• Aucun résultat trouvé

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at sNN=5.02 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at sNN=5.02 TeV with the ATLAS detector"

Copied!
22
0
0

Texte intégral

(1)

Article

Reference

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at sNN=5.02 TeV with the ATLAS detector

ATLAS Collaboration AKILLI, Ece (Collab.), et al.

Abstract

Measurements of the yield and nuclear modification factor, RAA , for inclusive jet production are performed using 0.49 nb −1 of Pb+Pb data at sNN=5.02TeV and 25 pb −1 of Pb+Pb data at s=5.02TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-kt algorithm with radius parameter R=0.4 and are measured over the transverse momentum range of 40–1000 GeV in six rapidity intervals covering |y|

ATLAS Collaboration, AKILLI, Ece (Collab.), et al . Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at sNN=5.02 TeV with the ATLAS detector. Physics Letters. B , 2019, vol. 790, p. 108-128

DOI : 10.1016/j.physletb.2018.10.076

Available at:

http://archive-ouverte.unige.ch/unige:113947

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the nuclear modification factor for inclusive jets in Pb + Pb collisions at

s

NN

= 5 . 02 TeV with the ATLAS detector

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16May2018

Receivedinrevisedform8October2018 Accepted13October2018

Availableonline2January2019 Editor: W.-D.Schlatter

Measurements of the yield and nuclear modification factor, RAA, for inclusive jet production are performedusing 0.49 nb1 ofPb+Pb dataats

NN=5.02 TeV and25 pb1ofPb+Pb data at s= 5.02 TeV withthe ATLASdetector atthe LHC. Jetsare reconstructedwiththe anti-kt algorithmwith radiusparameter R=0.4 andare measuredoverthe transversemomentumrangeof40–1000 GeV in sixrapidityintervalscovering|y|<2.8.ThemagnitudeofRAAincreaseswithincreasingjettransverse momentum,reachingavalueofapproximately 0.6at1 TeV inthemostcentralcollisions.Themagnitude ofRAAalsoincreasestowardsperipheralcollisions.ThevalueofRAAisindependentofrapidityatlowjet transversemomenta,butitisobservedtodecreasewithincreasingrapidityathightransversemomenta.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Heavy-ioncollisionsatultra-relativisticenergiesproduceahot, dense medium of strongly interactingnuclear matter understood tobecomposedofunscreenedcolourchargeswhichiscommonly called a quark–gluon plasma (QGP) [1–4]. Products of the hard scatteringofquarksandgluonsoccurringinthesecollisionsevolve aspartonshowersthatpropagatethroughthehotmedium.Parton showerconstituentsemit medium-inducedgluonradiationorsuf- fer from elastic scattering processes and as a consequence they lose energy, leading to the formation of lower-energy jets. This phenomenonistermed“jetquenching” [5–7].Ithasbeendirectly observedasthe suppressionof thejet yields inPb+Pb collisions comparedtojetyieldsinPb+Pb collisions [8–11],themodification ofjetinternal structure [12–15], anda significantmodification of the transverse energy balance in dijet [16–18] and multijet sys- tems [19].

TheenergylossofpartonspropagatingthroughtheQGPresults in a reduction of the jet yield at a given transverse momentum (pT). This together withthe falling shapeof thejet pT spectrum lead to the observed suppression of jets in collisions of nuclei relative to Pb+Pb collisions. Centralheavy-ion collisions have an enhanced hard-scattering rate due to the larger geometric over- lapbetweenthecollidingnuclei,resultinginalargerper-collision nucleon–nucleon flux. To quantitatively assess the quenching ef- fects, the hard-scatteringrates measured in Pb+Pb collisions are normalisedby themean nuclearthicknessfunction, TAA, which

E-mailaddress:atlas.publications@cern.ch.

accounts forthisgeometric enhancement [20]. The magnitudeof theinclusivejetsuppressioninnuclearcollisionsrelativetoPb+Pb isquantifiedbythenuclearmodificationfactor

RAA= 1 Nevt

d2Njet dpTdy cent

TAAd2σjet

dpTdy pp

,

where Njet and σjet are thejet yieldin Pb+Pb collisionsandthe jet cross-section inPb+Pb collisions,respectively, both measured as a function of transverse momentum, pT, andrapidity, y, and where Nevt isthetotalnumberofPb+Pb collisionswithinacho- sencentralityinterval.

A value of RAA0.5 in central collisions was reported in Pb+Pb measurementsat

sNN=2.76 TeV bytheATLASandCMS Collaborations for jet pT above 100 GeV [9,10]. These measure- mentsthereforeshowasuppressionofjetyieldsbyafactoroftwo incentralcollisions relativetothecorresponding Pb+Pb yieldsat thesamecentre-of-massenergy.Alsoaclearcentralitydependence isobserved.Twounexpectedfeatures[21] alsoemergefromthose studies: RAAincreasesonlyveryslowlywithincreasingjet pT,and no dependenceof RAA onjet rapidity isobserved.Measurements by the ATLAS and CMS Collaborations can be complemented by the measurement by the ALICE Collaboration which reports RAA forjetsmeasured in pT interval of30–120 GeVincentral Pb+Pb collisions[22].

This Letter describesthe new measurements ofyields of R= 0.4 anti-kt jets [23] performedwith0.49nb1 ofPb+Pb datacol-

https://doi.org/10.1016/j.physletb.2018.10.076

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

lected at

sNN=5.02 TeV in 2015and 25 pb1 ofPb+Pb data collected at

s=5.02 TeV in the same year. This new study closely follows the first measurement by the ATLAS Collabora- tion [9] performed using 0.14 nb1 of Pb+Pb data collected at

sNN=2.76 TeV in 2011and4.0 pb1 ofPb+Pb data collected at

s=2.76 TeV in2013.Higher luminosity,increasedcentre-of- massenergy,andimprovedanalysistechniquesallowedtoextend themeasurement tomore thantwo times highertransversemo- menta, and to larger rapidities. This new measurement provides inputrelevanttoa detailedtheoretical descriptionofjetsuppres- sion,especiallyits dependenceon thecollision energy,centrality, jetpT,andrapidity.

2. Experimentalsetup

TheATLASexperiment [24] attheLHCfeaturesamultipurpose particle detectorwith a forward–backward symmetric cylindrical geometry and a nearly full coverage in solid angle.1 The mea- surementspresentedherewereperformedusingtheATLAS inner detector,calorimeter,triggeranddataacquisitionsystems.

Theinner-detectorsystem(ID)isimmersedina2 Taxialmag- netic field and provides charged-particle trackingin the pseudo- rapidity range |η|<2.5. The high-granularitysilicon pixel detec- torcoversthe vertexregionandtypicallyprovides fourmeasure- ments per track. It is followed by the silicon microstrip tracker (SCT)which comprisesfour cylindricallayers ofdouble-sided sil- icon strip detectors in the barrel region, and nine disks in each endcap. These silicon detectorsare complementedby the transi- tionradiationtracker,adrift-tube-baseddetector,whichsurrounds theSCTandhascoverageupto|η|=2.0.

The calorimeter system consists of a sampling lead/liquid- argon(LAr)electromagnetic(EM)calorimetercovering|η|<3.2,a steel/scintillatorsamplinghadroniccalorimetercovering |η|<1.7, aLAr hadroniccalorimetercovering 1.5<|η|<3.2,andtwo LAr forwardcalorimeters (FCal)covering3.1<|η|<4.9.The hadronic calorimeterhasthreesamplinglayerslongitudinalinshowerdepth in |η|<1.7 and four sampling layers in 1.5<|η|<3.2, with a slightoverlap.TheEM calorimeterissegmentedlongitudinallyin shower depth into three compartments with an additional pre- samplerlayer.

Atwo-leveltrigger system [25] was usedto selectthePb+Pb and Pb+Pb collisions analysed here. The first level (L1) is a hardware-basedtrigger stage which isimplemented withcustom electronics.Thesecondlevelisthesoftware-basedhigh-leveltrig- ger(HLT).TheeventswereselectedbytheHLTwhichwasseeded byaL1jettrigger,totalenergytrigger,orzero-degreecalorimeter (ZDC) trigger.The total energytrigger required atotal transverse energy measured in the calorimeter system to be greater than 5 GeV in Pb+Pb interactions and50 GeV in Pb+Pb interactions.

The ZDC trigger required a presence of at least one neutron on both sides ofZDC (|η|>8.3). The HLT jet trigger used a jet re- constructionalgorithmsimilartothePb+Pb oneappliedinoffline analyses.Itselectedeventscontainingjetswithtransverseenergies exceedingathreshold,usinga rangeofthresholdsup to 100 GeV inPb+Pb collisionsandupto85 GeV inPb+Pb collisions.Inboth

1 ATLAS uses a right-handed coordinate systemwith itsorigin at the nomi- nalinteractionpoint (IP)inthecentreofthedetector andthe z-axisalongthe beampipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axispointsupward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane, φ being the azimuthal anglearound the beam pipe.The pseudorapidity is de- finedintermsofthepolarangleθasη= −ln tan(θ/2).Rapidity yisdefinedas y=0.5ln[(E+pz)/(Epz)]whereEandpz aretheenergyandthecomponent ofthemomentumalongthebeamdirection,respectively.Angulardistanceismea- suredinunitsofR

(η)2+(φ)2.

Table 1

Themeannumber ofparticipants, Npart, themeannuclearthickness function, TAA,andtheiruncertainties(seeSection5)fordifferentcentralityintervals.

Centrality range Npart TAA[1/mb]

70–80% 15.4±1.0 0.22±0.02

60–70% 30.6±1.6 0.57±0.04

50–60% 53.9±1.9 1.27±0.07

40–50% 87.0±2.3 2.63±0.11

30–40% 131.4±2.6 4.94±0.15

20–30% 189.1±2.7 8.63±0.17

10–20% 264.0±2.8 14.33±0.17

0–10% 358.8±2.3 23.35±0.20

the Pb+Pb and Pb+Pb collisions, the highest-threshold jet trig- gersampledthefulldeliveredluminositywhilealllowerthreshold triggerswereprescaled.

Inadditiontothejet trigger,twotriggerswereusedinPb+Pb collisions toselectminimum-biasevents.Theminimum-biastrig- gerrequiredeithermorethan50 GeV transverseenergyrecorded inthewholecalorimetersystembyL1triggerorasignalfromthe ZDCtriggerandatrackidentifiedbytheHLT.

3. DataandMonteCarlosamples,andeventselection

The impact of detector effects on the measurement was de- termined using a simulated detector response evaluated by run- ningMonteCarlo(MC) samplesthroughaGeant4-baseddetector simulation package [26,27]. Two MC samples were used in this study. In the first one, multi-jet processes were simulated with Powheg-Boxv2[28–30] interfacedtothePythia8.186[31,32] par- tonshower model.TheCT10PDFset [33] wasusedinthematrix elementwhiletheA14setoftunedparameters[34] wasusedto- getherwiththeNNPDF2.3LOPDFset[35] forthemodellingofthe non-perturbativeeffects.TheEvtGen1.2.0program[36] was used for the propertiesof b- and c-hadrondecays. In total, 2.9×107 hard-scattering events at

s=5.02 TeV were simulated at the NLO precision, spanning a rangeof jet transversemomenta from 20to1300 GeV.Thesecond MCsample consistsofthesamesig- nal events as those used in the first sample but embedded into minimum-biasPb+Pb dataevents.Thisminimum-biassamplewas combinedwiththesignalfromPowheg+Pythia8simulationatthe digitisationstage,andthenreconstructedasacombinedevent.So- called “truth jets” are defined by applying the anti-kt algorithm withradiusparameter R=0.4 tostableparticlesintheMCevent generator’soutput,definedasthosewithaproperlifetimegreater than10 ps,butexcludingmuonsandneutrinos,whichdonotleave significantenergydepositsinthecalorimeter.

Thelevel ofoverall eventactivityorcentralityinPb+Pb colli- sionsischaracterisedusingthesumofthetotaltransverseenergy inthe forwardcalorimeter,ETFCal,atthe electromagneticenergy scale.TheEFCalT distributionisdividedintopercentilesofthetotal inelastic cross-section forPb+Pbcollisions with0–10% centrality interval classifyingthe mostcentral collisions.The minimum-bias trigger andeventselection areestimated tosample 84.5% of the total inelasticcross-section,withan uncertaintyof1%. AGlauber modelanalysisoftheEFCalT distributionisusedtoevaluateTAA andthenumberofnucleonsparticipatinginthecollision,Npart, ineachcentralityinterval [20,37,38].Thecentralityintervalsused inthismeasurementareindicatedinTable1along withtheir re- spectivecalculationsofNpartandTAA.

Jetsusedinthisanalysisarereconstructedeitherinminimum- bias events or in events selected by inclusive jet triggers in the regionofjet pT forwhichthetriggerefficienciesaregreater than 99%. Events are required to have a reconstructed vertex within 150 mm of the nominal interaction point along the beam axis.

(4)

Fig. 1.TheleftpanelshowstheJESasafunctionofptruthT andtherightpanelshowstheJERasafunctionofptruthT inMCsamples.Bothareforjetswith|y|<2.8.The curvesintherightpanelshowfitstoEq. (1) forPb+Pb,andPb+Pb ineightcentralityintervals(0–10%,10–20%,20–30%,30–40%,40–50%,50–60%,60–70%,and70–80%).

Only events taken during stable beam conditions and satisfying detectoranddata-qualityrequirements,whichincludetheID and calorimeters beingin nominaloperation, are considered. The av- eragenumber ofPb+Pb inelastic interactions per bunch crossing was μ <1.4.InPb+Pb collisions, μwassmallerthan104.

4. Jetreconstructionandanalysisprocedure

The reconstruction of jets in Pb+Pb and Pb+Pb collisions closelyfollows theprocedures described inRefs. [8,39] including theunderlyingevent(UE)subtractionprocedure.Abriefsummary is given here. Jets are reconstructed using the anti-kt algorithm, which is implemented in the FastJet software package [40].

The jets are formed by clustering η×φ=0.1×π/32 log- ical “towers” that are constructed using energy deposits in en- closedcalorimetercells.Abackgroundsubtractionprocedurebased on the UE average transverse energy density, ρ(η,φ), which is calorimeter-layer dependent, was applied. The φ dependence is duetoglobalazimuthal correlationsbetweentheproducedparti- cles(typicallyreferred toas“flow”).Thesecorrelationsarise from thehydrodynamicresponseofthemediumtothegeometryofthe initialcollision. Theflow contributiontothetransverse energyof towerscanbedescribedbythemagnitude(vn)andphase(n)of theFouriercomponentsoftheazimuthalangledistributionsas:

d2ET dηdφ =dET

dη

1+2

n

vncos(nn))

,

whereφistheazimuthalangleofthetowerandnindicatestheor- deroftheflowharmonic.Themodulationisdominatedbyv2 and v3 [41]. In thisanalysis, the second, third and fourthharmonics areusedtofurtherimprovetheUEestimation.Aniterativeproce- dureisusedtoremovetheeffectsofjetson ρ andthe vn values.

Inthe initialestimate of ρ andvn,theseareestimatedfromthe transverseenergy ofcalorimetercells within |η|<3.2.The back- groundissubtracted from calorimeter-layer-dependenttransverse energieswithin towers associatedwiththejet toobtain thesub- tractedjet kinematics. Then ρ and vn valuesare recalculated by excluding towers within R=0.4 of seedjets. Seed jetsare de- finedascalorimeterjetswithsubtracted pT>25 GeV,whichare reconstructed with radius parameter R=0.2, and R=0.4 track jets with pT>10 GeV, which are reconstructed from charged-

particletracksrecordedinthe ID.Thesenew ρ2 andvn valuesare then usedtoevaluate anewsubtractedenergyusingtheoriginal towers,andthenewjetkinematicvariablesarecalculated.Afinal correction depending on rapidity and pT isapplied toobtain the correct hadronic energy scale for the reconstructed jets. Jets are calibratedusinganMC-based procedurewhichisthesameasfor the “EM+JES” jetsused in the analysisof Pb+Pb collisions [42].

This calibration isfollowed by a “cross-calibration”which relates the jet energy scale (JES) of Pb+Pb jets to the JES of Pb+Pb jets [43].

Theperformanceofthejetreconstructionwascharacterisedby evaluating theJESandjet energyresolution(JER), which arecor- respondinglythemeanandwidthofthejetresponse(precT /ptruthT ) intheMCsimulation.Here precT andptruthT arethetransversemo- mentaofthereconstructedjetandtruthjet,respectively.Theper- formanceofthejetreconstructioninthesimulationissummarised inFig.1,wheretheleftandrightpanelsshowtheJESandJER,re- spectively.TheJESisshownasafunctionofptruthT intheleftpanel of Fig.1.It deviatesfromunityby lessthan1% in thekinematic region ofthemeasurement. Norapidity dependenceofthe JESis observed.AweakcentralitydependenceoftheJESiscorrectedby theunfoldingproceduredescribedlaterinthissection.Toexpress the differentcontributions, theJERisparameterised bya quadra- turesumofthreeterms,

σ precT

ptruthT

= a ptruthT

b

ptruthTc. (1)

Thefirstparameter(a)andthirdparameter(c)inEq. (1) aresen- sitivetothedetectorresponseandareexpectedtobeindependent of centrality,while thesecond parameter (b) iscentrality depen- dent and it is driven by UE fluctuations uncorrelated with the jet pT.TheJERfordifferentcentralityintervalsandforPb+Pb col- lisions isshownintherightpanelofFig.1.FitsusingEq. (1) are indicatedwithdashedlines.TheJERislargestinthemorecentral collisions,asexpectedfromstrongerfluctuationsofthetransverse energyintheUE. TheJERisabout16%for pT=100 GeV incen- tral collisions and decreases with increasing pT to 5–6% forjets with pT greaterthan 500 GeV.Theparameters a andc in thefit arefoundtobeindependentofcentralitywhilethevaluesofb are consistentwiththeexpectedmagnitudeofUEfluctuations.Thefit

2 Theaverageρ is270 GeVand10 GeVin0–10%and70–80%Pb+Pbcolli- sions,respectively.

Références

Documents relatifs

Dans le cadre d’une licence professionnelle au sein de l’institut de technologie de Bouira, j'ai réalisé un stage d’une durée de 04 mois au sein de L’ADE Projets :

Sur cette question de la pauvreté en milieu rural, dont tout le monde s’accorde à reconnaître l’importance, les analyses les plus clairvoyantes sont sans doute celles qui

U. Mitra is with the Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA, ubli@usc.edu.. Figure 1:

22.315J - Structural Mechanics in Nuclear Power Technology - Brief introduction to nuclear power engineering and nuclear reactor physics. Components and structures in

To define how the Convergence and Soft Landing quota allocation rules lead to various prices of carbon and welfare impacts depending on assumptions regarding carbon trading

étape : Création des fichiers de sorties et exploitation des résultats pour la vérification des éléments et calcul de ferraillage. IV.1 :Dimensions en plan salle

In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest

139 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 140 State Research Center Institute for High Energy Physics, NRC KI, Protvino, Russia 141