• Aucun résultat trouvé

Effects of soil disturbance in pressuremeter tests

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of soil disturbance in pressuremeter tests"

Copied!
17
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Effects of soil disturbance in pressuremeter tests

Law, K. T.; Eden, W. J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=818dfbc0-665c-49d2-8243-ae1e02573cd3

https://publications-cnrc.canada.ca/fra/voir/objet/?id=818dfbc0-665c-49d2-8243-ae1e02573cd3

(2)

3er

I

m

Iq6a3.

National Research

Consd national

N21d

I+

M u ~ i l

can*

*

nbnb

ca-

1330

2

2

Division of

Division des

3

W

Building Research

recherches en Mtiment

Effects of Soil Disturbance in

Pressuremeter Tests

by

K.T.

Law and W.J. Eden

Appeared in

Proceedings of "Updating subsurface samplings of soils

and rocks and their in-situ tesing"

Santa Barbara, CA, January 3-8, 1982

p. 291 -303

(DBR Paper No. 1330)

Reprinted with permission

Price $3.00

(3)

ABSTRACT An experitnencdl s t u d y of t h e e f f e c t s of v a r i o u s components of s o i l d i s t u r b a n c e . The t e s t s were c a r r i e d o u t u s i n g t h e Cambridge s e l f b o r i n g p r e s s u r e m e t e r a t a s i t e i n Ottawa, O n t a r i o . The r e s u l t s a r e compared w i t h o t h e r s r e c o r d e d i n t h e l i t e r a t u r e and some g u i d e l i n e s a r e s u g g e s t e d . i t u d e e x p e r i m e n t a l e d e s e f f e t s de p e r t u r b a t i o n du s o l p a r d i v e r s composants. Les e s s a i s o n t s t 6 r e a l i s e s a v e c un a p p a r e i l de mesure d e s p r e s s i o n s Cambridge a u t o f o r e u r s u r un c h a n t i e r s i p

-

~ ~ - -

'

- I - - -x-=lfats s ~ n t _ c o m p a r 6 s 1 ceux d ' . ' Q ~ S s o n t f o r m

(4)

EFFECTS OF SOIL DISTURBANCE I N PRESSUREMETER TESTS by

K.T. Law* and W.J. Eden* INTRODUCTION

Successful design and c o n s t r u c t i o n of foundations r e q u i r e a thorough understanding o f t h e engineering behaviour o f s o i l as i t e x i s t s i n t h e f i e l d . I n s i t u t e s t s t r e a t t h e s o i l as i s and thus remove t h e

u n c e r t a i n t y t h a t a r i s e s from sampling and approximating f i e l d

c o n d i t i o n s d u t - ~ n g la b o r a t o r y t e s t s . U f t h e many i n s i t u t e s t devices, the pressuremeter probably has t h e best p o t e n t i a l f o r studying t h e important aspects of s o i l behaviour since t h e t o t a l i n s i t u h o r i z o n t a l s t r e s s as w e l l as t h e s t r e s s - s t r a i n r e l a t i o n s h i p can be obtained. L i k e o t h e r t e s t equipment, however, t h e pressuremeter produces r e s u l t s t h a t are influenced by f a c t o r s such as disturbance, s t r e s s path, a n i s o t r o p y and r a t e e f f e c t . T h i s paper deals w i t h t i l e disturbance aspect.

Tiiere a r e two components o f disturbance. The f i r s t causes a change

i n

t i l e i n s i t u stress, hence modifying t h e s t a r t i n g s t r e s s reference. This s t r e s s m o d i f i c a t i o n may change t h e s o i l behaviour and as a r e s u l t

t r u e behaviour i s n o t measurable. The second component generates a

mechanical s o f t e n i n g o f an annular zone o f s o i l around t h e pressure- meter probe. This may a l s o l e a d t o r e s u l t s t h a t do n o t r e f l e c t t h e

t r u e behaviour. Considering undrained strength, t h e o r e t i c a l work

(Baguelin e t a l . 1975 and Prevost 1979) shows t h a t both disturbance

components l e a d t o an overestimation o f t h e undrained strength. T h i s

overestimation derived from disturbance i s i n c o n t r a s t t o o t h e r t e s t

experience and leads t o unsafe design i f t h e r e s u l t s a r e taken a t fact?

value.

An o r d i n a r y pressuremeter, such as t h e Clenard type, r e q u i r e s a

p r e d r i l l e d borehole and disturbance i s t h e r e f o r e unavoidable. The s e l f

b o r i n g pressuremeter, considered s u p e r i o r t o t h e o r d i n a r y type, does n o t completely e l i m i n a t e disturbance e i t h e r . As t h e r e i s a growing use of pressuremeters t h e need t o study disturbance e f f e c t s i s q u i t e evident.

An experimental study o f t h e e f f e c t s o f botll disturbance components i s r e p o r t e d i n t h i s paper. The t e s t s \rere c a r r i e d o u t using t h e Cambridge s e l f boring pressureneter a t a s i t e i n Ottawa, Ontario. The r e s u l t s a r e compared \ i i i h o t h e r s recorded i n t h e 1 it e r a t u r e anci based on t h i s some g u i d e l i n e s a r e suggested.

*Research O f f i c e r s , Geotechnical Section, D i v i s i o n o f B u i l d i n g Research, National Research Council of Canada, Ottawa, Canada KIA OR6

(5)

292 UPDATING SUBSURFACE SAMPLINGS SOIL CONDITIONS

The s i t e s t u d i e d i s l o c a t e d i n an open f i e l d w i t h i n t h e grounds of t h e

d a t i o n a l Research Council of Canada (NRCC). The s u b s o i l

profile

c o n s i s t s o f Champlain Sea c l a y and i s shown i n F i g u r e 1 . The surface f i s s u r e d c r u s t i s about

7

m

t h i c k . Underlying i t i s a l a y e r of medium grey c l a y o f h i g h s e n s i t i v i t y . It i s overconsolidated w i t h an over- consul i d a t i o n r a t i o of about 2.2. A l l t h e pressuremeter t e s t s r e p o r t e d here were conducted i n t h i s l a y e r .

WATER C O N T E N T , ?+ I > P R E S S U R E . k p a

F i g u r e 1 Geotechnical P r o f i l e a t ;4ational Research Council of Canada, Ottawa. Canada

(6)

K. T.

Law and

W.

J . Eden TEST DESCRIPTION

Equipment

The Cambridge s e l f b o r i n g pressuremeter was used i n t h i s study. I t s o p e r a t i n g p r i n c i p l e was described i n d e t a i l by Wroth and Hughes (1973, 1974). Some m o d i f i c a t i o n s were made so t h a t t h e equipment could be adopted t o a hydraul ic-powered, truck-mounted d r i l l r i g . The d e t a i l s were given by Eden and Law (1980).

The pressuremeter probe was 80 mm i n diameter and 0.90 m long. It

has a r o t a t i n g c u t t i n g blade i n s i d e the c u t t i n g shoe. Above t h e shoe i s t h e membrane p o r t i o n , which i s about 0.61 m long. The o r i g i n a l c u t t i n g shoe was replaced by a removable hardened t o o l s t e e l shoe t h e same s i z e as t h e membrane section. A Kaye System 800 data logger was used t o record t e s t data and a Texas-SR-52 programable c a l c u l a t o r was employed f o r p r e l i m i n a r y data a n a l y s i s . Figure 2 shows t h e setup i n a covered s e r v i c e t r u c k .

Tests w i t h d i f f e r e n t c u t t i n g shoe sizes

I n t h i s t e s t s e r i e s , t h r e e borehole sizes were studied. They a r e d e f i n e d by R, t h e r a t i o o f c u t t i n g shoe (hence borehole) diameter t o t h e membrane s e c t i o n diameter. The values o f R are 1.011, 1.00 and 0.995 and t h e c u t t i n g shoes used a r e c a l l e d oversized, matched and undersized r e s p e c t i v e l y .

The t e s t procedures g e n e r a l l y consisted o f t h e f o l l o w i n g :

1 ) measurement o f membrane r e s i s t a n c e before i n s e r t i n g the probe i n t o t h e ground; 2) s e l f boring t o depth; 3 ) w a i t i n g f o r t h e pore pressure

(7)

294 UPDATING SUBSURFACE SAMPLINGS

t o come t o e q u i l i b r i u m ; 4 ) i n f l a t i n g t h e membrane i n c r e m e n t a l l y a t a r a t e o f 9.8 kPa/min u n t i l the c i r c u m f e r e n t i a l s t r a i n reached 7 per cent; and 5 ) complete unloading.

Tests w i t h d i f f e r e n t degrees o f s o f t e n i n g

Softening o f t h e s o i l around t h e probe was introduced i n a t h i s t e s t s e r i e s by s u b j e c t i n g t h e s o i l t o a c e r t a i n s t r a i n b e f o r e t l l e t e s t . To do so a procedure o f loading, unloading and r e l o a d i n g was used. A f t e r t h e probe was s e l f bored t o t h e a p p r o p r i a t e depth and the excess pore water pressure dissipated, t h e membrane was i n f l a t e d t o 1 p e r Cent and then unloaded. A t t h i s p o i n t excess pore water pressure was generated and a f t e r w a i t i n g f o r i t s d i s s i p a t i o n , r e l o a d i n g t o 3 p e r c e n t was c a r r i e d out. T h i s process o f unloading, w a i t i n g and r e l o a d i n g was

repeated w i t h maximum s t r a i n reaching 7 and 9 per c e n t r e s p e c t i v e 1 y . For each l o c a t i o n , therefore, f o u r loading curves were obtained, each being s u b j e c t t o a d i f f e r e n t p r i o r s t r a i n .

Throughout t h i s t e s t s e r i e s , a matched c u t t i n g shoe was used. A constant s t r a i n r a t e of 0.16 per cent/min bras used i n t h e l o a d i n g stage and a constant l o a d decrement o f 50 kPa was a p p l i e d every h a l f minute i n t h e unloading stage. Three depths were studied, i .e., 8.78, 10.30 and 11.82 m.

TEST RESULTS

Several methods e x i s t f o r i n t e r p r e t i n g t l i e pressuremeter data. Some y i e l d t h e shear s t r e s s - s t r a i n r e l a t i o n s h i p from t l l e measured pressure- expansion curve (Baguel i n e t a l . 1972; Palmer 1972 and Ladanyi 1972). Others r e q u i r e an assumption of t h e s t r e s s - s t r a i n r e l a t i o n s h i p (Gibson and Anderson 1961 ; Prevost and Hoeg 1975 and Denby 1978). The f i r s t approach i s used here because o f i t s simp1 i c i t y and g e n e r a l i t y .

There a r e a l s o a number o f ways t o determine t h e i n s i t u h o r i z o n t a l s t r e s s aho. Wroth and Hughes (1974) suggested t h a t oh0 i s t h e pressure when t h e excess pore pressure s t a r t s t o develop d u r i n g t h e i n f l a t i n g stage. Denby (1978) used t h e pressure corresponding t o t h e e a r l y movement of t h e membrane w i t h c o r r e c t i o n by i n s e r t i n g an i n i t i a l s t r a i n i n t h e governing pressuremeter equation. Lacasse e t

a l .

(1981) took t h e pressure a t t h e s t a r t o f t h e l i n e a r v a r i a t i o n o f r a d i a l s t r a i n w i t h time. The oho r e p o r t e d i n t h i s paper corresponds t o t h e pressure r e q u i r e d t o j u s t l i f t t h e membrane o f f t h e probe. T h i s p o i n t can be i d e n t i f i e d e a s i l y by p l o t t i n g t h e pressure a g a i n s t t h e l o g a r i t h m o f t h e s t r a i n as shown i n F i g u r e 3. The pressuremeter i n t h i s case bras lowered

SURROUNOING 7-O-O WAIER PRESSURE F i g u r e 3 Measuring a given t o t a l o 0 1 o I 1 0 l o s t r e s s u s i n g S T R A I N . L pressuremetei

(8)

K.

T.

Law and

W.

I .

Eden

295

to the bottom of an oversized predrilled borehole and filled with water.

The horizontal pressure was known and equal to the hydrostatic pressure

which corresponds to the sharp kink followed by a relative flat section.

When a test is performed in soil, the kink is less sharp but is still

readily identifiable.

An initial modulus is commonly reported from the pressurmeter

results. For some soils, the Champlain Sea clay in particular, the

initial pressure-expansion curve rises steeply, leading to considerable

scatter in the deduced stress-strain relationship. The initial modulus

reported here corresponds to the secant modulus at the point where the

relationship begins to be well defined.

Tests with different cutting shoe sizes

Different pressure-expansion curves (Figure 4) were obtained from tests

with different shoe sizes at the same depth. The derived engineering

quantities are sumnarized in Table I. For the oversized borehole

1 I I I

I

0 I I 1

0 1 2 1 4 5 6 7 8

S T R A I N , +

(9)

I

2% UPDATING SUBSURFACE SAMPLINGS

( R

l.O),

a gap was created between t h e s o i l and t h e probe. T h i s caused a r e d u c t i o n o f h o r i z o n t a l s t r e s s i n t h e s o i l around the probe, hence t h i s t e s t r e g i s t e r e d a lower value than t h e matched shoe. For the

undersized borehole (R < 1.0), t h e s o i l was pushed l a t e r a l l y by

the

membrane s e c t i o n l e a d i n g t o an inmediate r i s e of h o r i z o n t a l s t r e s s i n t h e s o i l . T h i s s t r e s s r i s e , however, v;as p a r t l y removed by t h e

stress

r e l a x a t i o n process i n t h e ensuing w a i t i n g p e r i o d .

The deduced shear s t r e s s - s t r a i n r e l a t i o n s h i p s a r e shown i n Figure 5.

A pronounced peak i s found i n t h e oversized case w i t h t h e undrained TABLE I

RESULTS OF PRESSUREilETER TESTS WITH DIFFEREiJT S I Z E RATIO OF CUTTING SI-IOE TO MEl1BRAIJE

Size r a t i o o f T o t a l

c u t t i n g shoe h o r i z o n t a l I n i t i a l shear Undrained Test Depth t o membrane, s t r e s s oilo modulus, G strength, Su

No. m R kPa MPa kPa

(10)

K. T. Law and W. J.

Eden

297

I

shear s t r e n g t h exceeding t h a t of t h e s o i l because a s t r e s s r e l e a s e and deformation had taken p l a c e before t h e t e s t . T l i i s c o n d i t t o n has k e n shown i n theory (Prevost 1979, Law and Eden 1980) t o produce an a p p a ~ t I peak much higher than t h e r e a l s t r e n g t h o f t h e m a t e r i a l . Such b l n g the

case, t h e shear s t r e n g t h deduced from t h e pressuremeter t e s t i n an oversfzed borehole, p a r t i c u l a r l y i n one p r e d r i l

led,

w i l l lead t o unsafe design.

Tests from an undersized borehole a1 so y i e l d a shear S t r e s s - s t r a i n r e l a t i o n s h i p d i f f e r e n t from t h e matched case ( F i g u r e 5). The r e s i s t a n c e i s lower a t small s t r a i n s and beyond a moderate s t r a i n ( -

5

per c e n t ) t h e d i f f e r e n c e i s small.

The i n i t i a l modulus i s highest i n the case o f

R

> 1.0, again due t o t h e s t r e s s release e f f e c t w h i l e the modulus from t h e undersized borehole i s lower than from t h e matched case.

Tests w i t h d i f f e r e n t degrees o f s o f t e n i n g

F i g u r e 6 shows a t y p i c a l s e t o f pressure-expansion curves f o r t h i s t e s t s e r i e s and t h e r e s u l t s a r e sunnnarized i n Table 11.

The l a r g e r t l t e softened zone created p r i o r t o t h e expansion of t h e probe, t h e g r e a t e r t h e deformation a t a given pressure. The d i r e c t consequence i s , therefore, an underestimation o f t h e i n s i tu horizontal; s t r e s s and t h e i n i t i a l shear modulus as i n d i c a t e d by t h e t e s t r e s u l t s . The apparent shear strength, however, increases w i tli increased degree of

softening. Such a phenomenon i s c o n t r a r y t o o t h e r s t r e n g t h t e s t s t h a t y i e l d decreasing s t r e n g t h w i t h i n c r e a s i n g softening. Theories have

been p u t f o r t h (Baguel i n e t a l . 1975 and Prevost 1979) t o e x p l a i n t h i s

500 'loo m ' 300 u D. = UI 2 ZOO LL a I00 0 ' I I

-

-

MAXIMUM P A S T

-

-

' 1 0 . ) l o s 2 10-l S T R A I N

F i g u r e 6 Pressure-expansion curves f o r t e s t s w i t h d i f f e r e n t

degrees

(11)

c o n t r a d i c t i o n . E s s e n t i a l l y , t h e reason l i e s i n t h e assumption of homogeneous m a t e r i a l used i n t h e conventional theory o f i n t e r p r e t a t i o n . This assumption i s n o t compatible w i t h the presence of a softened annulus zone o f m a t e r i a l around t h e probe.

TABLE I 1

RESULTS OF PRESSUREMETER TESTS WITH DIFFERENT DEGREE OF SOFTENING P r e v i o u s l y

appl i e d T o t a l I n i t i a l

s t r a i n before h o r i z o n t a l shear Undrai ned Test No. Depth expansion s t r e s s , aho modulus, G strength, Su

m % kPa

.

MPa kPa

.

M A X I M U M P A S 1 APPLIED STRAIN 1%&

-

r

2

-

O l Z f 4 5 6 7 E P I O S I R A I N . %

Figure 7 Shear s t r e s s - s t r a i n curves f o r t e s t s w i t h d i f f e r e n t degrees o f s o f t e n i n g

(12)

K.

T.

Law and W. J. Eden 299

Figure 7 shows t h e apparent shear s t r e s s - s t r a i n r e l a t i o n s h i p s deduced from t h e pressure-expansion curves. As t h e degree o f s o f t e n i n g increases, t h e s o i l becomes more compressible and reaches f a i l u r e a t a higher s t r a i n w i t h higher shear strength. There is, a l s o a more pronounced decrease i n the post-peak shear strength.

DISCUSSION

Based on the foregoing experimental r e s u l t s , i t i s evident t h a t disturbance s i g n i f i c a n t l y a f f e c t s the engineering q u a n t i t i e s measured using t h e pressuremeter. Table I 1 1 sumnarizes q u a l i t a t i v e l y the r e s u l t s based on comparison w i t h t h e case o f a matched c u t t i n g shoe and without d e l i berate i n t r o d u c t i o n o f s o i l softening. I n t h e f o l l o w i n g each q u a n t i t y i s discussed separately.

T o t a l h o r i z o n t a l s t r e s s

The measured t o t a l h o r i z o n t a l s t r e s s oho i s reduced by s t r e s s release

i n v o l v e d i n an oversized hole and by mechanical softening. This view

i s c o n s i s t e n t w i t h several pieces o f work recorded i n t h e 1 i t e r a t u r e .

I-larsland and Randolph (1977) c a r r i e d o u t t e s t s i n s t i f f f i s s u r e d London c l a y by means o f t h e Menard pressuremeter. The borehole was oversized and mechanical s o f t e n i n g was i n e v i t a b l e . The r e s u l t i n g ah0 values from conventional i n t e r p r e t a t i o n a r e small er than those drawn from t h e v a s t experience on t h i s c l a y . Tavenas (1975) conducted Menard pressuremeter t e s t s i n a s o f t s e n s i t i v e c l a y and reported t h a t t h e r e s u l t s were s c a t t e r e d b u t appeared t o be 1 ower than t h e more re1 ia b l e

TABLE I 1 1

SUII,IARY OF QUALITATIVE EFFECTS OF SOIL DISTURBANCE DURING PRESSUREI,IETER TESTS ON MEASUREMENT OF ENGINEERING QUANTITIES

Engineering

q u a n t i t y I n s i t u Undrained

h o r i z o n t a l I n i t i a l shear

mechanism pressure modulus s t r e n g t h

Stress released by oversized h o l e Stress induced by undersized h o l e f4echanical s o f t e n i n g o f s o i l

Note: -1, 0, +1 denote r e s p e c t i v e l y values lower than, equal t o and higher than those from using a matched c u t t i n g shoe without d e l i berate i n t r o d u c t i o n o f softening.

(13)

r e s u l t s from t o t a l pressure c e l l s . B a g u e l i n e t a l . (1972) performed t e s t s u s i n g t h e French s e l f b o r i n g pressuremeter w i t h a c u t t i n g Shoe s l i g h t l y o v e r s i z e d by 1 / 1 0

mn.

The measured h o r i z o n t a l S t r e s s was

expressed i n terms o f t h e - c o e f f i c i e n t o f e a r t h pressure a t r e s t which nas found t o be equal t o 0.35. This value i s low when compared w i t h

t r i a x i a l t e s t r e s u l t s and from J a k y ' s equation.

As disturbance leads t o a r e d u c t i o n o f h o r i z o n t a l s t r e s s . t h e v a l u e obtained f o r t h e case o f a matched shoe may a l s o be lower than t h e t r u e value p r i o r t o t e s t i n g . The reason f o r t h i s i s t h a t d i s t u r b a n c e cannot be t o t a l l y e l i m i n a t e d even i n t h i s case. V i b r a t i o n from t h e r o t a t i n g inner rod and c u t t e r , and shearing o f s o i l by t l w advance of t h e pressuremeter, a r e b o t h p o s s i b l e sources o f disturbance.

The use o f an undersized c u t t i n g siioe w i l l g i v e

a

h o r i z o n t a l s t r e s s higher than t h a t from t h e matched c u t t i n g shoe. A t t h i s p o i n t i t $ 5

n o t c l e a r i f such a measured uho w i l l be h i g h e r than t h e t r u e i n s i t u value f o r t h r e e reasons. F i r s t , as e x p l a i n e d p r e v i o u s ) y, the h o r i z o n t a l Stress measured u s i n g t h e matched shoe may y i e l d a low value. Secondly, t h e s o i l on t h e w a l l o f t h e undersized borehole i s s u b j e c t t o shear and

hence disturbance t o accomnodate t h e probe. T h i s d i s t u r b a n c e tends t o reduce t h e measured ah0 value. T h i r d l y , h o r i z o n t a l s t r e s s r e l a x a t i o n may take p l a c e d u r i n g t h e w a i t i n g p e r i o d between p l a c i n g t h e probe and

i n f l a t i n g t h e membrane.

I f a choice has t o be made betwe?n t h e t h r e e s i z e s o f c u t t i n g shoe, i t appears t h a t t h e s l i g h t l y undersized one i s more promising. Tile reason i s t h a t f o r t h e o t h e r two s i z e s , t h e u n d e r e s t i m a t i o n o f J ~ O i s u n l i k e l y t o be removed o r counterbalanced. because o f unavoidable disturbance.

Based on the r e s u l t s i n Tables 1 and 11. the o v e r s i z e d borehole increases the modulus by 30 p e r c e n t b u t mechanical s o f t e n i n g may reduce i t by f o u r times. The n e t e f f e c t . t h e r e f o r e . w i l l be an underestimate of t h e modulus. This i s c o n s i s t e n t w i t h t h e experience o f comparing standard and s e l f b o r i n g pressuremeter t e s t r e s u l t s by Baguelin e t a l . (1972). Armar e t a l . (1975) and Tavenas (1975).

A s l i g h t undersized borehold \ t i l l a l s o produce a lower estimate o f

t h e modulus. For the two depths s t u d i e d here. the moduli a r e about 50 and 20 per cent l e s s than t h e values w i t h the matched c u t t i n g shoe. A s i m i l a r study on a very s o f t marine c l a y (Law and Eden 1980) showed t h a t t h e r e d u c t i o n i s s m a l l e r , i n t h e o r d e r o f 15 p e r c e n t . I t i s b e l i e v e d t h a t f o r c l a y w i t h lower s e n s i t i v i t y , t i l e u n d e r e s t i m a t i o n may be even less. Denby (1978). f o r instance, found a reasonable agreement between the pressuremeter ~nodulus ( f r o m undersized b o r e h o l e ) and t h a t deduced from the f i n i t e element a n a l y s i s o f excavation behaviour i n San Francisco Bay mud.

I d e a l l y , a matched c u t t i n g shoe should be used f o r the a c c u r a t e d e t e r m i n a t i o n o f modulus. I t i s . however, n o t always p r a c t i c a b l e t o o b t a i n a matched slioe as t h e membranes f r o ~ t ~ the ~ n a n u f a c t u r e r do have

(14)

K. T. Law and W. J. h e n 30 1

s l i g h t s i z e v a r i a t i o n . I n t h i s case, a s l i g h t undersized shoe may be considered.

i Undrained s t r e n g t h

Table 111 shows t h a t s t r e s s released i n an oversized borehole and mechanical s o f t e n i n g b o t h tend t o increase t h e measured undrained s t r e n g t h . The undersized borehole produced s l i g h t l y lower s t r e n g t h

than t h e matched borehole. This s l i g h t l y lower s t r e n g t h has been found

t o exceed t h a t o f o t h e r t e s t s (Wroth and Hughes 1973, Eden and Law 1980

and Lacasse e t a l . 1981). Factors such as s t r a i n r a t e , disturbance and

s t r e s s p a t h have been given as p a r t o f t h e explanation.

I t appears t h a t w i t h reasonable care when conducting t h e t e s t , t h e pressuremeter w i l l s t i l l overestimate t h e a v a i l a b l e undrained s t r e n g t h of t h e s o i l . More aggravating i s t h e f a c t t h a t w i t h l e s s care, t h e overestimation w i l l even be higher. Caution i s required, therefore, i n applying t h e undrained pressuremeter s t r e n g t h f o r design. A t t h i s p o i n t then i t i s advisable t o avoid an oversized h o l e and t o minimize mechanical s o f t e n i n g o f t h e s o i l t o be tested.

SUMIdARY AND CONCLUSIONS

There a r e two components o f disturbance i n v o l v e d i n pressuremeter t e s t i n g : 1 ) s t r e s s change due t o t h e probe i n s e r t i o n and 2 ) mechanical

softening o f s o i l around the probe. Each component has a s i g n i f i c a n t

i n f l u e n c e on t h e measured engineering q u a n t i t i e s . I n p r a c t i c e . both

components a r e o p e r a t i v e simultaneously. The i n f l u e n c e s have been

studied i n d i v i d u a l l y and together f o r Champlain Sea c l a y by means of t h e Cambridge pressuremeter and t h e r e s u l t s , which f o l l o w , are found t o be c o n s i s t e n t w i t h o14er studies i n t h e l i t e r a t u r e .

1 ) I n s t a l l a t i o n o f the probe causes a s t r e s s change i n the s o i l i r r e s p e c t i v e o f the c u t t i n g shoe. The s l i g h t l y undersized shoe appears t o produce a b e t t e r estimate f o r h o r i z o n t a l s t r e s s than o t h e r sizes.

2 ) The i n i t i a l modulus i s increased by about 30 per c e n t w i t h an oversized h o l e and decreased by about f o u r times w i t h the presence o f an annulus zone o f softened s o i l . A s l i g h t l y undersized borehold y i e l d s a s l i g h t l y lower estimate o f modulus. 3 ) Stress r e l e a s e and s o f t e n i n g cause an u n r e a l i s t i c a l l y h i g h

estimate o f undrained strength. The s l i g h t l y undersized

borehole y i e l d s t h e lowest s t r e n g t h which i s already higher than those from o t h e r t e s t s .

Based on t h i s study i t i s d e s i r a b l e , t h e r e f o r e , t o s e l e c t a s l i g h t l y undersized c u t t i n g shoe as i t i s n o t always possible t o have a matched one. The t e s t should be conducted c a r e f u l l y and t h e r e s u l t s t r e a t e d w i t h c a u t i o n . I t i s l i k e l y t h a t t h e measured l l o r i z o n t a l s t r e s s and i n i t i a l modulus w i l l be i n t h e r i g h t range w h i l e the undrained s t r e n g t h may s t i l l be overestimated.

(15)

302 UPDATING SUBSURFACE SAMPLINGS

I

The conscientious efforts of A. Laberge and T.J. Hoogeveen, Technical

Officers, in conducting these tests is gratefully acknowledged. This

paper is a contribution from the Division of Building Research,

National Research Council of Canada, and is pub1 ished with the approval

of the Director of the Division.

I

i

REFEREMCES

I

Amar, S., Baguelin, F., ~GzGquel,

J.F., and Le Mehaute, A. In situ

I

shear resistance of clays. Proceedings of the Specialty Conference

on In Situ Measurement of Soil Properties, Vol

.

1. Raleigh, H.C.,

ASCE. June, 1975. pp. 22-45.

I

Baguelin, F., ~Gziquel,

J.F., Le Mee, E.. and Le Mehaute,

A.

Expansion

of cylindrical probes in cohesive soils. Journal of Soil Elechanics

and Foundation Division, ASCE., Vol. 93, !io. SI111, idov. 1972,

pp. 1129-1142.

Baguel in, F., Frank, R., and ~GzGquel,

J.

F. Quelques risul tants

theoriques sur l'essai d'expansion dans les sols et sur le

frottement lat6ral des pieux. Bulletin de Liaison de Laboratoires

des Ponts et ~haussGes,

72

(juillet-abut),

1975, pp. 131-136.

Denby, G.M. Self-boring pressuremeter study of the San Francisco Bay

mud. Ph.D. dissertation, Stanford University, California, 1978.

!

Eden, W.J., and Law,

K.T.

Comparison of undrained shear strength

I

results obtained by different test methods in soft clay. Canadian

Geotechnical Journal, Vo1. 17, 140. 3, Aug. 1980, pp. 369-381.

i

Gibson, R.E., and Anderson, W.F. In-situ measurement of soil

properties with the pressuremeter. Civil Engineering and Public

Works Review, London, England, Ray 1961, pp. 615-618.

Lacasse, S., Jamiolkowski,

t w l . ,

Lancellotta,

R.,

and Lunne,

T .

In situ

stress-strain-strength characteristics of two Norwegian clays.

Proceedings of

X

International Conference on Soil ilechanics and

Foundation Engineering, Stockholm, Sweden, Vol. 2, 1931, pp.507-512.

Ladanyi

, B. In si tu determination of undrained stress-strain behaviour

of sensitive clays with the pressuremeter. Canadian Geotechnical

Journal, Vol. 9, 1972, pp. 313-319.

Law, K.T., and Eden,

W.J. Influence of cutting shoe size in

self-boring pressuremeter tests in sensitive clays. Canadian

Geotechnical Journal, Vol. 17, May 1980, pp. 165-173.

Palmer, A.C. Undrained plane-strain expansion of a cylindrical cavity

in clay: a simple interpretation of the pressuremeter test.

Geotechnique, Vol. 22, No. 3, 1972, pp. 451-457.

(16)

K.

T.

Law and

W.

J . Eden 303

t.krsland, A., and Randolf, I.1.F. Comparisons o f t h e r e s u l t s from pressuremeter t e s t s and l a r g e i n s i t u p l a t e t e s t s i n London c l a y . Geotechnique, Vol. 27, No. 2, 1977, pp. 217-243.

Prevost, J.H. Undrained shear t e s t s on c l a y s . Journal of t h e Geotechnical Engineering D i v i s i o n , GSCE., Vol. 105, 140. GT1, January 1979, pp. 49-64.

Prevost, J.H., and Hoeg, K. Analysis o f pressuremeter i n

s t r a i n - s o f t e n i n g s o i l . Journal o f t h e Geotechnical Engineering D i v i s i o n , ASCE., Vo1. 101, 140. GT8, August 1975, pp. 717-731. Tavenas, F.A. I n - s i t u measurement o f i n i t i a l s t r e s s and deformation

c h a r a c t e r i s t i c s . Discussion, Proceedings o f t h e S p e c i a l t y

Conference on I n - S i t u I.leasurement of S o i l Properties, Raleigh, Horth Carolina, ASCE., Vol. 2, 1975, pp. 263-270.

Wroth, C.P., and Hughes, J.1,l.O. An instrument f o r t h e i n s i t u measurement o f t h e p r o p e r t i e s o f s o f t clays. Proceedings of t h e E i g h t h I n t e r n a t i o n a l Conference on Soi 1 Mechanics and Foundation Engineering, Eloscow, USSR., Vol

.

12, 1973, pp. 487-494.

Wroth, C.P., and Hughes, J.bl.0. The development o f a special

instrument f o r t h e i n s i t u measurement o f t h e s t r e n g t h and s t i f f n e s s o f s o i l s . Engineering Foundation Conference on Subsurface

E x p l o r a t i o n f o r Underground Excavation and Heavy Construction, Hepni ker, N.H., 1974, pp. 295-311.

(17)

T h i s p a p e r , w h i l e b e i n g d i s t r i b u t e d i n r e p r i n t form by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h . N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , O t t a w a . O n t a r i o , K I A 0R6. Ce document e s t d i s t r i b u 6 s o u s forme d e t i r 6 - a - p a r t p a r La D i v i s i o n d e s r e c h e r c h e s e n b a t i m e n t . Les d r o i t s d e r e p r o d u c t i o n s o n t t o u t e f o i s l a p r o p r i 6 t 6 d e 1 ' B d i t e u r o r i g i n a l . Ce d o c u m e n t n e p e u t S t r e r e p r o d u i t en t o t a l i t 6 ou e n p a r t i e s a n s l e c o n s e n t e m e n t d e 1 1 6 d i t e u r . Une l i s t e d e s p u b l i c a t i o n s d e l a D i v i s i o n p e u t s t r e o b t e n u e en e c r i v a n t 2 l a S e c t i o n d e s p u b l i c a t i o n s , D i v i s i o n d e s r e c h e r c h e s e n b a t i m e n t , C o n s e i l n a t i o n a l d e r e c h e r c h e s Canada, Ottawa, O n t a r i o , K1A 0R6.

Figure

Figure  2  Monitoring  equipment  f o r   t h e   probe
Figure 4  Pressure-expansion curves with different cutting  shoe  sizes
Figure  5  Shear  s t r e s s - s t r a i n   curves  w i t h   d i f f e r e n t   c u t t i n g   shoe  sizes
Figure  7  Shear  s t r e s s - s t r a i n   curves  f o r   t e s t s   w i t h   d i f f e r e n t   degrees  o f   s o f t e n i n g

Références

Documents relatifs

The model was used, in the particular context of epileptiform activity (interictal spikes), to establish relations between source-related parameters (spatial

National Fire Code of Canada 1980 The following revisions to the National Fire Code of Canada have been approved by the Associate Committee on the National Fire

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

ŗƆťƀƆ Ɖƈ řƆƔƏų Řũśž ¿ƜŦ ƒŧŕŰśƁƛŔ ũƄſƅŔ ƑƆŷ ŘũƔŗƄƅŔ ŚŕŬŬŎƈƆƅ ŧƔŔŪśƈƅŔ ũƏŧƅŔ ƉƈƔƍ ƉŕƄƏ ƇƅŕŸƅŔ ƉŔŧƆŗ ¿Ƅ Ɠž řƔŬŕƔŬƅŔ ŚŔũŔũƂƅŔ ŖƆŻŌ Ɠž

The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient

Copyright © NRC 1941 - 2019 World Rights Reserved © CNRC 1941-2019 Droits réservés pour tous pays.. La colonne de ventilation secondaire peut être raccordée à la

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

in the previous subsection are then compared between a situation with no adaptation (i.e. when the storage power flows predicted from the off-line dispatching