• Aucun résultat trouvé

MAGNETIC AFTER EFFECTS IN A TYP-II SUPERCONDUCTOR

N/A
N/A
Protected

Academic year: 2021

Partager "MAGNETIC AFTER EFFECTS IN A TYP-II SUPERCONDUCTOR"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217736

https://hal.archives-ouvertes.fr/jpa-00217736

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

MAGNETIC AFTER EFFECTS IN A TYP-II

SUPERCONDUCTOR

H. Rogalla, C. Heiden

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C6, suppliment au no 8, Tome 39, aotit 1978, page C6-657

MAGNETIC AFTER EFFECTS I N A T Y P - I 1 SUPERCONDUCTOR

H. Rogalla and C. Heiden

Inst.

fl&

Angew. Physik der

Justus

Liebig-UniversitBt GieBen Heirzieh

Buff-Ring

16, 0-6300

GeBen, Gemany

Rdsumd.- Les effets de "bascule et reptation", phcnomane connu du comportment des matdriaux ferro-

magngtiques

/ I /

soumis

ii

un champ alternatif et un champ magndtique constant, existent lgalement

dans les supraconducteurs de type 11.

Abstract.- Periodically swept minor hysteresis loops of type-I1 superconductors show a creep effect,

that consists of a) a displacement and b) a tilting of the minor loop. The initial dependence of the

creep on the number of swept minor hysteresis cycle can be described by a logarithmic law, devia-

tions occur at high cycle numbers. The effect appears not to be due to simple thermal relaxation

:

for not too fast sweep rates no for dependence of creep rate on the total measuring time was found

within accuracy of measurement. Moreover the flux density.gradient appears to increase with increa-

sing cycle number in the region of the sample which is subject to periodic magnetization change

indicating a more effective pinning of flux lines.

Hysteretic ferromagnetic or ferroelectric

materials often exhibit after effects, in which

domain walls move to energetically more favorable

positions 121. These effects can be observed under

yarious experimental conditions, a special one being

lreep and tilting of periodically swept minor hys-

teresis loops under the presence of a constant ma-

gnetic dc-bias field. In the case of type-II super-

conductors such a field program is used in methods

to determine the flux density profile in the mate-

rial

/ 3 , 4 , 5 / ,

and the question arises whether the

swept hysteresis loops are stationary or undergo an

after effect similar to that observed in ferroma-

gnetic materials

161.

As a prerequisite for studying such an effect,

one needs a system to measure the magnetization of

the superconducting specimen under test with suf-

ficient resolution over comparatively long time

periods. Due to thermal emf's, the necessary low

drift hardly can be realized using conventional

electronic integration techniques. We therefore de-

veloped a measuring system based upon the use of a

microwave biased rf-SQUID wit,h fast response

(2

x

10'

flux quantals) 171, the schematic diagram

of which is shown in figure 1.

The magnetic field H is generated with an

accuracy of 2 x

1 0 ' ~

by a superconducting solenoid

fed from a precision current supply. Well defined

programs for the field sweep can be run by means of

a microprocessor, which via a 16 bit DAC provides

Fig.

1 :

Scheme of measuring system

the input signal of the current generator and also

controls the operation of the whole system. An ad-

justable differential flux transformer system, con-

sisting of three separate loops a, b and c, is used

to measure the magnetization of the specimen under

test. The input loop of transformer c can be adjus-

ted such that either a differential flux proportio-

nal to the induction

B

or to the magnetization M of

the specimen is coupled to the SQUID. The resolution

of the present system is ca. IuT and the drift less

than 3yT/h, allowing magnetization measurementswith

negligible drift over a period of time of the order

of 10 h, that is presently limited only by helium

boil-off.

Magnetization curves of a vanadium sample

obtained with this system are shown in figure 2.The

behaviour of a small minor loop starting at pointA

of the virgin branch

1

for linear periodic field

(3)

I LOO 500

Fig. 2 : Magnetization c u r v e s of a c i r c u l a r v a n a d i u m rod (99.96 % p u r i t y , outgassed t o some degree a t 1420°C i n UHV of c a . t o r r )

sweeps between f i x e d v a l u e s HI and H2 can be seen from t h e i n s e t , where. t h e I . , l o . , and 100. c y c l e i s

d e p i c t e d i n a B(H)-plot. Flux c r e e p i s c l e a r l y v i - s i b l e i n t h e displacement of t h e loops, and i s observed a l s o f o r o t h e r dc-bias f i e l d s along bran- ches 1 and 2 of t h e m a g n e t i z a t i o n curve. The c r e e p r a t e i s found t o v a r y along t h e minor h y s t e r e s i s loop, an e f f e c t t h a t becomes more pronounced f o r l a r g e r amplitudes of t h e a c - f i e l d 181. This l e a d s t o a t i l t i n g of t h e minor loop which was always obser- ved t o be connected t o a d e c r e a s e of t h e t o t a l f l u x d e n s i t y v a r i a t i o n i n t h e sample during t h e f i e l d sweep. Pinning of f l u x l i n e s obviously becomes more e f f e c t i v e i n t h i s process.

F i g u r e 3 shows t h e displacement

AB = B(H1,n)

-

B(HI, 1) of t h e i n n e r loop end p o i n t

I 10 100

Number of Loops

-

AB .Il n ( n ) f o r t h e f i r s t , 100 c y c l e s . D e v i a t i o n s from

t h i s r e l a t i o n s h i p l e a d i n g t o a slower v a r i a t i o n of AB can be observed a t h i g h e r n-values. Apart from a d e v i a t i o n a t t h e h i g h e s t sweep r a t e

( I d ~ / d t

1

= 139 A/cm s ) which may be due t o sample h e a t i n g no s y s t e m a t i c dependence of t h e c r e e p r a t e dAB/dln(n) on I d ~ / d t l i s observed. The measuring time t h e r e f o r e does n o t appear t o p l a y a r o l e i n t h e observed a f t e r e f f e c t . This and t h e above mentioned f a c t , t h a t t h e o v e r a l l f l u x d e n s i t y g r a d i e n t becomes s t e e p e r i n t h e volume f r a c t i o n of t h e sample, i n which t h e p e r i o d i c m a g n e t i z a t i o n change t a k e s p l a c e , i s c o n t r a r y t o r e s u l t s o b t a i n e d f o r p u r e l y thermal a c t i v a t e d r e l a x a t i o n p r o c e s s e s a s f o r i n s t a n c e i n t h e f l u x c r e e p experiments using c y l i n d r i c a l tubes / 9 , 1 0 / . The p e r i o d i c f l u x s h u t t l i n g obviously a i d s t o t h e rearrangement of t h e f l u x l i n e s i n t h e sample. The dependence of t h i s p r o c e s s on m a t e r i a l parame- t e r s and t o what e x t e n t thermal motion comes i n t o p l a y i s s u b j e c t of f u r t h e r i n v e s t i g a t i o n s .

References

/ I / NQel, L . , J. Physique (1959) 215

/ 2 / See e.g. K n e l l e r , E . , i n "Ferromagnetismus"

(Springer, B e r l i n , G t t i n g e n , Heidelberg) (1962), chap. 41

/3/ Campbell, A.M., 3 . Phys. (1969) 1492 141 R o l l i n s , R.W., Kiipfer, H. and Gey, W., 3 . Appl.

Phys.

9

(1974) 5392

/5/ E c k e r t , D. and Handstein, A., Phys. S t a t u s S o l i d i (a)

2

(1976) 171

/ 6 / For r e c e n t r e s u l t s s e e P o r t e s e i l , J.L., Physica 93B (1978) 201

-

/7/ Rogalla, H. and Heiden, C . , Appl. Phys.

14

(1977) 161

181 Rogalla, H. and Heiden, C., Phys. L e t t .

63A

(1977) 63

/ 9 / K i m , Y.B., Hempstead, C.F. and S t r n a d , A.R., Phys. Rev.

131

(1963) 2486

/ l o / Antesberger, G. and Ullmaier, H., P h i l o s Mag. 29 (1974) 1101

-

Fig. 3 : Loop displacement AB(n) f o r d i f f e r e n t sweep r a t e s

Références

Documents relatifs

Exemple : Champ de pesanteur (ligne de champ des droites parallèles). - Champ radial : C’est un champ dans lequel les vecteurs passent par un point fixe O. Dans ce cas les lignes

Invariance par translation Si la distribution de charge est invariante dans toute translation parallèle à Oz alors le champ électrostatique E r ne dépend pas de z (il dépend

Soient premier et dernier les extrémités gauche et droite de l'intervalle dans lequel on cherche la valeur x, on calcule m, l'indice de l'élément médian :. m(premier + dernier) div

(b) Dans le cas où cette condition n’est pas réalisée, déterminer le vecteur vitesse et la position de l’électron quand il sort de la zone de champ magnétique?. Calculer la

La divergence du champ électrique associé à une distribution de charges ponctuelles est donc nulle en tout point de l’espace distinct d’un point où se trouve une charge.. III

c - Ceci est beaucoup trop élevé pour un champ créé de façon permanente.. Remarque : Le courant I est supposé imposé par le générateur et est

[r]

[r]