• Aucun résultat trouvé

Chapitre 1

N/A
N/A
Protected

Academic year: 2021

Partager "Chapitre 1"

Copied!
40
0
0

Texte intégral

(1)

Chapitre 1

La révolution des sciences de la vie par la génétique

Variation génétique de la couleur des grains de maïs. Chaque grain représente un individu de constitution génétique distincte.

(2)
(3)

Historique de la génétique

Gregor Mendel (1822-1884)

Découverte d’éléments

biologiques que nous

appelons désormais

(4)

Quelques définitions

Génétique: La génétique est l’étude des gènes et de l’hérédité. Gène: Fraction d’une molécule filiforme organisée en double

hélice, appelée acide désoxyribonucléique, abrégé en ADN.

ADN (acide désoxyribonucléique): Une double chaîne de nucléotides

liés les uns aux autres; la substance fondamentale dont sont composés les gènes.

Allèle: L’une des différentes formes d’un gène qui peuvent exister au

niveau d’un même locus.

Chromosome: Un arrangement linéaire (ou circulaire) de gènes et d’autres types d’ADN, parfois associé à des protéines et de l’ARN.

Génome: Ensemble du matériel génétique contenu dans un jeu de chromosomes.

(5)

De l’organisme au matériel génétique

Variations alléliques

(6)

Gènes et ploïdie

Jeux de chromosomes diploïdes humain

n n n 2n 2n

Chez les organismes diploïdes, deux

chromosomes possédant le même ensemble de

gènes sont dits

(7)

1-

La diversité de structure

2-

La capacité de se répliquer

3-

La capacité de muter

4-

La traduction en forme et en fonction

(8)

1)

La diversité de structure

Bien qu’il n’existe seulement que quatre types de nucléotides dans un brin d’ADN, ces nucléotides peuvent être associés dans n’importe quel ordre et le fragment d’ADN correspondant à un gène donné peut être de n’importe quelle longueur.

(9)

L’acide désoxyribonucléique (ADN)

La double hélice d’ADN est composée de deux chaînes entrelacées de nucléotides.

Représentation en ruban de la double

(10)

L’appariement des nucléotides

Les chaînes nucléotidiques

(11)

2)

La capacité de se répliquer

L’ADN est répliqué grâce au déroulement des deux brins de la double hélice et la synthèse d’un nouveau brin complémentaire

(12)

La réplication de l’ADN

La réplication de l’ADN a lieu grâce au déroulement et à l’ouverture des chaînes nucléotidiques (molécules mères d’ADN) qui deviennent ainsi chacune des

matrices. La polymérisation en de nouveaux brins (molécules filles d’ADN) est catalysée par l’enzyme ADN polymérase. La réplication est dite semi-conservative car chaque molécule fille est en fait composé à 50% d’une molécule mère.

(13)

Les ADN polymérases peuvent allonger une chaîne existante mais sont incapables d’en débuter une. Une amorce est donc essentielle pour débuter ce processus. Il s’agit d’un court fragment de 8 à 12 nucléotides

complémentaires à une région spécifique du chromosome. Les amorces sont synthétisées par une enzyme nommée primase.

Les ADN polymérases ne synthétisent de

nouvelles chaînes que dans le sens 5’ vers 3’ et, étant donné la nature antiparallèle de la molécule d’ADN, se déplacent dans le sens 3’ vers 5’ le

long du brin matrice. La conséquence de cette polarité est que tandis qu’un brin, le brin précoce, est synthétisé de manière continue, l’autre, le

brin tardif, doit être synthétisé par courts fragments discontinus.

(14)

La réplication de l’ADN

La réplication de l’ADN procède grâce à la création d’une fourche de réplication et l’action d’enzymes.

(15)

Les origines de réplication

Chez les procaryotes (a), l’origine de la réplication est souvent unique et la réplication procède dans les deux orientations à partir de ce point.

Chez les eucaryotes (b), la réplication a lieu à partir d’origines multiples. Des expériences récentes

ont démontrées que chez la levure on retrouve environ 400 origines de réplications réparties parmi les 16

chromosomes de cet

organisme. Chez l’humain, on estime à plus de 10 000 le nombre de fourches de réplications simultanées.

(16)

3)

La capacité de muter

Au cours de la réplication, une base incorrecte peut être insérée ou bien des bases peuvent être perdues ou dupliquées. Si un tel événement se produit, la nouvelle copie de l’ADN et toutes les copies qui en découleront seront différentes de la molécule ancestrale. Il y aura alors apparition d’une mutation héréditaire.

(17)
(18)

4)

La traduction en forme et en fonction

D’une façon ou d’une autre, une séquence donnée de A, T, G et C, doit être utilisée par la cellule pour créer des protéines ayant des

séquences particulières d’acides aminés. De plus, une partie de l’ADN doit servir de signal pour prévenir la machinerie cellulaire que la

traduction d’un gène donné en une séquence d’acides aminées doit se dérouler dans certaines cellules, dans des tissus particuliers et à des moments précis du développement et de la vie d’un organisme.

(19)

La transcription et la traduction

ADN ARN Protéine (détermine la forme au niveau cellulaire)

(20)

Transcription de l’ADN en ARN

Un gène peut être défini comme un fragment d’ADN spécifiant un ARN fonctionnel. ARN: 1) Composé de nucléotides comme l’ADN mais le sucre est le ribose.

2) À la place de la thymine (T), l’ARN contient l’uracile (U).

3) Addition de nucléotides de 5’ vers 3’ (comme avec la réplication d’ADN).

Le transcrit

(21)

La traduction de l’ARNm en protéines

La structure primaire d’une protéine est composée d’une chaîne linéaire d’éléments appelés acides aminés. La synthèse protéique se déroule dans des organites

(22)

Triplet de nucléotides

Anti-codon spécifique de l'ARNt

Acide aminé spécifique

Cheminement de l’information génétique

Complexe codon/anti-codon

présentant les orientations 5’ - 3’

(23)

Le code génétique

4 x 4 x 4 = 64 codons distincts, chacun correspondant à un acide aminé ou à un signal de terminaison.

(24)

Structure tridimensionnelle des chromosomes

Chromosomes métaphasiques d’abeille

Chaque chromosome est une seule molécule d’ADN fortement repliée.

Les niveaux successifs d’empaquetage des chromosomes:

1- L’ADN s’enroule autour des bobines d’histones 2- La chaîne nucléosomale s’enroule en un solénoïde 3- Le solénoïde forme des boucles et ces boucles se fixent à l’armature centrale

4- L’armature et les boucles s’organisent en un

super enroulement géant

Histone: Un type de protéines basiques qui forme l’unité autour de laquelle

s’enroule l’ADN dans les nucléosomes des chromosomes eucaryotes.

Nucléosome: Une boule constituée de huit molécules d’histones autour

de laquelle s’enroulent deux tours d’ADN. L’unité élémentaire de structure d’un chromosome eucaryote.

(25)

Degré d’enroulement des chromosomes

Solénoïde avec six nucléosomes par tour

Structure avec armature

(26)

Le nombre de chromosomes

Des espèces différentes ont des nombres de chromosomes qui leur sont propres.

(27)

La taille des chromosomes

Structure typique d’un chromosome montrant la formation de deux chromatides soeurs

(28)

Les centromères

Centromère: Région de chromosome à laquelle s’attachent les

fibres du fuseau.

(29)

Quelques définitions

Les nucléoles sont des organites intranucléaires qui contiennent de l’ARN ribosomal, un composant important des ribosomes.

Le nombre de nucléoles (régions denses) varie fortement d’un organisme à l’autre, un jeu de chromosomes pouvant comporter un à un très grand nombre de nucléoles. Les nucléoles sont situés à proximité de

constrictions secondaires des chromosomes appelées organisateurs nucléolaires qui occupent des positions bien définies dans le jeu de

chromosomes. Les organisateurs nucléolaires contiennent les gènes qui codent pour l’ARN ribosomal. Les nucléoles sont donc situés à proximité de ces derniers. La position des organisateurs nucléolaires, tout comme celle des centromères, constituent des repères pour l’analyse

(30)

D’autres définitions

Chromatine: Substance constituant les chromosomes; on sait

maintenant qu’elle est composée d’ADN, de protéines chromosomiques et d’ARN chromosomique. Basée sur la coloration, on distingue deux types de chromatines: l’hétérochromatine (coloration dense) et

l’euchromatine (faiblement colorée).

L’hétérochromatine peut être constitutive (caractéristique permanente d’une position chromosomique donnée, et en ce sens, un caractère héréditaire) ou facultative (se rencontre mais pas toujours en une

position particulière des chromosomes). Les emplacements respectifs de

l’hétérochromatine et de l’euchromatine le long d’un chromosome sont de bons

(31)

Les types de chromosomes

Il existe deux catégories de chomosomes: A- chromosomes sexuels

B- autosomes

Exemple 1: Chez l’humain: 22 paires homologues d’autosomes plus

2 chromosomes sexuels (X et X ou Y) pour un total de 46 chromosomes. Exemple 2: La détermination chromosomique du sexe chez l’homme et la drosophile.

(32)

La variation génétique

•Variation génétique=variation allélique •Comme la plupart des organismes ne

possèdent qu’un ou deux jeux de

chromosomes par cellule, un organisme donné ne peut que porter un ou deux allèles pour un même gène.

•Les allèles d’un gène sont tous

présents à la même position chromosomique.

Un albinos. Le phénotype résulte de l’homozygotie d’un allèle récessif a/a.

(33)

Quelques conventions

Par convention, les allèles d’un gène sont souvent désignés

par des lettres. Par exemple, l’allèle codant pour la capacité

de synthèse de la mélanine dans le cas de l’albinisme

est appelé A et l’allèle codant l’incapacité correspondante

(qui aboutit à l’albinisme) est désigné par a.

La condition allélique d’un organisme est son

génotype

, qui

est le pendant héréditaire de son

phénotype

.

Ainsi, dans cet exemple:

A/A

= peau pigmentée

A/a

= peau pigmentée

(34)

L’origine moléculaire de la variation allélique

Gène Protéine -protéine de structure -enzyme Types de mutations courantes: -substitutions -délétions -insertions tyrosinase tyrosine mélanine

(35)

Variation génétique discontinue et continue

Variation discontinue Variation continue

Dans la variation discontinue, il y a une relation terme à terme prévisible entre génotype et phénotype.

Dans la variation continue, il y a une gamme ininterrompue de phénotypes dans la population. Les phénotypes intermédiaires sont généralement les plus courants.

(36)

Les méthodologies utilisées en génétique

1) L’isolement des mutants affectant un processus en cours d’étude. 2) L’analyse des descendants d’unions contrôlées (« croisements »)

entre des mutants et des individus de type sauvage ou d’autres variants discontinus.

3) L’analyse génétique des processus biochimiques de la cellule. 4) L’analyse microscopique.

(37)

Les méthodologies utilisées en génétique

L’analyse directe de l’ADN.

L’exemple du clonage:

(38)

Détecter des molécules spécifiques d’ADN, d’ARN et de protéines à l’aide de

sondes.

ADN transfert de Southern

ARN transfert de Northern

Protéines transfert de Western

(39)

Les organismes modèles utilisés en génétique

Escherichia coli

Saccharomyces cerevisiae Neurospora crassa

Arabidopsis thaliana

Drosophila melanogaster

Caenorhabditis elegans Mus musculus

(40)

Références

Documents relatifs

ADN, séquences de nucléotides : le langage génétique et son expression ADN, séquences de nucléotides : le langage génétique et son expression Complétez ci-dessous à l’aide

Il prétend en effet que les chances que deux enfants d’une famille riche subissent une mort subite du nourrisson sont d’une pour 73 millions (résultat auquel il arrive en se basant

On compare les séquences du gène de la ß globine humaine et l’ARN mature présent dans le cytoplasme (qui contient les informations nécessaires à la synthèse de la protéine) : on

§ Établir la relation entre le NAD, NADP, FAD et l ’oxydation biologique. § Décrire brièvement les molécules de ADN

Bien qu’il n’existe seulement que quatre types de nucléotides dans un brin d’ADN, ces nucléotides peuvent être associés dans n’importe quel ordre et le fragment

Exemples d'autres types de bioinformation (directe ou obtenue "in silico") Les structures tridimensionnelles des protéines et aussi, malgré leur nombre plus restreint,

L'ADN des cellules eucaryotes n'est pas non plus exclusivement contenu dans le noyau mais peut être dans des plastes ou des mitochondries.. Lors de la mitose, l'ADN se condense

Rappel : L’ADN nucléaire est à l’origine d’un « messager »On suspecte que cela pourrait être l'ARN,molécule présente dans le cytoplasme et dans le noyau..