebon,E.,Wery,J.,2006.Amodel-baseddiagnosistoolto eval-uatethewaterstressexperiencedbygrapevineinfieldsites.EuropeanJournal ofAgronomy25(1),49–59.

Peri,P.L.,Moot,D.J.,Jarvis,P.,Mcneil,D.L.,Lucas,R.J.,2007.Morphological, anatom-ical,andphysiologicalchangesoforchardgrassleavesgrownunderfluctuating lightregimes.AgronomyJournal99(6),1502–1513.

Pimentel,D.,Marklein,A.,Toth,M.,Karpoff,M.,Paul,G.,Mccormack,R.,Kyriazis, J.,Krueger,T.,2009.Foodversusbiofuels:environmentalandeconomiccosts. HumanEcology37(1),1–12.

Poorter,H.,Niinemets,Ü.,Poorter,L.,Wright,I.J.,Villar,R.,2009.Causesand con-sequencesofvariationinleafmassperarea(LMA):ameta-analysis. New Phytologist182(3),565–588.

Poorter,L.,2001.Light-dependentchangesinbiomassallocationandtheir impor-tance for growth of rain forest tree species. Functional Ecology 15 (1), 113–123.

Rathmann,R.G.,Szklo,A.,Schaeffer,R.,2007.Landusecompetitionforproduction offoodandliquidbiofuels:ananalysisoftheargumentsinthecurrentdebate. RenewableEnergy35(1),14–22.

Rizzalli,R.H.,Villalobos,F.J.,Orgaz,F.,2002.Radiationinterception,radiation-use efficiencyanddrymatterpartitioningingarlic(AlliumsativumL.).European JournalofAgronomy18(1–2),33–43.

Ruelle,P.,1995.Variabilitéspatialeàl’échelledeparcellesdecultures:étude expéri-mentaleetmodélisationdesbilanshydriquesetdesrendements.PhDthesis. LaboratoiredesTransfertsenHydrologieetEnvironnement.CEMAGREF Divi-sionIrrigationMontpellier,UniversitéJosephFourier–GrenobleI,Grenoble, pp.210.

Seber,G.A.F.,Wild,C.J.,2003.NonlinearRegression.Wiley-Interscience,JohnWiley &Sons,Inc,HobookenNJ,USA,pp.753.

Seidlova,L.,Verlinden,M.,Gloser,J.,Milbau,A.,Nijs,I.,2009.Whichplanttraits promotegrowthinthelow-lightregimesofvegetationgaps?PlantEcology200 (2),303–318.

Sinclair,T.R.,Muchow,R.C.,Donald,L.S.,1999.Radiationuseefficiency.In:Advances inAgronomy.AcademicPress,Newark,DE,USA,pp.215–265.

Tei,F.,Scaife,A.,Aikman,D.P.,1996.Growthoflettuce,onion,andredbeet.1.Growth analysis,lightinterception,andradiationuseefficiency.AnnalsofBotany78(5), 633–643.

(14)

66 44 (2013) 54–66

Tilman,D.,Socolow,R.,Foley,J.A.,Hill,J.,Larson,E.,Lynd,L.,Pacala,S.,Reilly,J., Searchinger,T.,Somerville,C.,Williams,R.,2009.Beneficialbiofuels:thefood, energy,andenvironmenttrilemma.Science325(5938),270–271.

Varlet-Grancher,C.,1975.Variationetestimationdel’énergierec¸uesurdesplans d’inclinaisonetd’azimutvariables.AnnalsofAgronomy26,245–264. Wacquant,C.,Zuang,H.,Baille,A.,1995.Maîtrisedelaconduiteclimatique:tomate

sousserreetabrisensolethorssol,Paris.

Walker,D.A.,2009.Biofuels– forbetterorworse?AnnalsofAppliedBiology156 (3),319–327.

Wilson,P.J.,Thompson,K.E.N.,Hodgson,J.G.,1999.Specificleafareaandleafdry mattercontentasalternativepredictorsofplantstrategies.NewPhytologist 143(1),155–162.

Worku,W.,Skjelvåg,A.O.,Gislerød,H.R.,2004.Responsesofcommonbean (Phase-olusvulgarisL.)tophotosyntheticirradiancelevelsduringthreephenological phases.Agronomie24,267–274.

Wurr,D.C.E.,Fellows,J.R.,Hambridge,A.J.,1992.Environmental-factorsinfluencing headdensityanddiameterofcrisplettuceCvsaladin.JournalofHorticultural Science67(3),395–401.

Figure

Fig. 1. Experimental design. B + |FC + |B−|FC−| indicates how varieties were distributed in 2011 from East to West
Fig. 3. Dynamics of the cover rate (CR) versus thermal time in 2010 (a) and 2011 (b) for shaded treatments (solid line) and full sun (dashed line)., ♦, o, 1, +, × represent cover rate measured for varieties B0 and FC+ (a), B+, B−, FC+, FC− (b) in the shade
Fig. 5. Relative Dry matter of lettuces plotted versus relative available light (PAR- (PAR-inc/PAR0) at harvesting date (47 DAP in 2010, and 63 DAP in 2011)
Fig. 6. Contribution of transmission, interception and conversion of light into biomass in FD and HD treatments
+4

Références

Documents relatifs

Dualex measurements yielded a reliable estimate of total soluble Phen in wheat leaves (Cartelat et al. However, whether Dualex measurements are representative of total leaf

sprachlichen Inventar dieser Disziplinengruppe einerseits Züge einer für alle Disziplinen gleichermaßen relevanten allgemeinen Wissenschaftssprache feststellen lassen,

High seed density in the nursery affected leaf emergence.. • No transplanting shock

The aim of this study was to identify the relations between leaf area index (LAI), environment (climate, soil) and fluxes (water, carbon) in Mediterranean evergreen oak (Quercus

Even in the presence of an imperfect knowledge of the phase structure function, and with a limited exposure time, the expected error root mean square of the estimation error is of

The mass of carbon in the dissolved inorganic carbon reservoir (DIC) may change as a function of the inputs of DIC from land via rivers, sur- face runo ff and groundwater

The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with