• Aucun résultat trouvé

Clust&See: A Cytoscape plugin for the identification, visualization and manipulation of network clusters

N/A
N/A
Protected

Academic year: 2021

Partager "Clust&See: A Cytoscape plugin for the identification, visualization and manipulation of network clusters"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-00832028

https://hal-upec-upem.archives-ouvertes.fr/hal-00832028v2

Submitted on 30 Jun 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

Clust&See: A Cytoscape plugin for the identification,

visualization and manipulation of network clusters

Lionel Spinelli, Philippe Gambette, Charles Chapple, Benoît Robisson, Anaïs

Baudot, Henri Garreta, Laurent Tichit, Alain Guénoche, Christine Brun

To cite this version:

Lionel Spinelli, Philippe Gambette, Charles Chapple, Benoît Robisson, Anaïs Baudot, et al..

Clust&See: A Cytoscape plugin for the identification, visualization and manipulation of network

clusters. BioSystems, Elsevier, 2013, 113 (2), pp.91-93. �10.1016/j.biosystems.2013.05.010�.

�hal-00832028v2�

(2)

BioSystems113 (2013) 91–95

ContentslistsavailableatSciVerseScienceDirect

BioSystems

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / b i o s y s t e m s

Clust&See:

A

Cytoscape

plugin

for

the

identification,

visualization

and

manipulation

of

network

clusters

夽,夽夽

Lionel

Spinelli

a,d

,

Philippe

Gambette

a,d,1

,

Charles

E.

Chapple

b,d

,

Benoît

Robisson

b,d

,

Anaïs

Baudot

a,d

,

Henri

Garreta

c,d

,

Laurent

Tichit

a,d

,

Alain

Guénoche

a,d

,

Christine

Brun

b,d,e,∗

aInstitutdeMathématiquesdeLuminy,CNRSFRE3529,AvenuedeLuminy,13288MarseilleCedex9,France

bTechniquesAvancéespourleGénomeetClinique,INSERMU1090,AvenuedeLuminy,13288MarseilleCedex9,France cLaboratoired’InformatiqueFondamentaledeMarseille,CNRSUMR7279,AvenuedeLuminy,13288MarseilleCedex9,France dAix-MarseilleUniversité,CampusdeLuminy,13288MarseilleCedex9,France

eCNRS,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received3April2013

Receivedinrevisedform22May2013 Accepted22May2013 Keywords: Interactionnetworks Graphpartitioning Clustering Visualization

a

b

s

t

r

a

c

t

Backgroundandscope:Largenetworks,suchasproteininteractionnetworks,areextremelydifficultto analyzeasawhole.WedevelopedClust&See,aCytoscapeplugindedicatedtotheidentification, visual-izationandanalysisofclustersextractedfromsuchnetworks.

Implementationandperformance:Clust&Seeprovidestheabilitytoapplythreedifferent,recently devel-opedgraphclusteringalgorithmstonetworksandtovisualize:(i)theobtainedpartitionasaquotient graphinwhichnodescorrespondtoclustersand(ii)theobtainedclustersastheircorresponding sub-networks.Importantly,toolsforinvestigatingtherelationshipsbetweenclustersandverticesaswellas theirorganizationwithinthewholegrapharesupplied.

© 2013 The Authors. Published by Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Thefieldoffunctionalgenomicsisproducingalargeamount ofdata,oftenrepresentedasinteractionnetworks–orundirected graphs.Thesegraphstypicallycontainthousandsofvertices, ren-deringtheextractionofpertinentbiologicalinformationadaunting task. Graph partitioning or clustering methods have beenused tohighlightgroupsofdenselyconnectedvertices(Aittokallioand Schwikowski,2006)which,inthefieldofproteininteractions,often correspondtoclustersofproteinsinvolvedin thesame cellular process(es).

Cytoscapeisapopularandversatilesoftwareplatform(Shannon etal.,2003)fornetworkvisualizationandanalysis.Whileanumber

夽 Thisisanopen-accessarticledistributedunderthetermsoftheCreative Com-monsAttribution-NonCommercial-NoDerivativeWorksLicense,whichpermits non-commercialuse,distribution,andreproductioninanymedium,providedthe originalauthorandsourcearecredited.

夽夽 Availability:http://tagc.univ-mrs.fr/tagc/index.php/clustnsee

∗ Corresponding authorat: TAGC, U1090 Inserm-AMU, ParcScientifique de Luminycase928,163,AvenuedeLuminy,13288MarseilleCedex09,

France.Tel.:+33491828712.

E-mailaddress:brun@tagc.univ-mrs.fr(C.Brun).

1 Currentaddress:Laboratoired’InformatiqueGaspard-Monge,CNRSUMR8049,

CitéDescartes,BâtCopernic–5,bdDescartes,ChampssurMarne,77454 Marne-la-ValléeCedex2,France.

ofCytoscapepluginssuchasClusterMaker(Morrisetal.,2011)or ClusterOne(Nepuszetal.,2012)canidentifyclustersfromgraphs, theymainlyfocusonvisualizingtheobtainedclustersindividually andindependentlyassubnetworkstofurtherinvestigatetheirnode composition.However,exploringtherelationshipsbetween clus-tersindetailisasimportantasstudyingtheirinternalcomposition. Indeed, while proteinsinvolved in the same process(es) inter-actwithinclusters,linksbetweenclusterscorrespondtocrosstalk betweenprocesses.Communicationbetweenprocessescanalsobe performedbyproteinsbelongingtoseveralclusters.Consequently, consideringthelinksbetweennetworkclusterspermitsabetter understandingofthemodularityofbiologicalnetworksand the functionaltransitionsimposedbytheintegrativeorganization lev-els,fromproteinstofunctionalmodulestoentiresystems.

Tofill this gap,we havedeveloped Clust&See, a truly inter-activetoolthatcan(i)automaticallydecomposeanetworkinto clusters;(ii)visualizethoseclustersasmetanodeslinkedby sev-eraltypesofedges/relationships;(iii)manipulatetheclustersfor furtherdetailedvisualization,analysesandcomparisons.

2. Softwaredescription

Clust&See is a Cytoscape plugin developed for Cytoscape version 2.8. Some GUI elements have been reused from code

0303-2647/$–seefrontmatter © 2013 The Authors. Published by Elsevier Ireland Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biosystems.2013.05.010

(3)

92 L.Spinellietal./BioSystems113 (2013) 91–95

Fig.1.QuotientgraphsobtainedwhenclusteringthePI3Knetworkwiththe3implementedalgorithms.

from the MCODE (Bader and Hogue, 2003) and ClusterViz (http://apps.cytoscape.org/apps/clusterviz)plugins.

2.1. Implementedgraphclusteringalgorithms

Todate,threeclusteringalgorithmsbasedontheoptimization ofNewman’smodularity(Newman,2004)havebeenimplemented inClust&See.WhileTFitandFTleadtodisjointclusters,OCGleads tooverlappingones:

(1)FT(forFusion-Transfer)(Guénoche,2011)isanascending hier-archicalmethodfusing two clustersiterativelyifthefusion resultsinamodularitygain.Thealgorithmstartswith single-tonsandstopswhenfurtherfusionsleadtoalossinmodularity. Modularityisthenfurtheroptimizedbytransferringvertices fromoneclustertoanother.

(2)TFit(foriteratedTransfer-Fusion)(Gambetteand Guénoche, 2012)isamulti-levelalgorithminwhichavertextransfer pro-cedureisperformedateverylevel.Levelonecorrespondstothe network.Whilemodularityincreases,eachnodeisassociatedto itsbestadjacentcluster.Classicaltransfersarethenperformed andaquotientgraphiscomputed;clustersthenbecomethe nodesofthenextleveltobefurtheroptimized.

(3)OCG(forOverlappingClusterGenerator)(Beckeretal.,2012)is anascendinghierarchicalmethodfusingtwoclustersateach step.Initially,anoverlappingclasssystemformedbyeither(i) maximalcliques,or(ii)edgesor(iii)centeredcliquesisbuilt. These classes are then merged,while modularity increases, resultinginoverlappingclusters.

Performancevaluesintermsoftimeandmemoryofthethree algorithms are provided as Supplementary Material. Clustering resultsproducedbyClust&Seecanbeexportedastextfiles,and subsequently re-imported and re-mapped to the original net-work,avoidingrepetitivecomputation.Importantly,resultsfrom

external clustering tools can be analyzed with Clust&See. Cur-rently, the R package “Linkcomm” (Kalinka and Tomancak, 2011), in which the LinkCommunities (Ahn et al., 2010) and OCG (Becker et al., 2012) algorithms are implemented, pro-videsoutputfilesthatarecompatiblewithClust&See(forfurther information on supported formats, see the online Documen-tation,http://tagc.univ-mrs.fr/tagc/index.php/software/clustnsee/ clustnseedocumentation). Finally, the modular structure of Clust&Seemakesiteasytoimplementotherclusteringalgorithms directlyinJava.

2.2. Visualizationandanalysis

TheclusteringresultscanbevisualizedinClust&Seeasa quo-tientgraphinwhichclustersarerepresentedasmetanodeswhose widthisproportionaltothenumberoftheirconstituentvertices (Fig.1).Metanodescanbelinkedbytwotypesof“metaedges”,one (black)whosewidthisproportionaltothenumberofinteractions betweentheirverticesand,mostimportantly,one(green)whose widthisproportionaltothenumberofverticessharedby overlap-pingclusterscomputedbyalgorithmssuchasOCG.AdockedResult Panelprovidesasortablelistoftheclustersinwhicheachcluster’s subnetworkisdisplayedalongwithitsrelevantfeatures,suchas sizeoredgedensity.

Novelviews,intowhichclustersofinterestcanbesuccessively loaded,can becreatedondemand.An“Expand/collapsenodes” functionallowstheusertoswitchfromthecluster/metanode rep-resentationtothecorrespondingsubnetworkofverticesandvice versa(Fig.2).DetailsprovidedintheDataPaneluponselectionof thedifferentobjects(vertices,edges)facilitatethestudyofthe rela-tionshipsbetweenclusters.Thecompositionofeachmetanodeis providedaswellas,importantly,thecompositionofthemetaedges representingthesharedobjects(nodesoredges)betweencluster pairs.

(4)

L.Spinellietal./BioSystems113 (2013) 91–95 93

Fig.2.A‘NewClusterView’showingtheclusters5,12and25generatedbytheOCGalgorithmasmetanodesandthetwoedgetypeslinkingthem.Blackmetaedgesconnect verticesofoneclustertothoseofanother.Greenmetaedgesrepresentthenodessharedbetweentheclusters.DetailsareshownintheDataPanelwhenselectingagreenor ablackmetagedge.Anexampleofanexpandedmetanodeisalsogiven.

Whentwodifferentpartitionsarecomputedonthesame net-work(usingdifferentalgorithmsordifferentparameters),theyare comparedusingtheJaccardindex(Jaccard,1901)whichprovides ameasureofthepartitions’similarity.Acontingencytablelisting thenumberofsharednodesbetweentheclustersofeachpartition isprovidedforfurtheranalysis.

Inaddition,becauselaunchingananalysisonaverylarge net-workorselection maylead, atbest,unmanageable results(too manyclusters)and,atworst,tomemoryissuesandverylong com-putationtimes,Clust&Seeofferstheuserthechoiceofextracting sub-networksofinterestonwhichtocontinuetheanalysisbyusing the“Buildneighborhoodnetwork”functionality.

Finally,theprovidedsearchfunctioncanidentifyaspecificnode amongtheclustersofallpartitionsunderinvestigation.

3. Application

3.1. Fromclusterstonodes

Fig.1showstheresultsobtainedwhenapplyingthe3algorithms currentlyimplementedinClust&SeetothePI3Kinteractome net-work(Pilot-Storcketal.,2010).Aglobalviewofeachpartitionas aquotientgraph,inwhichtheobtainedclustersarerepresented asmetanodes,isgiven.Notethatthedefaultviewisshownwhen thepartitioncontainsnomorethan15clusters/metanodes,butcan

alwaysbedisplayedondemandforlargerpartitions.Theseviews areoneoftheoriginalfeaturesprovidedbytheplug-in.

ThePI3Kpathwaytransmitssignalsfromreceptorslocatedat thecellsurfacetotranscriptionfactorsinthenucleus,viaan intra-cellularsignalingcascadeinvolvingseveralkinases.Toillustratethe valueofalocalanalysisusingClust&See,wehavechosentoexplore theconnectionsbetween3overlappingclustersgeneratedbythe OCGalgorithm,containingamajorityofreceptor-bindingproteins (Cluster12),serine/threoninekinases(Cluster25)andnuclearacid bindingproteins(Cluster5)respectively.The3clustersare repre-sentedasmetanodesinFig.2,whichshowsa“NewClusterView” createdonthefly. In addition,Cluster 25, formedby 13nodes linkedby16intra-clusteredges,isshownintheClusterBrowser oftheResultsPanel.Detailsonthemono/multi-clusteredstatus ofverticesaregivenintheDataPanel.Clusterssharingvertices (likeClusters5and25),areeasilyidentifiablesincetheyarelinked byagreenmetaedgewhosedetailsareshownintheDataPanel uponselection:twokinases,KS6B1andPK3CA,belongtoboth clus-ters,suggestingapossiblefunctionallinkbetweenthoseproteins. Interestingly,particularvariantsofthegenesencodingthese pro-teinshavebeenfoundtointeractgeneticallyinacase-controlstudy forcolorectalcancers(Slatteryetal.,2011).Avisualexploration oftheorganizationoftheclusterswithClust&Seecantherefore helpbuildinghypothesisandpointingtowardrelevantfunctional objects(representedasnodes,metanodes, edgesormetaedges) andtheirrelationships.Finally,metanodescanbeexpanded(and

(5)

94 L.Spinellietal./BioSystems113 (2013) 91–95

Fig.3.TheresultofasearchforPARP1intheclustersobtainedfromthedifferentalgorithmsisshown.ThetwoclusterscontainingPARP1accordingtoOCGareprovidedas a‘NewClusterView’andtheexpandedmetanodesareshownbelowthem.

subsequentlycollapsed)inordertovisualizetheunderlying sub-network.ThecombinationofthedetailsshownintheDataPanel andthevisualizationofthecompositesubnetworkgreatly facili-tatesthestudyoftheidentifiedclustersandtheirconnections. 3.2. Fromnodestoclusters

Fig.3illustratesthesearchforaparticularnode,PARP1,across thedifferentpartitionsobtainedwhenusingallthreealgorithmson thesamenetwork.PARP1belongstotwoOCGclusters(P3partition intheResultsPanel).Interestingly,whenbothclustersareloaded ina“NewClusterView”forfurtheranalysis,theDataPanelshows thatPDK1isalsosharedbythesameclusters,suggestingapossible functionallinkbetweenPARP1andPDK1.Thisisfurtherconfirmed whentheexpandedclusterviewisgenerated,showingthatboth proteinsinteractdirectly.Thisinteractioncouldinpartexplainthe factthatco-targetingthePI3Kpathwayimprovestheresponseof cancercellstoPARP1inhibition(Kimbungetal.,2012).

4. Conclusion

TheCytoscapeplug-inClust&Seeaimstofacilitatenetwork clus-teringand analysis for biologistsnot only byproviding several originalfunctionalitiesbutalsobyprovidingthemwithinasingle analysisframework.WhileClusterMaker(Morrisetal.,2011)can representclustersasmetanodes,it providesneither intra/extra-edge visualization nor the possibility to expand/collapse the metanodes.Similarly,whileClusterOne(Nepuszetal.,2012)can identifyoverlappingclusters,studyingtherelationshipsbetween these clusters is not possible because their combined repre-sentation is not supported. In addition, Clust&See enables (i) betterevaluationofthebiologicalmeaningofnetworkclustering, (ii)betterunderstandingoftheunderlyingreasonsfora partic-ularnodeclassification, (iii) betterestimation of thequality of

thenetworkunderscrutinyand(iv)adjustingtheclustering algo-rithmchoicetothestudiednetwork.Insummary,theoriginality ofClust&Seeliesinitsproviding userswithacomplete toolfor thecreationandanalysisofnetworkclustersandtherelationships betweenthem.

Acknowledgements

WethankMarineVeyssièrefortheupdateofthePI3K inter-actome.Thisworkissupportedby the“AgenceNationale dela Recherche”asaPiribiogrant(09-PIRI-0028,Moonlightprojectto C.B)andasapartneroftheERASysbio+initiativesupportedunder theEUERANETPlusschemeinFP7(ModHeartProject).B.R.isaPhD fellowoftheAXAResearchFund.C.C.isapostdoctoralfellowofthe “FondationpourlaRechercheMédicale”.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, in the online version, at http://dx.doi.org/10.1016/j.biosystems. 2013.05.010.

References

Ahn,Y.-Y.,Bagrow,J.P.,Lehmann,S.,2010.Linkcommunitiesrevealmultiscale com-plexityinnetworks.Nature466,761–764.

Aittokallio,T.,Schwikowski,B.,2006.Graph-basedmethodsforanalysingnetworks incellbiology.BriefBioinform.7,243–255.

Bader,G.D.,Hogue,C.W.,2003.Anautomatedmethodforfindingmolecular com-plexesinlargeproteininteractionnetworks.BMCBioinform.4,2.

Becker,E.,Robisson,B.,Chapple,C.E.,Guénoche,A.,Brun,C.,2012.Multifunctional proteinsrevealedbyoverlappingclusteringinproteininteractionnetwork. Bioinformatics28,84–90.

Gambette,P.,Guénoche,A.,2012.Bootstrapclusteringforgraphpartitioning.RAIRO –Oper.Res.45,339–352.

Guénoche,A.,2011.Consensusofpartitions:aconstructiveapproach.Adv.Data Anal.Classification5,215–229.

(6)

L.Spinellietal./BioSystems113 (2013) 91–95 95 Jaccard,P.,1901.DistributiondelaflorealpinedanslebassindesDransesetde

quelquesrégionsvoisines.Bull.Soc.Vaud.Sci.Nat.37,241–272.

Kalinka,A.T.,Tomancak,P.,2011.linkcomm:anRpackageforthegeneration, visual-ization,andanalysisoflinkcommunitiesinnetworksofarbitrarysizeandtype. Bioinformatics27,2011–2012.

Kimbung, S., Biskup, E., Johansson, I., Aaltonen, K., Ottosson-Wadlund, A., Gruvberger-Saal,S.,Cunliffe,H.,Fadeel,B.,Loman,N.,Berglund,P.,etal.,2012. Co-targetingofthePI3KpathwayimprovestheresponseofBRCA1deficient breastcancercellstoPARP1inhibition.CancerLett.319,232–241.

Morris,J.H.,Apeltsin,L.,Newman,A.M.,Baumbach,J.,Wittkop,T.,Su,G.,Bader, G.D.,Ferrin,T.E.,2011.clusterMaker:amulti-algorithmclusteringpluginfor Cytoscape.BMCBioinform.12,436.

Nepusz,T.,Yu,H.,Paccanaro,A.,2012.Detectingoverlappingproteincomplexesin protein–proteininteractionnetworks.Nat.Methods9,471–472.

Newman,M.E.,2004.Fastalgorithmfordetectingcommunitystructureinnetworks. Phys.Rev.EStat.Nonlin.SoftMatterPhys.69,066133.

Pilot-Storck,F.,Chopin,E.,Rual,J.-F.,Baudot,A.,Dobrokhotov,P.,Robinson-Rechavi, M.,Brun,C.,Cusick,M.E.,Hill,D.E.,Schaeffer,L.,etal.,2010.Interactomemapping ofthephosphatidylinositol3-kinase-mammaliantargetofrapamycinpathway identifiesdeformedepidermalautoregulatoryfactor-1asanewglycogen syn-thasekinase-3interactor.Mol.CellProteomics9,1578–1593.

Shannon, P., Markiel,A.,Ozier, O.,Baliga,N.S.,Wang, J.T.,Ramage,D.,Amin, N.,Schwikowski,B.,Ideker,T.,2003.Cytoscape:asoftwareenvironmentfor integrated models ofbiomolecular interactionnetworks.Genome Res. 13, 2498–2504.

Slattery,M.L.,Lundgreen,A.,Herrick,J.S.,Wolff,R.K.,2011.Geneticvariationin RPS6KA1,RPS6KA2,RPS6KB1,RPS6KB2,andPDK1andriskofcolonorrectal cancer.Mutat.Res.706,13–20.

Figure

Fig. 1. Quotient graphs obtained when clustering the PI3K network with the 3 implemented algorithms.
Fig. 2. A ‘New Cluster View’ showing the clusters 5, 12 and 25 generated by the OCG algorithm as metanodes and the two edge types linking them
Fig. 3. The result of a search for PARP1 in the clusters obtained from the different algorithms is shown

Références

Documents relatifs

vivax at low (200) and high (2000 or 5000) parasite densities (parasites/μl) and clean negative samples ProductCatalogue number Manufacturer Panel Detection ScoreaFalse positive

characterization of the dynamics of unbinding and rebinding the McGurk effect. Orofacial electromyographic correlates of induced verbal rumination. The Rate of Expanded Inner

The Review highlights the need for biological standardization and control to keep pace with scientific developments in the field, and stresses that this can only

Por favor, seleccione los marcos azul para acceder al

Please click on the different sections for access to the

The BioQuali plugin detected that the network model was consistent with the 4-fold gene expression changes and it calculated 123 predictions, whereas the COMA plugin output 5

Mallett’s work has been exhibited widely, including the Contemporary Art Gallery (Vancouver), Vancouver Art Gallery, Art Gallery of Alberta (Edmonton), Modern Fuel (Kingston),

It has applications to the determination of basis of a strongly ∆-ergodic Markov chain (see [6] and references therein), the perturbed Markov chains (see [7]), the design and