• Aucun résultat trouvé

ON THE MOBILITY OF GaAs-AlGaAs HETEROSTRUCTURES WITH AN IMPURITY LAYER IN THE GaAs

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE MOBILITY OF GaAs-AlGaAs HETEROSTRUCTURES WITH AN IMPURITY LAYER IN THE GaAs"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226758

https://hal.archives-ouvertes.fr/jpa-00226758

Submitted on 1 Jan 1987

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE MOBILITY OF GaAs-AlGaAs

HETEROSTRUCTURES WITH AN IMPURITY LAYER IN THE GaAs

A. Gold

To cite this version:

A. Gold. ON THE MOBILITY OF GaAs-AlGaAs HETEROSTRUCTURES WITH AN IMPU- RITY LAYER IN THE GaAs. Journal de Physique Colloques, 1987, 48 (C5), pp.C5-255-C5-258.

�10.1051/jphyscol:1987554�. �jpa-00226758�

(2)

ON THE MOBILITY OF GaAs-AlGaAs HETEROSTRUCTURES WITH AN IMPURITY LAYER IN THE GaAs

A . GOLD

Physik-Department E 16, Technische Universitdt Miinchen, D-8046 Garching, F.R.G.

La mobilit6 des GaAs-AlGaAs h'eterostructures avec une couche dotee de 6 d'impurit'e ionis'ee dans 1 e GaAs d l a distance z i de 1 'i n t e r f a c e e s t calculBe. On montre que l a mobilit'e e s t une bonne image de l a fonction d'ondes qui d'ecrit l'extension du gaz Blectronique dans l e bulk. La mobilitB depend fort6ment de l a densit6 de diiplgtion.

La densite dlimpuritB c r i t i q u e , ou' une t r a n s i t i o n vers une l o c a l i s a t i o n f o r t e e s t a' supposer, e s t calculiie e t l a diipendance de z i e s t pr6dite.

The mobility of GaAs-AlGaAs heterostructures w i t h a 6-doping l a y e r of ionized

impurities i n t h e GaAs a t a distance zi from t h e i n t e r f a c e i s calculated. I t is shown t h a t the mobility is a good image of t h e wave function which describes the extension of t h e electron gas i n t o the bulk. The mobility strongly depends on the depletion density. The c r i t i c a l impurity density where a t r a n s i t i o n t o strong localization i s expected i s calculated and the dependence on zi is predicted.

The mobility of GaAs-AlGaAs heterostructures has been calculated in recent years /I-4/. The transport theory i s based on S t e r n ' s and Howard's work on s i l i c o n metal-oxide-semiconductor systems /5/. The impurities a r e assumed t o be outside the region of t h e electron gas. For "6-doping" layers /6/ and f o r quantum wells /7/, experiments have shown t h a t a two-dimensional impurity sheet can be located i n the region of t h e electron gas.

In t h i s paper t h e mobility of GaAs-AlGaAs heterostructures w i t h a &-doping layer of ionized impurities i n t h e GaAs a t a distance Zi from t h e i n t e r f a c e i s c a l - culated. According t o t h e theory of Ref. /5/ t h e zero-temperature momentum relaxa- tion time T of a two-dimensional electron gas in the presence of a random potential

< l ~ ( q ) l ~ > is given by 2k- a a

EF and k~ a r e t h e Fermi energy and t h e Fermi wave number, r e s p e c t i v e l y . ~ (q) is the d i e l e c t r i c function of t h e two-dimensional electron gas /8/, including local f i e l d corrections G(q) /4,9/.

For a two-dimensional impurity sheet, para1 1 el t o the two-dimensional electron gas and a t a distance z i from t h e AlGaAs/GaAs i n t e r f a c e , the random potential f o r wave numer q i s expressed a s

ni i s t h e impurity density a n d e L L i s t h e background d i e l e c t r i c constant. The form f a c t o r F(q,zi) accounts f o r t h e f i n i t e extension of t h e electron wave f u n c t i o n y ( z ) i n t o the bulk and f o r t h e distance between t h e electron gas and t h e impurity layer /8/ :

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987554

(3)

C5-256 JOURNAL DE PHYSIQUE We use the variational form /8/

b 2 -bz 3 I Y ( Z ) I ~ = T z e

and neglect band bending effects. The extension parameter b i s determined by the electron density n and by the depletion density ND: b3 oc ND + 11 1-1/32. The mean distance between the charge and the interface i s given by zo = z = 3/b.

For an impurity layer in the GaAs (zi > 0) with the variational form of the wave function, the form factor can be evaluated analytically /8/

with ap = (1 + q/b), a1 = Zq(3 + qZ/b2)/ba$, a2 = 4q(l

-

q/b)/bao2, and a3 = q 1

-

q/b)/bao.

The q integral in Eq. ( 1 ) can be evaluated in an approximation, taking advan- tage of the q = 2 k ~ singularity in that case /lo/. This approximation works very well f o r 1 ow el ectron concentrations, resul t i n g in

1

= ~ ~ r - 1 n. F (2kFZi)'

'r n ((1 - G ( 2 k F ) ) Fc(2kF) + 2kFlqs) (6)

Fc(q) i s the form factor f o r the electron electron interaction potential. qs i s the Thomos Fermi screening wave number.

I calculated 1 / ~ according to Eqs. (1,2,5) for GaAs-AlGaAs heterostructures. The mobility p i s connected with T via y = es/m, and m i s the

lo6 electron mass. The density dependence of p i s shown

I I I 1 1 1 1 1 in Fig. 1 f o r zi = 0, 100

A

and 200

1.

1

-

G ~ A S

- A I G ~ A S ,{

-

ni = 1 x l ~ ~ l c r n - ~

-

-

/ I

1

-

~ ~ l1/ /0 l ~ ~ ~ c ~ ~

The mobility increases with increasing electron density according t o

p oc nd (7)

For zi = 0, 100 Rand 200

A,

we find o < s 1.1, 1.3, and 2.0, respectively. With increasing ND the elec- tron layer i s pushed t o the interface. This i s why e(Np = 0,; v(Np > O J holds f o r zi c 100

A,

while p ND = 0 c p N D > 0) holds f o r i!i > 100

A.

Mobility versus density f o r zi = 0 (solid

fM

zi = 100 (dotted l i n e s ) , and =I = 200

R

'012

(dashed lines) f o r two values of ND.

(4)

m y versus Z i f o r t h r e e values of Nd a s s o l i d l i n e s . I / J Y ( z ~ ) ~ 2 according t o Eq. (4) a s dotted, dashed, and dashed dotted l i n e s .

In Fig. 2, t h e mobility versus Z i i s shown f o r fixed n and n i . W i t % increasing 21% t h e mobility f i r s t decreases and then increases.

The minimum i s reached when the impurity layer matches t h e maximum of the electron charge. For Z i

>

150 A t h e mobility strongly depends on t h e depletion density. This e f f e c t could be used t o determine t h e depl tion den-

t

s i t y i n real samples. 1 / JY(z = z i )

1

accord- ing t o Eq. (4) is a l s o shown i n Fig. 2.

I t i s obvio s t h a t 1 /

1

y 12 matches t h e Z i dependence of t h e mobility q u i t e well f o r z i 40

1.

I conclude t h a t (macroscopic) mobi 1 i t y measurements f o r 40

A

e zi e 200 1( can determine the (microscopic) wave function of the electron gas.

The above mentioned e f f e c t can be understood a s follows: if i n a f i r s t approxi- mation one uses 1 y ( z ) l 2 = & ( z

-

zO) i n Eq. ( 3 ) , one obtains F ~ ( q , z i ) =

exp (-q(zo

-

z i

1).

If i n a second approximation one use? exp ( - q ( z

-

Z i J ) 2 6 ( z

-

Zij/q i n Eq. ( 3 ) , one g e t s FR(q,ti) = Z ( Y / ( z i ) J /q. According t o Eq. ( 6 ) the mobility is given a s

1

2kFIzo - zil

/~('i) FR(2kF,

4)

2 % I Y ~ Z ~ I I ~ (8) For 2 k ~ I zo

-

Zi

1

(< 1 one f i n d s the desired r e s u l t : # 1 / I Y ( Z i ) l 2. The same con- clusion holds f o r quantum wells / I t / , i f they a r e doped i n t h e region of t h e two- dimensional electron gas /7/.

The transport theory of Ref. / 5 / is valid only f o r low impurity concentrations.

Multiple s c a t t e r i n g e f f e c t s give r i s e t o a metal i n s u l a t o r t r a n s i t i o n i f t h e impurity concentration exceeds a c r i t i c a l impurity concentration n i C /I 21. The density

Fig. 3: C r i t i c a l impurity concen- t r a t i o n versus electron concentration f o r various values of z i a s s o l i d 1 ines. The dotted 1 i n e corresponds t o ni = n. In the i n s e r t , n . versus z j is shown f o r nit = n anaC

N,, = 1 x ''01 crn -2

.

(5)

C5-25 8 JOURNAL DE PHYSIQUE

dependence of n i C is shown i n Fig. 3 f o r various values of z i . With increasing z i ( ~ i

<

100 A), t h e e l e c t r o n d e n s i t y range f o r m e t a l l i c conduction decreases and reaches a minimum f o r Z i w 100

A.

This minimum r e f l e c t s t h e mobility minimum i n Fig. 2. For higher z i ( z i > 100 A), t h e m e t a l l i c phase i n c r e a s e s again.

For n i & n, band bending e f f e c t s a r e expected t o be important. I have neglected t h e s e e f f e c t s i n my calculation. However, f o r quantum wells i t has been shown t h a t t h e mobility does n o t s t r o n g l y depend on t h e quantum well thickness i f t h e doping is i n t h e middle of t h e quantum w e l l , s e e Fig. 12 of Ref. /11/. Therefore, I believe t h a t f o r z i & 100 A my c a l c u l a t i o n i s q u i t e r e a l i s t i c , and t h a t Fig. 3 can be used t o e s t i m a t e t h e i m p u r ~ t y and e l e c t r o n d e n s i t y range where strong l o c a l i z a t i o n e f f e c t s a r e expected. A metal i n s u l a t o r t r a n s i t i o n f o r f i x e d impurity concentration has been found i n a density sweep of a "6-doped" GaAs sample /13/. The c r i t i c a l electron d e n s i t y was i n reasonable agreement with t h e theory.

In conclusion we have shown how m o b i l i t y measurements can be used t o determine t h e e l e c t r o n wave function. A low e l e c t r o n d e n s i t y and a doping of t h e region of t h e e l e c t r o n charge is necessary f o r t h i s prediction.

Acknowl edgement

I thank Prof. F. Koch f o r valuable discussions. This work was supported by t h e Ernst von Siemens Stipendium of t h e Siemens AG.

References

/1/ T. Ando, J . Phys. Soc. Jpn. 51 (1982) 3900.

/2/ F. S t e r n , Appl. Phys. Lett.

V5

(1983) 974.

/3/ W. Walukiewicz, H.E. Ruda, J x a g o w s k i , and H.C. Gatos, Phys. Rev.

(1984) 4571.

/4/ A. Gold, Z. Phys. B 63 (1986) 1.

/5/ F. Stern and W.E. Howard, Phys. Rev. 163 (1967) 816.

/6/ A. Zrenner, H. Reisinger, and F. K o c h 3 r o c . of t h e ICPS San Francisco (19841, Eds. J.P. Chadi and W.A. Harrison, Springer Verlag, New York (19851, p. 325, and

E.F. Schubert and K. Ploog, Jap. J . of Appl. Phys. 24 (1985) L 680.

/7/ G. A b s t r e i t e r , H. Brugger, T. Wolf, H. Jorke, and HX. Herzog, Phys. Rev.

Lett. 54 (1985) 2441.

/8/ T. A n K A.B. Fowler, and F. S t e r n , Rev. Mod. Phys.

54

(1982) 437.

/9/ M. Jonson, J . Phys. C 9 (1976) 3055.

/ l o / A. Gold, V.T. D o l g o p f i v , Phys. Rev. B 33 (1986) 1076.

/11/ A. Gold, Phys. Rev. B 35 (1987) 723.

-

/12/ A. Gold and W. G o t z e x y s . Rev. (19861 2495;

s e e a l s o W. Gotze, S o l i d S t a t e Commun. 27 11978) 1398.

/13/ A. Zrenner, D i s s e r t a t i o n , Technische U n G e r s i t a t Miinchen (1987).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to