• Aucun résultat trouvé

Propagation de solitons optiques à quelques cycles dans des guides d’ondes couplés

N/A
N/A
Protected

Academic year: 2021

Partager "Propagation de solitons optiques à quelques cycles dans des guides d’ondes couplés"

Copied!
57
0
0

Texte intégral

(1)

HAL Id: hal-02564155

https://hal.univ-angers.fr/hal-02564155

Submitted on 5 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Propagation de solitons optiques à quelques cycles dans des guides d’ondes couplés

Hervé Leblond, Dumitru Mihalache, David Kremer, Said Terniche

To cite this version:

Hervé Leblond, Dumitru Mihalache, David Kremer, Said Terniche. Propagation de solitons optiques à quelques cycles dans des guides d’ondes couplés. ICOPA 4, 2016, Bordeaux, France. �hal-02564155�

(2)

Solitons optiques ` a quelques cycles dans des guides coupl´ es

Herv´e Leblond1, Dumitru Mihalache2, David Kremer3, Said Terniche1,4

1Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´e d’Angers.

2Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest.

3Laboratoire MOLTECH-Anjou, CNRS UMR 6200, Universit´e d’Angers.

4Laboratoire Electronique Quantique, USTHB, Alger.

(3)

1 Waveguiding of a few-cycle pulse How to model it

Nonlinear widening of the linear guided modes

2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms

Few-cycle optical solitons in linearly coupled waveguides

3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons

(4)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS)

It is a soliton if it propagates without deformation on DL, due to nonlinearity.

In linear regime: spread out by dispersion.

Solitary wave soliton: the hydrodynamical soliton A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:L∼λ

The slowly varying envelope approximation is not valid Generalized NLS equation

Leblond, Mihalache, Kremer, Terniche ( Laboratoire de Photonique d’Angers LϕA EA 4464, Universit´Propagation de solitons optiques `a quelques cycles dans des guides d’ondes coupl´e d’Angers., Horia Hulubei National Institute for Physics and Nuclear Engineering, and Academy of Romanian Scientists, Bucharest., Laboratoire MOLTECH-Anjou, CNRS UMR 6200, Universit´es3 / 29 e d’Angers., Laboratoire Electronique Quantique, USTHB, Alger. )

(5)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS) It is a soliton if it propagates without deformation on DL, due to nonlinearity.

In linear regime: spread out by dispersion.

Solitary wave soliton: the hydrodynamical soliton A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:L∼λ

The slowly varying envelope approximation is not valid Generalized NLS equation

We seek a different approach based on KdV-type models

(6)

Solitary wave vs envelope solitons

Envelope soliton: the usual optical soliton in the ps range

Pulse durationLλwavelength Typical model: NonLinear Schr¨odinger equation (NLS) Solitary wave soliton: the hydrodynamical soliton

A single oscillation

Typical model: Korteweg-de Vries equation (KdV)

Few-cycle optical solitons:L∼λ

The slowly varying envelope approximation is not valid Generalized NLS equation

We seek a different approach based on KdV-type models

(7)

The mKdV model

A two-level model with resonance frequency ω UV transition only, with (1/τp

1/ τp ω

=⇒ Long-wave approximation

modified Korteweg-de Vries (mKdV) equation

∂E

∂ζ = 1 6

d3k dω3 ω=0

3E

∂τ3 − 6π

ncχ(3)(ω;ω,ω,−ω) ω=0

∂E3

∂τ

H. Leblond and F. Sanchez,Phys. Rev. A67, 013804 (2003)

(8)

Waveguide description

The evolution of the electric field E: In (1+1) dimensions:

−→ The modified Korteweg-de Vries (mKdV) equation

ζE+β∂τ3E +γ∂τE3= 0 Nonlinear coefficient γ = 1

2ncχ(3), Dispersion parameter β= (−n00)

2c ,

(9)

Waveguide description

The evolution of the electric field E: We generalize to (2+1) dimensions:

−→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

ζE+β∂τ3E +γ∂τE3−V 2

Z τ

ξ2Edτ0 = 0 Nonlinear coefficient γ = 1

2ncχ(3), Dispersion parameter β= (−n00)

2c , Linear velocity:V = c

n.

(10)

Waveguide description

The evolution of the electric field E:

A waveguide:

c g c x

core

cladding cladding

−→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

ζE+βατ3E +γατE3 −Vα 2

Z τ

ξ2Edτ0 = 0 with α=g in the core andα=c in the cladding.

Nonlinear coefficient γα= 1 2nα(3)α , Dispersion parameter βα = (−n00α)

2c , Linear velocity:Vα = c

nα

.

(11)

Waveguide description

The evolution of the electric field E:

A waveguide:

c g c x

core

cladding cladding

−→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation

ζE+βατ3E +γατE3+ 1

VατE−Vα

2 Z τ

ξ2Edτ0 = 0 with α=g in the core andα=c in the cladding.

Velocities : Vg <Vc

Nonlinear coefficient γα= 1 2nα(3)α , Dispersion parameter βα = (−n00α)

2c , Linear velocity:Vα = c

nα.

(12)

Waveguide description

The evolution of the electric field E:

A waveguide:

c g c x

core

cladding cladding

−→ The cubic generalized Kadomtsev-Petviashvili (CGKP) equation In dimensionless form:

zu =Aαt3u+Bαtu3+vαtu+Wα

2 Z t

x2udt0 with α=g in the core andα=c in the cladding.

Relative inverse velocities : vg >vc Nonlinear coefficient γα= 1

2nα(3)α , Dispersion parameter βα = (−n00α)

2c , Linear velocity:Vα = c

nα

.

(13)

Nonlinear propagation in linear guide

We solve the CGKP equation starting from

u(x,t,z = 0) =Acos(ωt)f(x)e−t2/w2, f(x) =

cos(kxx), for |x| ≤a,

Ce−κ|x|, for |x|>a, is a linear mode profile Normalized coefficients A1=A2=B1 =B2 =W1=W2 = 1,

−→ we assume that

- Temporal compression occurs

- Spatial defocusing occurs, (else it collapses!)

- Dispersion and nonlinearity are identical in core and cladding.

(14)

Guided wave profiles

(Normalized so that the total power is 1.v2= 3,w= 2.)

The pulse is less confined in nonlinear (blue, and red)

than in linear (pink and cyan)regime.

(15)

Nonlinear waveguide

Wave guided and confined by using nonlinear velocity:

a higher nonlinear coefficient in the cladding than that in the core.

Guided profiles of the nonlinear waveguide. Normalized so that the total power is 1.

(16)

Two-cycle soliton of the nonlinear waveguide

x

t

-2

-1

0

1

2

-150 -100 -50 0 50 100 150

B2B1= 1.

H. Leblond and D. Mihalache,Phys. Rev. A88, 023840 (2013)

(17)

1 Waveguiding of a few-cycle pulse How to model it

Nonlinear widening of the linear guided modes

2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms

Few-cycle optical solitons in linearly coupled waveguides

3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons

(18)

2D waveguiding structure: two cores 1 and 2 and dielectric cladding

The generalized Kadomtsev-Petviashvili (GKP) equation (dimensionless)

zu =Aαt3u+Bαtu3+Vαtu+wα 2

Z t

x2udt, α=g in the cores 1 and 2,α=c in the cladding.

(19)

We seek for a solution as

u =R(t,z)f1(x)e+S(t,z)f2(x)e, i.e., two interacting modes.

∗fj, (j = 1, 2): linear mode profiles of individual guides,

∗R(t,z),S(t,z): longitudinal wave profiles,

∗ϕ=ωt−βz.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S), Involve overlap integrals I1 =R

−∞f1f2dx,I2 =R

g1f1f2dx =R

g2f1f2dx

(“R

gj·dx” is the integral over the corej= 1 or 2.)

(20)

We seek for a solution as

u =R(t,z)f1(x)e+S(t,z)f2(x)e, i.e., two interacting modes.

∗fj, (j = 1, 2): linear mode profiles of individual guides,

∗R(t,z),S(t,z): longitudinal wave profiles,

∗ϕ=ωt−βz.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S), Involve overlap integrals I1 =R

−∞f1f2dx,I2 =R

g1f1f2dx =R

g2f1f2dx

(“R

gj·dx” is the integral over the corej= 1 or 2.)

(21)

We seek for a solution as

u =R(t,z)f1(x)e+S(t,z)f2(x)e, i.e., two interacting modes.

∗fj, (j = 1, 2): linear mode profiles of individual guides,

∗R(t,z),S(t,z): longitudinal wave profiles,

∗ϕ=ωt−βz.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S), Involve overlap integrals I1 =R

−∞f1f2dx,I2 =R

g1f1f2dx =R

g2f1f2dx

(“R

gj·dx” is the integral over the corej= 1 or 2.)

(22)

We seek for a solution as

u=R(z)f1(x)e+S(z)f2(x)eiϕ, i.e., two interacting modes.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S),

The few-cycle pulse is expanded as a Fourier integral of such modes, u1=R

Redω,u2 =R

Seiϕdω.

We report∂zR and∂zS into ∂zu1, and get the linear coupling terms.

Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

zu1=A∂t3u1+B∂tu13+V∂tu1+C∂tu2+D∂3tu2,

zu2=A∂t3u2+B∂tu23+V∂tu2+C∂tu1+D∂3tu1,

(23)

We seek for a solution as

u=R(z)f1(x)e+S(z)f2(x)eiϕ, i.e., two interacting modes.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S),

The few-cycle pulse is expanded as a Fourier integral of such modes, u1=R

Redω,u2 =R

Seiϕdω.

We report∂zR and∂zS into ∂zu1, and get the linear coupling terms.

Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

zu1=A∂t3u1+B∂tu13+V∂tu1+C∂tu2+D∂3tu2,

zu2=A∂t3u2+B∂tu23+V∂tu2+C∂tu1+D∂3tu1,

(24)

We seek for a solution as

u=R(z)f1(x)e+S(z)f2(x)eiϕ, i.e., two interacting modes.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S),

The few-cycle pulse is expanded as a Fourier integral of such modes, u1=R

Redω,u2 =R

Seiϕdω.

We report∂zR and∂zS into ∂zu1, and get the linear coupling terms.

Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

zu1=A∂t3u1+B∂tu13+V∂tu1+C∂tu2+D∂3tu2,

zu2=A∂t3u2+B∂tu23+V∂tu2+C∂tu1+D∂3tu1,

(25)

We seek for a solution as

u=R(z)f1(x)e+S(z)f2(x)eiϕ, i.e., two interacting modes.

We report it into the GKP equation and get after averaging on x:

zR=∂zS = iwg

(Kc−Kg)I2 1 +I1

(R+S),

The few-cycle pulse is expanded as a Fourier integral of such modes, u1=R

Redω,u2 =R

Seiϕdω.

We report∂zR and∂zS into ∂zu1, and get the linear coupling terms.

Finally, we get the system of two coupled modified Korteweg-de Vries (mKdV) equations

zu1=A∂t3u1+B∂tu13+V∂tu1+C∂tu2+D∂3tu2,

zu2=A∂t3u2+B∂tu23+V∂tu2+C∂tu1+D∂3tu1,

(26)

Nonlinear coupling

An analogous procedure, treating the nonlinear term as a perturbation, allows to derive the nonlinear coupling terms The complete final system is

zu1 = A∂3tu1+B∂tu31+V∂tu1

+C∂tu2+D∂t3u2+E∂t 3u12u2+u23

zu2 = A∂3tu2+B∂tu32+V∂tu2

+C∂tu1+D∂t3u1+E∂t 3u1u2+u13

H. Leblond, and S. Terniche,Phys. Rev. A93, 043839 (2016)

(27)

Nonlinear coupling

The complete final system is

zu1 = A∂3tu1+B∂tu31+V∂tu1

+C∂tu2+D∂t3u2+E∂t 3u12u2+u23

zu2 = A∂3tu2+B∂tu32+V∂tu2

+C∂tu1+D∂t3u1+E∂t 3u1u2+u13 We evidence

a standardlinear couplingterm,

a linearcouplingtermbased on dispersion, anonlinear couplingterm

H. Leblond, and S. Terniche,Phys. Rev. A93, 043839 (2016)

(28)

Nonlinear coupling

The complete final system is

zu1 = A∂3tu1+B∂tu31+V∂tu1

+C∂tu2+D∂t3u2+E∂t 3u12u2+u23

zu2 = A∂3tu2+B∂tu32+V∂tu2

+C∂tu1+D∂t3u1+E∂t 3u1u2+u13 We evidence

a standardlinear couplingterm,

a linearcouplingtermbased on dispersion, anonlinear couplingterm

H. Leblond, and S. Terniche,Phys. Rev. A93, 043839 (2016)

(29)

Nonlinear coupling

The complete final system is

zu1 = A∂3tu1+B∂tu31+V∂tu1

+C∂tu2+D∂t3u2+E∂t 3u12u2+u23

zu2 = A∂3tu2+B∂tu32+V∂tu2

+C∂tu1+D∂t3u1+E∂t 3u1u2+u13 We evidence

a standardlinear couplingterm,

a linearcouplingtermbased on dispersion, anonlinear couplingterm

H. Leblond, and S. Terniche,Phys. Rev. A93, 043839 (2016)

(30)

Nonlinear coupling

The complete final system is

zu1 = A∂3tu1+B∂tu31+V∂tu1

+C∂tu2+D∂t3u2+E∂t 3u12u2+u23

zu2 = A∂3tu2+B∂tu32+V∂tu2

+C∂tu1+D∂t3u1+E∂t 3u1u2+u13 We evidence

a standardlinear couplingterm,

a linearcouplingtermbased on dispersion, anonlinear couplingterm

H. Leblond, and S. Terniche,Phys. Rev. A93, 043839 (2016)

(31)

We assume a purely linear and non-dispersive coupling

zu = −∂t(u3)−∂t3u−C∂tv,

zv = −∂t(v3)−∂t3v−C∂tu,

We look for stationary states (vector solitons) in this model The ”stationary” states oscillate witht andz: .

few-cycle solitons arebreathers.

(32)

Atypical example of few-cycle vector soliton

(Dotted lines:u, solid lines:v. Left: atz= 0, right: atz= 60.<Au>= 1.837).

(33)

Evolution of soliton’s maximum amplitude during propagation.

1.6 1.8 2

0 1 2 3 4 5 6 7 8

maxt(|u|)

z

0.4 0.5 0.6

0 1 2 3 4 5 6 7 8

maxt(|v|)

z

Soliton with<Au>= 1.789.

Two types of oscillations:

• Fast: phase - group velocity mismatch

• Slower: periodic energy exchange, as in linear regime.

(34)

Consider now the coupled equations in thelinearized case.

Themonochromaticsolutions are u

v

= A

B

e−i(ωt+bω3z),

With, due to coupling,

A=u0coscωz+iv0sincωz, B=v0coscωz+iu0sincωz.

The maximum amplitude and the power density of the wave oscillate with spatial frequencycω/π=σ0 = 1.326.

(35)

Consider now the coupled equations in thelinearized case.

Themonochromaticsolutions are u

v

= A

B

e−i(ωt+bω3z), With, due to coupling,

A=u0coscωz+iv0sincωz, B=v0coscωz+iu0sincωz.

The maximum amplitude and the power density of the wave oscillate with spatial frequencycω/π=σ0 = 1.326.

(36)

Consider now the coupled equations in thelinearized case.

Themonochromaticsolutions are u

v

= A

B

e−i(ωt+bω3z), With, due to coupling,

A=u0coscωz+iv0sincωz, B=v0coscωz+iu0sincωz.

The maximum amplitude and the power density of the wave oscillate with spatial frequencycω/π=σ0 = 1.326.

(37)

Consider now the coupled equations in thelinearized case.

Themonochromaticsolutions are u

v

= A

B

e−i(ωt+bω3z), With, due to coupling,

A=u0coscωz+iv0sincωz, B=v0coscωz+iu0sincωz.

The maximum amplitude and the power density of the wave oscillate with spatial frequencycω/π=σ0 = 1.326.

(38)

Oscillations of the few-cycle vector solitons

The energies Eu=R

u2dt andEv =R

v2dt oscillate

almost harmonically, as Eu =<Eu >+∆Eusin(2πσaz+φE,u), The same for Au= maxt(|u|) andAv = maxt(|v|)

Spatialfrequency σa∈[1.06,1.17], increasing with<Au >.

(linear:σ0= 1.326).

Amplitudes of oscillations vs amplitude of fieldu

0 0.05 0.1 0.15 0.2

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

Au, Av, Eu

<Au>

black saltires: ∆Eu; blue stars: ∆Au; red crosses: ∆Av.

Well fitted with∆E 'Rp

A −<A >, etc., with A = 1.854.

(39)

Oscillations of the few-cycle vector solitons

The energies Eu=R

u2dt andEv =R

v2dt oscillate

almost harmonically, as Eu =<Eu >+∆Eusin(2πσaz+φE,u), The same for Au= maxt(|u|) andAv = maxt(|v|)

Spatialfrequency σa∈[1.06,1.17], increasing with<Au >.

(linear:σ0= 1.326).

Amplitudes of oscillations vs amplitude of fieldu

0 0.05 0.1 0.15 0.2

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

Au, Av, Eu

<Au>

black saltires: ∆Eu; blue stars: ∆Au; red crosses: ∆Av.

Well fitted with∆E 'Rp

A −<A >, etc., with A = 1.854.

(40)

Oscillations of the few-cycle vector solitons

The energies Eu=R

u2dt andEv =R

v2dt oscillate

almost harmonically, as Eu =<Eu >+∆Eusin(2πσaz+φE,u), The same for Au= maxt(|u|) andAv = maxt(|v|)

Spatialfrequency σa∈[1.06,1.17], increasing with<Au >.

(linear:σ0= 1.326).

Amplitudes of oscillations vs amplitude of fieldu

0 0.05 0.1 0.15 0.2

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

Au, Av, Eu

<Au>

black saltires: ∆Eu; blue stars: ∆Au; red crosses: ∆Av.

Well fitted with∆E 'Rp

A −<A >, etc., with A = 1.854.

(41)

Oscillations of the few-cycle vector solitons

The energies Eu=R

u2dt andEv =R

v2dt oscillate

almost harmonically, as Eu =<Eu >+∆Eusin(2πσaz+φE,u), The same for Au= maxt(|u|) andAv = maxt(|v|)

Spatialfrequency σa∈[1.06,1.17], increasing with<Au >.

(linear:σ0= 1.326).

Amplitudes of oscillations vs amplitude of fieldu

0 0.05 0.1 0.15 0.2

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

Au, Av, Eu

<Au>

black saltires: ∆Eu; blue stars: ∆Au; red crosses: ∆Av.

Well fitted with∆E 'Rp

A −<A >, etc., with A = 1.854.

(42)

Oscillations of the few-cycle vector solitons

The energies Eu=R

u2dt andEv =R

v2dt oscillate

almost harmonically, as Eu =<Eu >+∆Eusin(2πσaz+φE,u), Amplitudes of oscillations vs amplitude of fieldu

0 0.05 0.1 0.15 0.2

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

Au, Av, Eu

<Au>

black saltires: ∆Eu; blue stars: ∆Au; red crosses: ∆Av.

Well fitted with∆Eu'Rp

A0−<Au>, etc., with A0= 1.854.

(43)

Evolution of the ratio v /u

Almost constant vs t

-136-132-128-124-120

t

-1 -1.5 0 -0.5 1 0.5

1.5

u

-1.5 -1 -0.5 0 0.5 1 1.5

v

Soliton with<Au>= 1.855.

(44)

Evolution of the ratio v /u

Orθ= arctanvu.

Oscillates almost harmonically withz.

Amplitudes of oscillations vs fieldu amplitude:

0 2 4 6 8 10 12 14 16

1.79 1.8 1.81 1.82 1.83 1.84 1.85 1.86

θ, <θ> (degree)

<Au>

Black line: mean value< θ >; green line: ∆θ.

Crosses: raw numerical data; solid lines: linear or parabolic fits.

S. Terniche, H. Leblond, D. Mihalache, and A. Kellou, submitted toPhys.Rev. A

(45)

1 Waveguiding of a few-cycle pulse How to model it

Nonlinear widening of the linear guided modes

2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms

Few-cycle optical solitons in linearly coupled waveguides

3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons

(46)

g

n = 2

c g c x

n = 3

c g

n = ­2

c g

n = ­1

c g

n = 0

c g

n = 1

c g

n = ­3

c

... ...

Aset of coupled waveguides within the same model, as:

zun=−a∂t(un3)−b∂t3un−c∂t(un−1+un+1), Initial data

un(z = 0,t) =A0sin(ωt+ϕ) exp

−n2 x2 − t2

τ2

; We fix ϕ0 = 0,x = 1,λ= 1, and we vary A0 andτ.

(47)

Formation of a solitons from a Gaussian pulse

Input

-40

-20

0

20

40

-6 -4 -2 0 2 4 6

t

n

z=0, fwhm= 3.5.

(48)

Formation of a solitons from a Gaussian pulse

Low amplitude output: diffraction and dispersion

-40

-20

0

20

40

-6 -4 -2 0 2 4 6

t

n

z= 0.72,A0= 0.2, fwhm= 3.5.

(49)

Formation of a solitons from a Gaussian pulse

High amplitude output: space-time localization

-40

-20

0

20

40

-6 -4 -2 0 2 4 6

t

n

z= 288,A0= 2.06,fwhm= 3.5.

(50)

An energy threshold for soliton formation?

Domain for soliton formation

1 2 3 4 5 6 7

1.5 2 2.5 3 3.5

fwhm

A

0

Blue: soliton; red: dispersion-diffraction.

(51)

An energy threshold for soliton formation?

Domain for soliton formation

14 14.5 15 15.5 16

1.5 2 2.5 3 3.5

A

02

fwhm

A

0

Blue: soliton; red: dispersion-diffraction.

(52)

Two kind of solitons: breathing and fundamental.

Breathing soliton:

localized in space and time oscillating wave packet

320 330 340 350 360 370

380 -4 -2 0 2 4

t

n

max|u|= 3.1801

(53)

Two kind of solitons: breathing and fundamental.

Breathing soliton:

localized in space and time oscillating wave packet

-2 -1 0 1 2 3

320 330 340 350 360 370 380

u

t

max|u|= 3.1801

(54)

Fundamental soliton:

localized in space and time single humped

20 30 40 50 60 70

80 -4 -2 0 2 4

t

n

max|u|= 2.5667

(55)

Fundamental soliton:

localized in space and time single humped

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

20 30 40 50 60 70 80

u

t

max|u|= 2.5667

(56)

Thank you for your attention.

(57)

1 Waveguiding of a few-cycle pulse How to model it

Nonlinear widening of the linear guided modes

2 Waveguide coupling in the few-cycle regime Derivation of the coupling terms

Few-cycle optical solitons in linearly coupled waveguides

3 Few cycle spatiotemporal solitons in waveguide arrays Formation of a solitons from a Gaussian pulse Two kind of solitons

Références

Documents relatifs

The first existence result of multi-solitons in a non-integrable setting was obtained by Merle [32] for multi- solitons composed of ground states or excited states for the L 2

To our knowledge, our previous work [9] was the first one to establish the existence of infinite soliton trains for non-integrable Schr¨ odinger equations (for the integrable 1D

The following large time behavior result of the half wave equation comes from the fact that the cubic Szeg˝o dynamics which appears as the effective dynamics, admits large time

The exact traveling wave solutions including soliton solutions, singular soliton so- lutions, rational function solutions and elliptic function solutions to the RLW equation

Dans ce cadre, nous nous proposons d'étudier un couplage non dispersif entre deux guides d'ondes dans lesquels deux solitons de type breather se propagent, par la

We investigated numerically the evolution of two input few-cycle pulses in the presence of a linear nondispersive coupling.. The formation of vector solitons

On considère ensuite l'évolution d'impulsions lumineuses dans des guides d'onde couplés, au moyen d'une résolution numérique de ces équations, dans

Pulse duration L λ wavelength Typical model: NonLinear Schr¨ odinger equation (NLS) Solitary wave soliton: the hydrodynamical soliton. A