• Aucun résultat trouvé

Spectral Theorem for compact self-adjoint operators

N/A
N/A
Protected

Academic year: 2022

Partager "Spectral Theorem for compact self-adjoint operators"

Copied!
66
0
0

Texte intégral

(1)

Spectral Theorem for compact self-adjoint operators

Philippe Jaming

Universit ´e de Bordeaux

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

Master Math ´ematiques et Applications

M1 Math ´ematiques fondamentales & M1 Analyse, EDP, probabilit ´es Lecture : Introduction to spectral analysis

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 1 / 13

(2)

Preliminary warning

This video is a complement to the lecture notes available at

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

1. Statement of the Spectral Theorem 2. An example

3. Toolbox

(3)

Preliminary warning

This video is a complement to the lecture notes available at

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

1. Statement of the Spectral Theorem 2. An example

3. Toolbox

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 2 / 13

(4)

Preliminary warning

This video is a complement to the lecture notes available at

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

1. Statement of the Spectral Theorem 2. An example

3. Toolbox

(5)

Preliminary warning

This video is a complement to the lecture notes available at

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

1. Statement of the Spectral Theorem 2. An example

3. Toolbox

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 2 / 13

(6)

Spectral Theorem for compact self-adjoint operators

Aim: give the main tools to prove the spectral theorem Theorem (Spectral Theorem)

H separable, infinite dimensional, Hilbert space. T : H → H compact, self-adjoint operator.

∃ (e k ) k∈ N orthonormal basis of H;

∃ (λ k ) k∈ N real, λ k → 0;

Tx = X

k∈ N

λ k hx , e k ie k .

(7)

Spectral Theorem for compact self-adjoint operators

Aim: give the main tools to prove the spectral theorem Theorem (Spectral Theorem)

H separable, infinite dimensional, Hilbert space. T : H → H compact, self-adjoint operator.

∃ (e k ) k∈ N orthonormal basis of H;

∃ (λ k ) k∈ N real, λ k → 0;

Tx = X

k∈ N

λ k hx , e k ie k .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 3 / 13

(8)

Spectral Theorem for compact self-adjoint operators

Aim: give the main tools to prove the spectral theorem Theorem (Spectral Theorem)

H separable, infinite dimensional, Hilbert space. T : H → H compact, self-adjoint operator.

∃ (e k ) k∈ N orthonormal basis of H;

∃ (λ k ) k∈ N real, λ k → 0;

Tx = X

k∈ N

λ k hx , e k ie k .

(9)

Spectral Theorem for compact self-adjoint operators

Aim: give the main tools to prove the spectral theorem Theorem (Spectral Theorem)

H separable, infinite dimensional, Hilbert space. T : H → H compact, self-adjoint operator.

∃ (e k ) k∈ N orthonormal basis of H;

∃ (λ k ) k∈ N real, λ k → 0;

Tx = X

k∈ N

λ k hx , e k ie k .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 3 / 13

(10)

Spectral Theorem for compact self-adjoint operators

Aim: give the main tools to prove the spectral theorem Theorem (Spectral Theorem)

H separable, infinite dimensional, Hilbert space. T : H → H compact, self-adjoint operator.

∃ (e k ) k∈ N orthonormal basis of H;

∃ (λ k ) k∈ N real, λ k → 0;

Tx = X

k∈ N

λ k hx , e k ie k .

(11)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 4 / 13

(12)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

(13)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 4 / 13

(14)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

(15)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 4 / 13

(16)

Stability

Throughout H=Hilbert space, T : H → H bounded linear.

Observation

If T = T and E ⊂ H closed subspace invariant through T : T (E ) ⊂ E then E is also stable through T

Proof.

x ∈ E , y ∈ E then Tx ∈ E and

hTy , x i =

* y

|{z}

∈E

, Tx

|{z}

∈E

+

= 0

that is Ty ∈ E .

(17)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 5 / 13

(18)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

(19)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 5 / 13

(20)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

(21)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 5 / 13

(22)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

(23)

Kernel and image

ker T is stable through T . Observation

If T = T , H = ker T ⊕ Im T , i.e. ker T = Im T i.e. (ker T ) = Im T . Proof.

x ∈ Im T means ∀y ∈ H

0 = hx , Ty i = hTx , y i

⇔ Tx = 0 i.e. x ∈ ker T .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 5 / 13

(24)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

(25)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 6 / 13

(26)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

(27)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 6 / 13

(28)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

(29)

Reduction to one-to-one operators

π 0 , ⊥-proj on ker T , I − π 0 ⊥-proj on Im T then (with previous observation)

T = π 0 T π 0 + (I − π 0 )T (I − π 0 ) both are self adjoint and compact if T is.

(I − π 0 )T (I − π 0 ) is T : Im T → Im T and is one-to-one.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 6 / 13

(30)

Spectral theorem - comments

one can also interpret this as T having a matrix of the form

ker T E 1 E 2 · · ·

e 1,1 , . . . , e n

1

,1 e 1,2 , . . . , e n

2

,2

ker T 0 0 0 · · ·

e 1,1 .. . e n

1

,1

0

λ 1 0

. ..

0 λ 1

0 e 1,2

.. . e n

2

,2

0

λ 2 0

. ..

0 λ 2

0 0

. .. 0

. ..

0 . ..

(31)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 8 / 13

(32)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

(33)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 8 / 13

(34)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

(35)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 8 / 13

(36)

Eigenvalues are real

Observation

If T = T , and λ eigenvalue: ∃x ∈ H, x 6= 0 s.t. Tx = λx then λ ∈ R . Proof.

λkx k 2 = hλx , x i = hTx , x i = hx, Txi

= hx, λx i = ¯ λkxk 2 .

(37)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 9 / 13

(38)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

(39)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 9 / 13

(40)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

(41)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 9 / 13

(42)

Eigenspaces are orthogonal

Observation

If T = T , λ 6= µ, E λ = ker(T − λI), E µ corresponding eigenspaces then E λ ⊥ E µ

Proof.

x ∈ E λ , y ∈ E µ

λhx , y i = hλx , y i = hTx , y i = hx, Ty i

= hx , µy i = ¯ µhx , y i = µhx, y i

E µ ⊂ E λ and E µ =eigenspace for eigenvalue µ of (I − π λ )T (I − π λ ) i.e.

of T restricted to E λ

(43)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 13

(44)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

(45)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 13

(46)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

(47)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 13

(48)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

(49)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 13

(50)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

(51)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 10 / 13

(52)

Eigenvalues exist

Lemma

If T 6= 0 is compact, self-adjoint the either kT k or −kT k is an eigenvalue

Proof: α := kT k then

α 2 = sup{kTxk 2 : kxk = 1} = sup{hTx , Tx i : kxk = 1}

= sup{ D T 2 x , x

E

: kx k = 1}.

∃x n , kx n k = 1,

T 2 x n , x n

→ α 2 .

T 2 x n − α 2 x n

2

= T 2 x n

2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

≤ kT k 4 kx n k 2 − 2α 2 < D

T 2 x n , x n E

+ α 4 kx n k 4

= 2α 4 − 2α 2 < D

T 2 x n , x n

E → 0.

(53)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is an eigenvalue;

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 11 / 13

(54)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is

an eigenvalue;

(55)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is an eigenvalue;

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 11 / 13

(56)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is

an eigenvalue;

(57)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is an eigenvalue;

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 11 / 13

(58)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is

an eigenvalue;

(59)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is an eigenvalue;

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 11 / 13

(60)

Eigenvalues exist - proof continued

Proof continued.

T compact ⇒ T 2 compact, x n ∈ B,

T 2 x n − α 2 x n

2 → 0

Go to subsequence (T 2 x n

k

) converges x n

k

also. x the limit, kx k = 1 and

T 2 x − α 2 x

= 0 i.e. (T 2 − α 2 )x = 0.

Rewrite this as (T + αI)(T − αI)x = 0

Case 1: (T − αI)x = 0 that is Tx = αx , α is an eigenvalue.

Case 2: y := (T − αI)x 6= 0 then (T + αI)y = 0 i.e. Ty = −αy , −α is

an eigenvalue;

(61)

Eigenspaces have finite dimension

Observation

If T is compact, each eigenspace E λ (λ 6= 0) has finite dimension.

Proof.

(e k ) k∈I O.N.B of E λ , Te k = λe k . If k 6= `, kTe k − Te ` k = |λ| √ 2 6= 0.

Can not extract convergent subsequence (if I infinite) Contradicts T compact.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 12 / 13

(62)

Eigenspaces have finite dimension

Observation

If T is compact, each eigenspace E λ (λ 6= 0) has finite dimension.

Proof.

(e k ) k∈I O.N.B of E λ , Te k = λe k . If k 6= `, kTe k − Te ` k = |λ| √ 2 6= 0.

Can not extract convergent subsequence (if I infinite)

Contradicts T compact.

(63)

Eigenspaces have finite dimension

Observation

If T is compact, each eigenspace E λ (λ 6= 0) has finite dimension.

Proof.

(e k ) k∈I O.N.B of E λ , Te k = λe k . If k 6= `, kTe k − Te ` k = |λ| √ 2 6= 0.

Can not extract convergent subsequence (if I infinite) Contradicts T compact.

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 12 / 13

(64)

Eigenspaces have finite dimension

Observation

If T is compact, each eigenspace E λ (λ 6= 0) has finite dimension.

Proof.

(e k ) k∈I O.N.B of E λ , Te k = λe k . If k 6= `, kTe k − Te ` k = |λ| √ 2 6= 0.

Can not extract convergent subsequence (if I infinite)

Contradicts T compact.

(65)

That’s all!

Thank you for your attention!

Next video: The proof.

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

Philippe Jaming (Universit ´e de Bordeaux) Spectral Theorem 2 Master Math & Applications 13 / 13

(66)

That’s all!

Thank you for your attention!

Next video: The proof.

http://www.u-bordeaux.fr/˜ pjaming/enseignement/M1.html

Références

Documents relatifs

Alors si l’on cherche la distance sur ce trajet entre le village et le randonneur, elle est de 0 quand le randonneur est au village, et de a quand il est au refuge... Les

Theorem 2 is in fact a consequence of a more general result concerning the singular values of non necessarily selfadjoint compact Hankel operators.. Recall that the singular values of

one or several variables with real coefficients. Our main result states that over these fields K every symmetric matrix can be orthogonally diagonalized. We shall

The main tool for the proof of Theorem 1.1 is the following result [BK2, Theorem 1.1] which generalizes H¨ormander’s well-known weak type ( 1 , 1 ) con- dition for integral

In [9] the authors extended the theory of fractional powers of non-negative operators, a classical topic in Banach spaces, to sequentially locally

Corollary 2.3 specially applies to adjacency operators on certain classes of Cayley graphs, which are Hecke-type operators in the regular representation, thus convolution operators

An alternative approach is to work with the operator (1 − ∆) − 1 : in the following we define this operator and prove that it is compact and self-adjoint. An application of Theorem

(iii) ´ Ecrire pour chacune de ces familles un champ de vecteurs lisse sur H dont les courbes int´ egrales sont les droites de la famille. (iv) Calculer le crochet des deux champs