• Aucun résultat trouvé

PEROVSKITE TYPE SEIGNETTOMAGNETS

N/A
N/A
Protected

Academic year: 2021

Partager "PEROVSKITE TYPE SEIGNETTOMAGNETS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00215024

https://hal.archives-ouvertes.fr/jpa-00215024

Submitted on 1 Jan 1972

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PEROVSKITE TYPE SEIGNETTOMAGNETS

Yu. Venevtsev, V. Lyubimov, V. Ivanova, G. Zhdanov

To cite this version:

Yu. Venevtsev, V. Lyubimov, V. Ivanova, G. Zhdanov. PEROVSKITE TYPE SEIGNETTOMAG- NETS. Journal de Physique Colloques, 1972, 33 (C2), pp.C2-255-C2-256. �10.1051/jphyscol:1972288�.

�jpa-00215024�

(2)

JOURNAL DE PHYSIQUE Colloque C2, supplkment au no 4, Tome 33, Avril 1972, page C2-255

PEROV SKITE TYPE SEIGMETTOMAGNET S

Yu. N. VENEVTSEV, V. N. LYUBIMOV, V. V. IVANOVA and G. S. ZHDANOV Karpov Institute of Physical Chemistry, Moscow, U. S. S. R.

Rbum6. -

Nous avons donnk une rapide revue des recherches expkrimentales et thkoriques de I'institut Karpov pour la synthkse et I'ktude des ferromagn6tiques de type perovskites.

Abstract. -

A

short review of exprimental and theoretical investigations of Karpov Institute in the synthesis and study of perovskite type seignettomagnets has been given.

In 1916-1917 S. A. Boguslavskii admitted the exis- tence of substances with moleculas possessing simulta- neously electric and magnetic dipoles [I]. It is known also that in 1958 G. A. Smolenskii and coworkers synthesized Fe-containing seignettoelectrics and sup- posed that these substances are at the same time anti- ferromagnets [2]-[4]. However the experimental evi- dences of the existence of seignettomagnets (ferro- electric with a magnetic ordering) were obtained only in late 1961 and early 1962 independently in the Insti- tute of semiconductors (under the Academy Sciences, U. S. S. R.) [5], [6] and in our Institute [7], [8]. The discovery of the first seignettomagnets stimulated further investigations of similar substances. The main results of Karpov Institute in a study of seignetto- magnets are as follows

:

I. It is known that one of the first seignettomagnets is bismuth ferrite (BiFeO,). This seignettomagnet has been discovered [7], [8] and studied in detail [9]-[ll]

in Karpov Institute. In accordance our later data BiFeO, is a seignettoelectric-compensated antiferro- magnetic with Curie temperature and Nee1 point 850 and 375 OC respectively [l 11.

It is necessary to note for an justice that for a definite time Smolenskii school refused the existence of the spontaneously-polarized state at BiFeO, [12]. Now a discussion is transfered in another plane. This school became to keep to an opinion, that BiFeO, is similar on a character of its dielectric properties to a known antiseignettoelectric PbZrO, [13].

At the same time a recent data of american investi- gators [14], [15] confirmed the seignettoelectric character of dielectric properties of BiFeO,.

11. Electric and magnetic properties of a seignetto- electric-ferromagnetic have been investigated on the base of the Landau thermodynamic theory of the second-order phase transitions [16]. In this theory a connection between electric and magnetic characte- ristics is realized through a linear magnettoelectric (M. E.) effect. The last causes an (r weak

))

electric polarization

(((

weak

))

ferromagnetism) when an initial ferromagnetic (seignettoelectric) ordering occurs only.

This phenomenon has been described also on a base of the effective field theory [16].

111. Crystals, admitting, M. E.-effect (including of seignettomagnets) desplay some particularities when electromagnetic waves and for example a light propa- gate in their [17]-[19]. It has been shown theoretically that velosity of r( forward

))

propagation differs from that of cr backward

))

propagation. Such phenomenon takes place in 47 classes of a symmetry from 68 crystal- lographic and the limited groops of a magnetic symmetry, admiting M. E.-effect. The last influences not only on refractive indices (velosities of the propa- gation) this effect influences also on a polarization of waves. For example, in a case of a perpendicular falling of a light on a face of the cubic crystal a polariza- tions plane of a reflective light is turned on an angle proportional to M. E.-effect [IS]. When the light passes through a plate of a crystal Cr203, possessing M. E.- effect, arises a characteristic ellipsoidal polarization of the light [19].

IV.

A magnetic symmetry of possible seignetto-

electric-ferromagnetic phases for perovskite-type crys- tals with different mutual orientations of a spontaneous electrical polarization and spontaneous magnetization has been studied [20].

Moreover, all positions in unit cells (of 230 space groups) in which can be placed electric and magnetic dipoles have been found [21]. Symmetry conditions of an existence and an coexistence of seignetto-, anti- seignetto-electric and ferro-, antiferromagnetic dipole arrangements have been analysed [22].

We have studied also symmetry restrictions on different effects of an interrelation of electric, magnetic and mechanical properties of crystals [23].

V. Table I contains a number of seignettomagnetic perovskite-type compounds, which have been synthe- sized and investigated (N 5 + 8) or only investigated (N 1

P

4,9) by us [7], [8], [24]-1291.

VI. One of the first experimental evidences of the existence of an interrelation between electric and magnetic properties of seignettomagnets appeared gamma-resonance data on BiFeO, [30].

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1972288

(3)

C2-256 YU. N. VENEVTSEV, V. N. LYUBIMOV, V. V. IVANOVA AND G. S. ZHDANOV

Perovskite-type seignettomagnets (of Karpov Institute) Compounds

- BiFe03 BiMnO 3

Pb(Fel/zTal/z)03 Pb(Mnl/zNbl,z)Os PbMn213W11303 (*)

~b~e:;2~n:f4~;;403 PbzMn2+Re6+06 PbzMn3+Re5+06 Cd(Fel/zNbl12)03 SrzCuWO6

Proper- ties (*) se-afm ase-fm se-fim ase-afm ase-afm se-fim ase-fim ase-fim ase-afm se-afm

(*) Compositions are given without a count of possible superstructure.

(**) se, ase, fm, fim, afm

-

seignetto, antiseignettoelectric, ferro-, ferri- and antiferromagnetic respectively.

In accordance to [30], [31] in the crystals BiFeO, magnetic moments are perpendicular to

a

vector of the spontaneous polarization

P,.

I t allows to conclude that

a

reorientation of P, (for example, with an electric field) on an other threefold axis of

a

similar crystals must cause

a

change of .the directioas of the magne- tic momentums and consequently a change of magnetic properties of crystals in the whole.

In this connection our data [32]-1341 are interesting also.

VII. Seignettomagnetic solid solutions with different combinations of dielectric and magnetic properties

(seignettoelectric-ferrimagnetic

[32]; [35], antiseignet- toelectric-ferromagnetic [25] and others) have been obtained and studied.

Scientific and practical interests demand of a continuation of the investigation of seignettomagnets and the creation of seignettomagnetic materials.

References

[I] BOGUSLAVSKII (S. A.), Izbrannie trudi po fizike, Moskva, 1961, p. 231.

[2] SMOLENSKII (G. A.), AGRANOVSKAYA (A. I.), Zh.

Tekhnich. fiz., 1958,28,1491.

[3] SMOLENSKII (G. A.), AGRANOVSKAYA (A. I.), P o ~ o v (S. N.), ISYPOV (V. A.), Zh. Tekhnich. fiz., 1958, 28, 2152.

[4] SMOLENSKII (G. A.), IOFFE (W. A.), Communications du Colloque international de magnktisme de Gre- noble (France, 2-6 juillet, 1958). Communication, 71.

[5] SMOLENSKII (G. A.), ISYPOV (V. A.), KRAINIK (N. N.), AGRANOVSKAYA (A. I.), ZZV. Akad. Nauk S. S . S . R.

Ser. fiz., 1961, 25, 1333.

[6] B o ~ o v (V. A.), MILNIKOVA (I. E.), SMOLENSKII (G. A.), Zh. exper. theor. fiz., 1962,42,643.

[7] VENEVTSEV (Yu. N.), ZHDANOV (G. S.), SOLOVI-

JEV (S. P.), BEZUS (Ye. V.), IVANOVA (V. V.), FEDULOV (S. A.) and KAPYSHEV (A. G.), Kristallo- grafya, 1960, 5, 620.

[8] KISELEV (S. V.), OZEROV (R. P.), ZHDANOV (G. S.), Dokl. Akad. Nauk, S. S . S . R., 1962, 145, 1255.

[9] FEDULOV (S. A.), VENEVTSEV (Yu. N.), ZHDANOV (G. S.), SMAGEVSKAYA (E. G.), REZ (I. S.), Kristallografiya, 1962. 7. 77.

[lo] TOMASHP~L'SKII (Yu. Ja.), VENEVTSEV (Yu. N.), ZHDANOV (G. S.), Dokl. Akad. Nauk S. S . S . R., 1963, 153, 1313 ; Kristallografiya, 1964, 9, 746;

1967, 12, 252.

[Ill ROGINSKAYA (Yu. Ye.), TOMASHPOL'SKII (Yu. Ya.), VENEVTSEV (Yu. N.), PETROV (V. M.), ZHDA-

NOV (G. S.). Zh. exuer. theor. fiz.. 1966. 50. 69.

[12] SMOLENS~II (G.'A.), ~ o i o v (V. A.): ~ . ' ~ ~ ~ l . ' ~ h j s i c s , 1964, 35, 915.

[13] SMOLENSKII (G. A.), BOKOV (V. A.), ISYPOV (V. A.), KRAINIK (N. N.), NEDLIN (G. M.), Helv. Phys.

Acta, 1968, 41, 1187.

[14] MICHEL (C.), MOREAU (Y. M.), ACHENBACH (G. D.), GERSON (R.), JAMES (W. J.), Solid State Comm., 1969, 7, 701.

[15] TEAQUE (J. R.), GERSON (R.), JAMES (W. J.), Solid State Comm., 1970, 8, 1073.

[16] LYUBIMOV (V. N.), Zzv. Akad. Nauk S . S. S . R., Ser.

- -

fiz., 1964, 28, 626.

[17] LYUBIMOV (V. N.), Dokl. Akad. Nauk S . S . S . R., 1968, 181, 858.

[18] LYUBIMOV (V. N.), Kristallografiya. 1968, 13, 1008;

14, 213.

[19]

LYUBIMOV

(V. N.), Fiz. Tverdogo Tela, 1968,10, 3502.

[20] LYUBIMOV (V. N.), Kristallografiya, 1965, 10, 420.

1211 LYUBIMOV (V. N.), ZHELUDEV (I. S.), Kristallografiya, 1963, 7, 313.

[22] LYUBIMOV (V. N.), Kristallografiya, 1963, 8, 699;

Zzv. Akad. Nauk S . S . S . R., Ser. fiz., 1964,28,658.

[23] LYUBIMOV (V. N.), Kristallografiya, 1967, 12, 708.

[24] TOMASHPOL'SKII (Yu. Ja.), ZUBOVA (Ye. V.), BUR-

DINA (K. P.), VENEVTSEV (Yu. N.), ZZV. Akad. Nauk S . S . S . R., Ser. Neorg. Muter., 1967, 3, 2132.

[25] IVANOVA (V. V.), VENEVTSEV (Yu. N.), ZZV. Akdd. Nauk S . S . S . R., Ser. fiz., 1967, 31, 1803.

[26] SHVORNEVA (L. I.), VENEVTSEV (Yu. N.), Zh. exper.

theor. fiz., 1965, 4.9, 1038.

[27] ROGINSKAYA (Yu. Ye.), VENEVTSEV (Yu. N.), ZHDA-

NOV (G. S.), Zh. exper. theor. fiz., 1965, 48, 1231.

[28] DROBISHEV (L. A.), AL'SHIN (B. I.), TOMASH-

POL'SKII (Yu. Ya.), VENEVTSEV (Yu. N.), 1969,14, 736.

[29] VENEVTSEV (Yu. N.), IVANOVA (V. V.), GOLOV-

NIN (V. A.), KASHLINSKII (A. I.), KOZLOVA (L. A.), KUZ'MIN (R. N.), ZZV. Akad. Nauk S . S . S . R., Ser. jiz., 1971, 35, 1829.

[30] MITROFANOV (K. P.), VISCOW (A. S.), PLOTNI-

KOVA (M. V.), VENEVTSEV (Yu. N.), SHPINEL (V. S.), Zzv. Akad. Nauk S . S . S . R., Ser, fiz., 1965, 29, 2029.

[31] SOSNOVSKA (I.), SOSNOVSKI (E.), KISELEV (S. B.), KSHNYAKINA (A. N.), OZEROV (R. P.), Preprint N 2653, Ob'edin. Inst. Jadern.'Issledov., Dubna,

1966.

[32] TOMASHPOL'SKII (Yu. Ja.), VENEVTSEV (Yu. N.), ANTONOV (G. N.), Zh. exper. theor. fiz., 1965,49, 367.

[33] TOMASHPOL'SKII (Yu. Ja.), VENEVTSEV (Yu. N.), BEZNOZDREV (V. N.), KASHLINSKII (A. I.), Zh.

exper. theor. fiz., 1967, 52, 100.

[34] ASTROV (D. N.), AL'SHIN (B. I.), ZORIN (R. V.), DROBISHEV (L. A.), Zh. exper. theor. fiz., 1968,55, 2122.

[35] SHVORNEVA (L. I.), VENEVTSEV (Yu. N.), ZZV. Akd.

Nauk S. S. S . R., Ser. Neorg. Muter., 1966,2,1856.

Références

Documents relatifs

Crystals with 0.04 _< X < 0.10 exhibit semiconducting behavior with temperature depen- dent "band gap", we suggest Anderson localization of conduction

suggested that the weak ferroma- gnetism with an easy axis of Q 1 0 0 ] l^-l originated from a ferrimagnetic spin arrangement, since the Mossbauer spectra showed a superposition

The Cauchy's pressure, defined as the difference between the two particular elastic constants C 12 -C 44 can also serve as an indication of ductility: If the Cauchy's pressure

- In contrast to the case of ferroelectrics the assignment of antiferroelectricity pre- supposes information on the crystal which goes beyond the macroscopic (point group symmetry)

Thus, these magnetic atoms are not ferromagnetically coupled in the long range since a typical ferromagnetic order would have resulted in the same values for

However, when the magnetization is in the basal plane the hyperfine pattern associated with the j- and the k-site iron nuclei splits up as a consequence of

of an octahedral anion interstice which is occupied by a cation with outer-electron configuration 3d4, the crystallographic properties of several Mn3+-containing oxides

polarization of the excited state, specific to an interference effect occurring in mixed electric magnetic dipole transitions.. We report here on the observation