• Aucun résultat trouvé

TIME RESOLVED STUDY OF NON RADIATIVE RECOMBINATION IN GaAs GaAlAs HETEROSTRUCTURES

N/A
N/A
Protected

Academic year: 2021

Partager "TIME RESOLVED STUDY OF NON RADIATIVE RECOMBINATION IN GaAs GaAlAs HETEROSTRUCTURES"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00227104

https://hal.archives-ouvertes.fr/jpa-00227104

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TIME RESOLVED STUDY OF NON RADIATIVE RECOMBINATION IN GaAs GaAlAs

HETEROSTRUCTURES

M. Pereira, B. Sermage, F. Alexandre, J. Beerens, R. Azoulay, A. Jean Louis

To cite this version:

M. Pereira, B. Sermage, F. Alexandre, J. Beerens, R. Azoulay, et al.. TIME RESOLVED STUDY

OF NON RADIATIVE RECOMBINATION IN GaAs GaAlAs HETEROSTRUCTURES. Journal de

Physique Colloques, 1987, 48 (C7), pp.C7-413-C7-415. �10.1051/jphyscol:1987799�. �jpa-00227104�

(2)

JOURNAL D E PHYSIQUE

Colloque C7, suppl6ment au n012, Tome 48, decembre 1987

TIME RESOLVED STUDY OF NON RADIATIVE RECOMBINATION IN GaAs GaAlAs HETEROSTRUCTURES

M.F. PEREIRA Jr., B. SERMAGE, F. ALEXANDRE, J. BEERENS, R. AZOULAY and A.M. JEAN LOUIS

C N E T , 1 9 6 , Avenue Henri Ravera, F - 9 2 2 2 0 Bagneux, -7rance

I

.

I r ~ t r o d u c t i o n : l ' h e 1 - h r ' c s h o l d c u r r e n t i t 1 d o u b l e h e 1 r r , o - s t r u c t u r e l a s e r s i s p r , o p o r t i o n a l t o t h e r c c o t n t ~ i n n t i orr prob:.ibi l i t v i n t h e a c t i v e l a y e r . 1 / t . . I n t h e c a s e o f t h e G a A s - G a ~ l A s l a s e r s . t h e r e c o m b i n o t i or1 p r o b a b i 1 i t y h a s two c o m p o n e n t s : t h e r - a d i a t - i v e o n e l / t r a n d t h e n o n r a d i a t i v e o n e l / t l l l . .

T h e l a s e r wi 1 1 be':of p r - a c t i c a l u s e i f t i s l a r . y e cotrtpared t o t h e r . a d i a t . i v e l i f e t i m e a t t . h r . e s h o l d c a P F i e r d e n s i t y ( - 4 n s )

T h e n o n r a d i a t - . iv e r6?colnbin;~t.i011 p r o b a t j i 1 i t y . l / t ( c a l l e d S c h o k l e y - R e a d ) i s t h e sum o f t h e b u l k a n d t h e i r l \ ! & r f a c e recomt.)i n - a t i o n p r o b a b i l i t i e s :

w h e r e d i s t h e G a A s l a y e t - t h i c k n e s s a n d S = S + S i s t h e surrr o f t h e i n t e r f a c e r e c o m b i n a t i o n v e l o c i t y a t t h e two i r 1 f e r f a c : e s . E q . 2 i s v a l i d when t h e G a A S l a y e r t l ~ i c l z n ~ s s i s snral 1 cornpar-cd t o t t i c c a r r i e r d i f f u s i o r ~ le n g t h w h i c h i s t h e c a s e h e r e .

Quantunr we1 1 l a s e r s h a v e p r o v e t i t o b e i n t e r e s t i n g d e v i c e s ( 1 ) ( s m a l l e r t l l r e s h o l d c u r r - e n t , l a r g e r - r n o d u l a t i o n f r e q u e n c y ) . Howe\lt?r i n suc11 s m a l l a c t i v e l a y e r t h i c k n e s s e s t d w 5 0 - 1 0 1 ) h ) . i r r t c r f a c e r e c o m b i r l a t i or] c a n b e d r a m a t i c .

I I . E x p e r i m e n t : We h a v e s t u t l i e d F o u r s e r - i e s o f s n r n p l e s ( : 3 gr.orvrr i n M B E a n d 1 i n M O C V D ) . A l l t h e s t r u c t u r . e s c o n s i s t . e d o f a GaAs l a y e r o f t h i c k n e s s d i n c l u d e d b e t w e e n t w o G a A 1 A s l a y e r s w i t h

x a h o u t 0 . 3 . 1 X

T h e e x p e r i m e r l t n l t e c h r r i c l u ~ i s a s l'ol l o w s : we c x c i t e e;ic-h s ; i r r ~ p l e w i t h a s y n c h r o r ~ o u s l y pumped CW d y e l a s e r at: 0 . 5 8 pnt arrd o b s e r - v r t h e l u m i n e s c e n c e d e c a y wi1.h a s t r e a k camera. 'l'he G a A s 1 um 1 n c s - c e n c e i s s e l e c t e d w i t h a 111onoctrr.otr1ator a n d t h e t.elnpor-a l r e s o l u - t i o n o f t h e s y s t e m i s a b o u t . 1 0 p s . E x a m p l e s o f I~lmiriescerrc:e cle- c a y c u r . d e s o b t a i n e d w i t h t h e s t r e a k c a m e r a a t . low e x c i t a t i o n a r . e g i v e n i n f i g . 1 .

T h e c a r r i e r s 1 i f e t i m e ( t ) arrd t h e lurrlinesr:errce 1 i f r t i t n e ( t ) at- t h e e n d o f t h e e x c i t a t i o n p u l s e a r e r e l a t e d t)y : L

t = t d L o y ( I L ( 0 ) ) / d L o g ( n ) = t.L d L o ~ ( I L ( 0 ) ) / d L o q ( P e x )

L ( 3 )

w h e r e I ( 0 ) i s t h e Irrrni rlescc2rrcc i r r t e r r s i t y a t t h a l t irt~f,.

L

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987799

(3)

JOURNAL DE PHYSIQUE

Ftq. 1 : Examples o f luminescence decay F i a . 2 : Y a r l a t t o n w i t h e x c i t a t l o n o f curves obtatned w l t h the streak camera the t o t a l

( + I

r a d f a t t v e ( A ) and non a t

low

e x c i t a t i o n . r a d t a t f v e (01 recombtnatton probabt 1 t ty.

T h e r a d i a t i v e l i f e t i m e t i s o b t . a i n e d f r o m :

r

F o r e a c h s a m p l e , w e p l o t t h e r e c o n ~ b i r l a t i o n p r o b a b i l i t y l / t arid I / P e x a s a f u n c t i o n o f l J e x a s s h o w n i n F i q . 2

.

A t l o w e x c i t a t i o n

14t

i s r ~ e a r l y c o n s t a n t w h i l e l / t d e c r e a s e s , s h o w i r l y t h a t . t h i s c o n s t a n t v a l u e i s t h e p r o b a b i 1 i t C o f 11or1 r . a d i a t . i v e r e c o m b i n a t i o n l / t

.

F i g . 3 d i s p l a y s t h e r a d i a t i v e a n d t h e t - o t a l r e c o m b i n a t i o n p r o 6 5 b i 1 i t y f o r d i f f e r e r i t . G a A s t h i c k n e s s e s .

F t a .

3

: Y a r l a t t o n w i t h e x c i t a t l o n o f 4 : Y a r t a t l o n o f the non r a d l a - the t o t a l

(-1

and r a d t a t t v e (A) recom-

?'-

t ve recombtnatton probabt 11 t y wl t h b t n a t t o n probabtl t t y f o r d l f f e r e n t the Inverse GaAs l a y e r thtcknesses

GaAs thtcknesses. f o r the three sertes.

F o r l a r g e GaAs t . l i i c l ~ n e s s e s ( d > 2 0 0 A ) I/t.,, f o l l o w s e q . 2 as stlowll i n F i g . 4 .

F o r s m a l l GaAs t h i c k n e s s e s ( d < 2 0 0 a ) , S ( g i v e n b y S = l / t n r f .

x d ) i n c r e a s e s a s f o r e s e e n b y DUggEin e t . a l . ( l ) d u e t o F i e l n c r e a s e o f t h e l e a k i n g o f t h e c a r r i e r s w a v e f u n c t i o r l s iri t,tie G a A l A s c o n - f i n e m e n t l a y e r s .

(4)

F i g . 5 : S as a function o f well width (+) F i g . 6 : S as a function of T i i T ' f T M B E series, ( A ) second MBE series, T F l l T i d t h ( 0 ) experimental

( A ) MOCVD series. Calculated models f o r p o i n t s s o l i d l i n e : c a l c u l a t e d b a r r i e r

(-1

and i n t e r f a c e

(---I

recombi- model w i t h b a r r i e r

+

well im-

n a t i o n . p u r i t y p r o f i l e recombination.

Fig.5 shows experimental values of S for small values of d a s well a s two theoretical curves assuming : 1)uniform distribution of nonradiative recornbinatiorls centers in the GaAlAs barriers; 2 )

recombinating centers concentrated at. t,he interfaces.

The curves are calculated for an offset of the coriduction band equal to 67% of the band gap(?)

Fig.6 shows S measured for a series o f polluted samples. A calcu- lation that extends the previously cited models by adding to the recombinat-ion at the barriers the contribution of a n impurity profile that decays exponeritially from the interface towards the GaAs layer is also shown.

T h e increase of the interface recornbination velocity represented in Fig.5 is importarit for ( U . W . ) lasers. For exalllple in the case o f the secorlci MBE series, the non radiative lifetime Tor 0 . 1 Pln

thick layers is 100 n s which is negligible compared to the radi- ative lifetime in usual DH lasers which is about 4 ns. However in the case of a quantum well of 50A, t h e non radiative lifetime is about 2 s arid increases the calculated threshold current from

1 1 0 A/cm9 in SCH optimised ( Q . W . ) lasers.

REFERENCES

( 1 ) G.Duggan, tI.J.Ralptl and R.J.Elliot, Solid State Comm. 56, 17

( 1985)

( 2 ) G.Danan, B.Etienne. I;.Mollot, R.Plarie1, A.M.Jean-l_or~is, F.

Alexandre, B.Jusserand. G . L e Roux, J.Y.Marzin, H.Savary and B.Sermage, Phys.Rev. B, 35. 6207 ( 1 9 8 7 )

Références

Documents relatifs

Integrating the power spectral densities of the magnetic and electric fields in the 10 to 500 Hz frequency range shows that the energy density of waves is higher inside the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This study focusses on the characterization of infrared (IR) optical properties and di- rect radiative effects of mineral dust, based on three vertical profiles of atmospheric

From the analysis of figure 4(a), we thus conclude that in CAP1, when the top gated surface state is charge neutral and the bulk is depleted, the bottom ungated topological

The CCITT V.22 standard defines synchronous opera- tion at 600 and 1200 bit/so The Bell 212A standard defines synchronous operation only at 1200 bit/so Operation

We first introduce the notion of λ-K¨ onig relational graph model (Definition 6.5), and show that a relational graph model D is extensional and λ-K¨ onig exactly when the

Cette étude a pour objectif de mieux comprendre la manière dont les jeunes homosexuels font face au stress présent lors de la divulgation de leur homosexualité