• Aucun résultat trouvé

Combination of 4D wheat architecture models and close range measurements for high throughput in field phenotyping : current status and prospects

N/A
N/A
Protected

Academic year: 2021

Partager "Combination of 4D wheat architecture models and close range measurements for high throughput in field phenotyping : current status and prospects"

Copied!
27
0
0

Texte intégral

(1)

HAL Id: hal-02815730

https://hal.inrae.fr/hal-02815730

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combination of 4D wheat architecture models and close range measurements for high throughput in field

phenotyping : current status and prospects

Frédéric Baret, Philippe Burger, Kai Ma, Benoît de Solan, Christiane Fournier, J-Francois Hanocq

To cite this version:

Frédéric Baret, Philippe Burger, Kai Ma, Benoît de Solan, Christiane Fournier, et al.. Combination of 4D wheat architecture models and close range measurements for high throughput in field phenotyping : current status and prospects. 1. International Plant Phenotyping Symposium, Nov 2009, Julich, Germany. 2009. �hal-02815730�

(2)

Combination of 4D wheat architecture  models and close range measurements  for high throughput in field phenotyping: 

current status and prospects

F. Baret

1

, Ph. Burger

2

, Kai Ma

1

, B. de Solan

1,4

Ch. Fournier

3

and J.F. Hanocq

1

1INRA‐EMMAH UMR1114 Avignon, France

2INRA‐ AGIR UMR1248, Auzeville, France

3INRA‐LEPSE , Montpellier, France

4Arvalis, Boigneville, France

1

(3)

Outlook

1. Background

2. Current focus and measurement systems 3. Use of 4D models 

4. The Toulouse 2009 experiment

5. Conclusion

(4)

Importance of infield measurements

• Plants grown under artificial conditions  do not display  the same characteristics as in natural conditions

– Soil

– Climate

– Competition between plants

• Infield phenotyping is therefore required to identify  particular features

• It provides also pertinent information to design decision  making rules to adapt cultural practices

3

(5)

State variables accessible from close range  remote sensing at the canopy scale

Photography

– Gap fraction: LAI – Color: senescence

– 3D architecture: leaf inclination

Light transmittance

– LAI – fAPAR

Lidar

– Gap fraction – LAI

– vertical profile of LAI

Reflectance

– LAI – fAPAR

– chlorophyll

– PRI (photochemical reflectance  index)

Fluorescence

– blue

– chlorophyll

Thermal Infrared

– Energy/water balance

(6)

Systems and vectors

Tractor/scouts based systems present the main advantages 5

(7)

Why not using airborne systems

Toulouse, 2006 Lack of stability

Radiometric calibration more difficult Directional effects

Stability (balloon) Ease of deployment

Need imaging systems (cost, weight)

(8)

Outlook

1. Background

2. Current focus and measurement systems 3. Use of 4D models 

4. The Toulouse 2009 experiment 5. Conclusion

7

(9)

Current focus

• Variables targeted:

– LAI (continuous for phenology)

– fAPAR (continuous  for photosynthesis)

– Architecture  characteristics (used later for precision farming) – Chlorophyll content: indicator of nitrogen nutrition

– PRI (stress evaluation)

• The systems used

– Tractor borne system combining

• Photographs: access to LAI, structure

• Spectroradiometers: access to chlorophyll and PRI

– Continuous measurements of light transmittance with  autonomous systems

• fAPAR

• LAI

• senescence

(10)

Justification for the system design

• Photo  @57.5° perpendicular to the row: 

– good estimates of the PAI/GAI

• Photo @0°

– estimate of canopy structure

• Spectroradiometer with the same view configuration 

– access to chlorophyll and PRI in combination with gap fraction from photos

9

(11)

The tractor borne system used

1-3 m variable spectros

GPS

PC

Camera Flash

Reflectance Vis/NIR High spectral resolution

Color photographs high resolution

Gap fraction Green fraction Spectroradiometers

LAI

Chlorophylle Structure, PRI

(12)

The tractor borne system used

11

(13)

Incident

Transmis Réfléchi

Grappes

Concentrateur

Continuous monitoring of fAPAR & LAI

PAR@METER systems

- 7 transmitted sensors - 1 reflected

- measurements every 5 minutes

- 3 months autonomy (energy/memory)

(14)

Outlook

1. Background

2. Current focus and measurement systems 3. Use of 4D models 

4. The Toulouse 2009 experiment 5. Conclusion

13

(15)

The approach for data interpretation:

use of 3D models

Inputs

Phyllochrone

Density @ emergence Nb tillers

Nb of ears Height max Leaf inclination

Basal inclination of tillers

ADEL‐

Wheat Thermal 

time 3D scene

PARCINOPY Monogap

Powray

-80 -60 -40 -20 0 20 40 60 80

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

Den300-T2-high-erect-T900-Red

perpendicular parallel

Leaf Refl & Trans Soil Reflectance Sun position

View direction

14

(16)

Simulations of 3D canopies

15

(17)

Interest of 3D models versus 1D (SAIL)

0 0.2 0.4 0.6 0.8 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Po SAIL

Po PARCINOPY

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

NDVI SAIL

NDVI PARCINOPY

Gap fraction Reflectance NDVI=(NIR-R)/(NIR+R)

(18)

Results for gap fraction

Gap fraction @ 0° Gap fraction @ 57°

Sensitivity mainly to leaf inclination Small saturation effects

Almost independency from leaf inclination Saturation for LAI>4

LAI LAI

Gap fraction

Gap fraction

Synergy between both directions to estimate leaf inclination

17

(19)

Results for reflectance

NDVI=(NIR-R)/(NIR+R)

Sensitivity mainly to leaf inclination Saturation for LAI>4

LAI

NDVI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.00 2.00 4.00 6.00 8.00 10.00

var erectophile var planophile ajust var erectophile ajust var planophile

(20)

Outlook

1. Background

2. Current focus and measurement systems 3. Use of 4D models 

4. The Toulouse 2009 experiment 5. Conclusion

19

(21)

The experiment in Toulouse in 2009

Experimental design 6 contrasted cultivars 2 nitrogen levels

2 densities 3 replicates

Destructive measurements LAI

Biomass Structure

Nitrogen content

Tractor borne remote sensing Photo @0° & @57°

Reflectance spectra @0° & @57°

Continuous PAR balance PAR@METER in 15 plots

(22)

LAI (destructive)

LAI (gap fraction @57°)

LAI estimated from photos

Automatic extraction and classification Good performances but:

- Relatively low LAI (little saturation) - Effect of spikes

Flowering stage

21

(23)

LAI estimated from PAR@METER

0 1 2 3 4

0 1 2 3 4

Destructive GAI

PAI par@meter 03/06

Flowering stage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20 30 40 50 60 70

Sun zenith angle (°)

Diffuse fraction

Transmittance

Reflectance

Some technical problems (solved) Good estimates at flowering

Effect of senescent leaves during grain filling period Refinement on:

- spatial sampling

(24)

Monitoring the dynamics of senescence

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.2 0.4 0.6 0.8 1

Série1 Série2 Série3 Série4

Green fraction (visual notation)

Green fraction (photo)

Very good monitoring of senescence from photos

… a lot more soon to be available

23

(25)

Outlook

1. Background

2. Current focus and measurement systems 3. Use of 4D models 

4. The Toulouse 2009 experiment

5. Conclusion

(26)

Conclusion

• Lot of potentials for phenotyping

– LAI

– Chlorophyll – Architecture – fAPAR

– Stress (PRI)

• Some improvement to get operational systems

• Extensive use of 3D models for optimal configuration  selection, sensitivity analysis and transformation into  canopy state variables

• Coupling with canopy functioning models to identify  genotype dependent parameters related to specific  processes

25

(27)

Field Sensors

Measur.

Physiol.

Parameters (dep. Génét.)

1. Estimates of functional traits by empirical methods

Rad.

Transf.

Funct.

Model

Forcing

Climate Soil Cult. Pract.

LAI Chloro

2. Use of functioning model:

Genetic parameters

Structure Optical

Prop.

3. Improving consistency between measurements and models

Architecture Parameters

Model 4D

4. Use of 4D models

detailed Mesurem.

5. Adjusting 4D model parameters from detailed measurements

Stress

6. Coupling 4D to functioning models

General approach foreseen

LAI and Chlorophyll Variables

are shared by the three models:

Références

Documents relatifs

1.Scheduling distributed computation We have adopted an algebraic approach suited to the optimisation and parallelisation of

The procedure makes it possible to compute descriptors of the tree shape such as the height, convex volume, alpha hull volume, total leaf area and it vertical

To answer the ques- tion of the relationship between carotenoids content and DMC quantified in seedling and cloned plants from the same genotype, a large dataset was created using

Pour ce faire, nous sommes surtout intéressés par trois modèles: le modèle fonctionnel de concurrence (Functional Concurrent Model: FCCM), le modèle fonctionnel de

Three populations have now been evaluated using HTP including: a large set of recombinant inbred lines (1,700 IR64 x Aswina RILs) for biomass traits; a diversity panel of 300

approach permitted identifying genotypes that display sufficient transpiration level (and thus sustained growth) under drought stress, related mainly to limited water

The integration of high throughput phenotyping with genetic association study on a japonica rice variety panel, present a significant advance in order to identify genomic regions

Growth curves obtained by OD monitoring of FY4 strain microcultivations in a microplate reader (384-well plate) using YPD medium supplemented with the indicated concentrations