• Aucun résultat trouvé

SEMIFACTORIZATION OF THE MULTIDIMENSIONAL SCHROEDINGER OPERATOR

N/A
N/A
Protected

Academic year: 2021

Partager "SEMIFACTORIZATION OF THE MULTIDIMENSIONAL SCHROEDINGER OPERATOR"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00229454

https://hal.archives-ouvertes.fr/jpa-00229454

Submitted on 1 Jan 1989

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SEMIFACTORIZATION OF THE

MULTIDIMENSIONAL SCHROEDINGER OPERATOR

A. Csizmazia

To cite this version:

A. Csizmazia. SEMIFACTORIZATION OF THE MULTIDIMENSIONAL SCHROEDINGER OPERATOR. Journal de Physique Colloques, 1989, 50 (C3), pp.C3-87-C3-88.

�10.1051/jphyscol:1989313�. �jpa-00229454�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, supplément au n°3. Tome 50, mars 1989 C3-87

SEMIFACTORIZATION OF THE MULTIDIMENSIONAL SCHROEDINGER OPERATOR

A. CSIZMAZIA

1955 Ixora Rd., N. Miami, Fi 33181, U.S.A.

Résumé - Des semi-factorisations des opérateurs de Schroedinger en dimensions quatre et huit sont présentées dans cet article.

Abstract - Semifactorizations of the Schroedinger operator in dimensions four and eight are presented in this article.

1-INTRODUCTION

The most important problem in soliton theory is for n > 3 to (*) find strongly n+l-D analogues of the I+l-D soliton equations. No positive results on this problem have been announced. The author solved (*) for n=2 using novel semifactorizations of the 2-D Schroedinger operator 11,2/. Semifactorizations of the 4-D and 8-D Schroedinger operators are obtained herein . The algebra of quaternions and the (non-associative ) Cayley algebra of octonions are used.

2-SF,MTFACTORI7,M'ION IN 4-D

A semifactorization of the 2-D Schroedinger operator is provided by Eq (9) of III (or Section 6 of 111 ). This is generalized to 4-D in Lemma 1 below. Let Mv be the plane or torus of dimension v=2a . Say \\ , yi ... xa , ya are the standard coordinates for M. Set A v a £ h d ce a + 3 p" * with a =xn » P =yh • Assume u , m are real valued functions on M. Take L<v> to be the Schroedinger operator -A v + u. Suppose L<v>(em ) = 0 . This amounts to u = A (m) + Z (met )2 + (mjj )2. A 4 factors via quaternions: A 4 = dd = dd . d=di+d2 j with dn = 9 ct + >3 p" , j2 = -1 and ji = -ij. This generalizes to a semifactorization of L<4> . Take w = d(m) and D = d-w . "Re" means "real part o f . The differential operators on M with quaternion ( respectively : complex ) valued coefficients constitute a real associative algebra Q ( respectively : C). Say Ai , A2 are in C . Allow c = ±1. Define < A i , A 2 > c = (c*2 Ai). Ai + A2 j is identified with < Ai,A2>-i> Thus A* = Ai* -A21 j.Here l is the transpose without conjugation.

LEMMA 1. L<4> = Re (D*D).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989313

(3)

JOURNAL DE PHYSIQUE

P r o o f . Say A = A1 + A2 j

,

B = B1 + B2 j with Ah

,

Bh in C

.

We define A o B = A l ~ 1 - T i 2B 2+ (A2 B1 + B2 )j. ThisHtwisted product" is obtained from BA by replacing each subproduct Bh An

,

Bh

xn

with AnBh

,

& B ~ respectively. If a,b a r e quaternion valued functions on M ,then aOb = ba.

AB =

x 0 B

.

So

L < 4 > = - A

+

Lwt 2 +Re A with A d . w-wO

if =

a(w). I

Note that (AOB)*=B*O(A*).

The semifactorization of L<2> given by Eq.(ll) of 111 is generalized to Lc4> by Eq.(l) together with Theorem 1 below. Let

4

over the real valued infinitely differentiable functions defined o n M4

. 4

C ) 4 is a n isomorphism of real

vector spaces.

'""7,

Later we factor V in the 8-D real algebra 0 1 described next. Allow c = 1

.

Say A

,

A', B, B' a r e in Q

.

Let A = <A,A1>=, B = <B,B'>c

.

Define

When A, A', B, B' a r e quaternion valued functions Eq. (2) gives the usual product for octonions. ~2 with the product in Eq. (2) is a n algebra Oc

.

Take

g =

<O,bc

.

A = A+A,&. A

*

=A*+C(X')*JL. (AB )*=B *A

*.

Say c=l. Set D'= w-d%

.

We consider operators defined on Mg

.

In Eq. (2) take c=-1. Set d = d+d09_ with d 1 = d 3 +dq j

. - A

g=d*d = dd*

.

Set w = d (m) a n d D = d

-

w

.

REFERENCES.

/ I / Csizmazia, A.,"Soliton Equations Generalized t o Higher Dimensions", in

"Nonlinear Evolutions, Proceedings of the ZVth Workshop O R Nonlinear Evolution Equations and Dynamical Systems" (Balaruc-les Bains, France, June 11-25

,

1987) 339-348

,

World Scientific Publishing Co.

,

Singapore

,

(1988)

121 Csizmazia, A.

,

"The Heisenberg

-

Lax Equation Generalized", in

"

Some Topics on Inverse Problems

,

Proceedings of the XVIth Workshop on the Interdisciplinary Study of Inverse Problems" (Montpellier, France

,

Nov.30-Dec.4.

,

1987)

316-326, World Scientific Publishing Co.

,

Singapore , (1988).

Références

Documents relatifs

[1] Gianni Arioli, Filippo Gazzola, and Hans-Christoph Grunau, Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity, J.

[21] Yvan Martel, Frank Merle, and Tai-Peng Tsai, Stability and asymptotic stability in the energy space of the sum of n solitons for subcritical gKdV equations, Comm.

- We prove the existence of a minimizer for a multidimen- sional variational problem related to the Mumford-Shah approach to computer vision.. Key words :

STAMPACCHIA, Remarks on some fourth order variational inequali- ties, Ann. FREHSE, Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung, Hamburg

We prove that for a sequence of times, they decompose as a sum of decoupled harmonic maps in the light cone, and a smooth wave map (in the blow up case) or a linear scattering term

We will then describe our recent joint work with Dong Li on nonlinear Schr¨ odinger equations: Assuming the composing solitons have sufficiently large relative speeds, we prove

To our knowledge, our previous work [9] was the first one to establish the existence of infinite soliton trains for non-integrable Schr¨ odinger equations (for the integrable 1D

and generalized Korteweg-de Vries (gKdV) equations by Merle [29], Martel [22] and Martel-Merle [25] in the L 2 -critical and subcritical cases, and then for the supercritical cases