• Aucun résultat trouvé

Or 1''-,

N/A
N/A
Protected

Academic year: 2022

Partager "Or 1''-,"

Copied!
88
0
0

Texte intégral

(1)
(2)
(3)

Or

1''-,

(4)
(5)

1 + ''''~:L'''''

eataloguing8"

Ol(:.".~

rlCh

,.

c.nadl. nThewsOiv,s.on Ottawa.Canada Kl" O~

NOTICE

The qUIlolfo1lh 'S lT\lcrol 'che ifohea vJyCl epe nde nlupp n IheIIU.hly01theOriginalthnislu l) mitted1o.microfilm . ing.EVefy ell Or1has bee""m&Cle tDensu re l l'l1h,gh" '

qUlllityOlrllPl~tlClion poSSi ble

l,'pag n aremissing,COl'ltac llhauniversitywhich

gran ta<:ll h~·dllgrBil .

Some'pages'may have indis lihctprinl,spllclallylf thBorlQin al pages were typedwithapc c rtypewrtte r

rl~bo ,,- oril jl'Utuniversity senttiS a poorphotocopy

Pr....'ou sly copyr'g hted materials(jo urnalarti(:les.

publilhedlestl.eIC;,la,e nollilme d

Repr od uc tion inIlliloronpaM0111'1"111mIs go..-.!l8Cl by Ill. c.n.clianCopyrighlAct RSC.1910.e e-30 PI•• M r••dtheauthorizationforms",hienaecom plilny thi'I" I$l1

THISDISSERTATION HAS BEENMICROFILM ED

EXACTr Y ASRECEIVED

Blbliolh~Q l,le'n.lionaledl,l Canada Di'ectiond~calal~lIg'-' Div,sion.des ttMlS8lI c. nad ien nes.

AVIS

LaQual'"de teneml(:roliched~'ndIJr,ndementdeI.

qll,l't l!da l.tNlselovm"e. umicrolilm. ge'.NOl,ISl'Von, teut1" 1pour ."urel une quahle supil,ie urederepro- duchon

S'ilm. ilque despage s. veullle:commu~iQJeravec runlversitll qul. conll". le,g,ade.

lll"Qu.1116 d'impression cecertaines pagespeut laisserii desirar,' surtoutsi lespagesO riginalea onte lll d.ctyl ographl• . , \".,d.d'ull ruban uSllou si l'llnlversllll lI()usataiI Pa rve ni r u ne phoIOCOPiedem,uVll is' ~ll.IJte Les 'iloeumen l squi lonldSjil l"objet d 'und 'oi td'8U·

leurla nic1esd. revue... .menspUbl;'s,elc_)IIelOnIpes

.m1crol'lml!s •

L.reProduction,mimeparltelle.dllCllm;clot~mest SOUInl!lf!'.la1.01canadienlll! surle,d' ool d'au1eur,SRC 1970.c.c-30.VeujllezpreNl re conn3L!I!I&Ilot-deslor- mulnd'llUloN!llltionqu'accompagnenl eettethes.

MICRLtr~tti{ i Ma

QUE

NQUSl'AVO NSRECUE

(6)

.;

, ..

.'-

Thecon!lrea:>ib~ity,of the,Za.rt h'sCor e endtheAnt...i~d:fna::W T~orem~

by

"JohnTo d o e schu ck ,B. se,

@

, .

AThesi.ssub:lltte 4in!XU'"ti3;l~ul:fiL"Jent.' or.t"hc

requ::ti-el:l.en~ :~~

"thC:de gree of

i~.aster

of

sC::·i~e ., \ " . '

Depar tmen tof ?hyaics

r;~e!:lorialUnive;osityofi":c \1f'ou n dlan d AuguEft29,'i.919.

! 1

~."J ohn'9 11e:ri.ound1and

(7)

/

Abs tract

Ant i~dy naltloth eoremsareproof s that certain'

. -

,.

. .' .

c;?mbinationsofmagne tic ~ndveloci ty fieldsca n n o t pr od uce.t he dynamo~ction.needed

to,

sustai n 'the 'magnetic field._They ca n be"d i videdintotwo classes. Oneclass applieson~Y ~toma.~_~~tiC_:i~~? S ~a,~'arecOnlltan~'i nti me:

The-:se co,n.d'is,conc~rtJed";'~.~h.t:-he:more'gener"a.l:case'~f

~~~e,t~~ -f~~d~':::~a,~,~·_~~.~l~~~~ to' varY-iri~tim~_~

.

.

~

;.:

Th~ :'PI'ev~ously '~ccep.tcd, proof~.·of· th~s ·se~~nd :~Hl.S5~

~~.~ n;.tgener.~U~' V~1id-:'~na" c9.~p're~~~bl~<.~:1~i~ ;:.: ':~\'~~,i{ , .

dynamo.t heor emcan.,beapp!ied.in-II pa r.ticu l ar'case,on l y.'if'.'·

the:p(ramet ei H..

G.is: much le s s than·

one . Thi~ ,pa ram . eter

isgive n,·by

.

. :

.

'

.

istheIMgnet:i cReynolClsmll1\~eror thera t io of the importariceof,ttansp<::lrt proc'esses to olunic diffus i on

a~d ., C. ",:

1s.the

S!l'y~!e~R?Chel!lt~r' c~m~re~i:Jibili~y ~umb~r

.Which.giV~s··,tllicl·"fr~ot;;~al,~m;ressi~n,'of..ma t er ia'i.

(8)

'\

•. > .. .: ... "'1"

" ~"" . ' ....

'

- .

'.

is not likelyt~'bellIrge. A thirdth~oremontwo-

, ' . "

.'..--

di mensional fields'ish~rd'to apply,tothe,.Earth

- . .

"

because.the system"'c~nside.r~dinthe t~eorbrnis.of .·:l n fi ni t e ext ent'a1~n9-0I\eax'is.

: "l . " " . . , ,' ,

Th e theoreru of the first.class,aren<;'.t-affect ed.

(9)

·,

-,

:"

,.;.

.Ackn~l e d g ements

(10)

.~~at: ~~n~ :~the "~yrens·'~.~~~~~.:

a-'ss~ed'wh~n'

,he"

chid)l:l:-~s"e l<'!l~o:ngwcm~ni

·thoug: h

"'~~~ ~li~9"-Qu~st;i6~s ~~e ~'6t beY6~'d: aU""d~~j~c:tur~'~';,·

',

' ~"ir" "Th~m~s "Brow~e

HYdr;ot~ph~a , '16B~ .

(11)

.' i

'"

Tableof Contents

1. Ill troduct1.6n.:·

2. The Cor eof the Earth

· ' . . '. I.·' •..

Introducti on.'to~_DynamoThe ory

·'.• '>. . :"'~ . . ...

,::~~p~~,a~i~l~.r.J?" .,.:.; . " _._.

The Stat ionary Axisymme~ ri c:'Dyna mo

" ;;'e';'T~'- ~p'~nd~rii ~'~"~~etri:~:' Oy~~

.

··· ·.., · ·· · ··1··· . .-· .... .. .

·~n-radialV~locityFl.eld$•. _ Th~.'1'WIJ?i1;ensio.nalDynamo

A.Class.I o.f Anbi-dynamo- . .Tbeprems Conc lusion.I

.I;

-I :' .t

: \ •. :A·i'..·.··,

:.,'t, ',~

i'

>:1

'.·1 ,.,.... .· ...,...--:'-i:--+-':.,..-,.;;-~~~~~~~".,....,.,:,-~.

(12)

Introduc tion

.

. .

alon~'theEar t h'saxisof'rotation,.,':the field unde rqoe s minor' chan~es!t:om year to re ar. The fOs s il IllagnetisationofroCk~.

9h~wS ~~~t t~~" fi ~l,d

" "eXi,st ,ed,'f.or"

o~:elt

.t wo,

~ill.i.on'

yeazs

b~~

.in tha t

'~i~ '. has' ~~u9.tu,at~d·.,

gre.a t].y,;,

~viLJ'

}e v er S,ilJ.g,,i n:stgn.

:~:::h:::,:t:i:1'::YL::W:;::L~::i~;e:1i:r" t~ ' "r" b ee. " .••.

11)e.sourc e,of.e n e fi eldsUJ;e l y'q u ali f i e sas'a ~puz,:ding

ouesti"~ ": . ',t ~","ot b,per~'"ent,m.g~~j"atio" . . A;i~e .fr6;

tihe

ch ':pl<]es.o'ver'geol ogic

t:iro~. '~he

inte rior'

'tem~ratu re o f th~ ~~rth

is ' farabove thec,ri t i cal~~~i.e-point at...whiC~fer r:OIlIil.g-ne,t ic beha viour'disappears., 111'6.:.f i eldis',tho:ugh~or igiriatewi.t h the,Ino; i o nof the

condu~fi.·ng

niOl:t E!rl

l'lle~t~l

of.the Ea ;.th' score.

.r ,

Dynamo,theo r y, a.br,and h·.of magne t ohyd :tod yn,amics (MHnl , is,conce.rned

\. wi ththe de tails. . . .

.

", .',,': ' "

.

, . "

In 1919,Sir:'~~s e~hLarmor ~sked"Howcould·a..rot at'ing body' suchASthe

su~,becom~

a

magnet?~' .

{Th esco-eec

ha' s ' a

magnetic fiel d'

a~~

:the 6bie:ctlons

tb: . pe~~e~~ inagnetisa~~'on' ~O~ "t.~~ E~rth

.

were,

not

yet

cie~.~lY ~st.a?l~Shed~)

.As

a POS'S~b.l: an~wer

,h,:,

.,p~opose~thef~ildamentalidea .of dynarr;otheory:tha t:flui d IllOtion'

;hega r-thpossess~sa magnetic field. It is~pr edominan t ly 11 diP 91e field'wi tha surf.a cest r e ngthof.a~f ewtenthsofa.9.du s s I,l ~~S8"'.10-4T). The-'d ipole is, d'lign"edalmos t'butnot'quite

'." .. ' , ;" ' . ", ', ' C'. · .

through a roagne ti c':fi e ldmig ht ge n erateelec t dc c u rren tsin"'the fluid

wh~C:R coui~' :pr6vi~~:' th~ se lf-s~e:'~~gne~~c. fie~d ;

In.th'e

(13)

ab se nce C;;f'such moti on , anymagnetic~ieldin the'.ccnduc to rdec.)Ys

away~·

·Jnt~rest ingly·, Labnor r'eaLdaed th a t .t h e ex tensionof th i s ide a.to the Earth would

rf/.~u~re

the

~Xist~~C~.

of

·dee~-seated flU,j.d

mat eria l:in

th~E'arth

not

~~lieved

at that time:to

exrst:.

(14)

... .'."

- ,

.

. ... ..'-.. . .

':.:

thatn~~generaltheor e m'would.~found. HOVl7,ve r.QUite.a"

nwwber of__s~i~lF 's.havebeenfo un,iand,RIOre COnj ~ct~red.

-

Tabl~

1

e~~~~9~/ a n~~.r Of ~he5e. > .'.... : . .." ,"

(15)

-'~.;

:;,.

'.~

. .

'- .v:

....:.:::'

.:.:i_>~ ~'~~''''',I-~~';.::.~''}:~,..,-';';.,

t •• ,.-

. :»:

~< ,_.';" -

r:: "2c, :: j~ :~~~~ fjf ~~ii ": :

i>

/ .r"" '\' " 'C~~.~::)~;·~:Y'i:.'.:!:::=n:::, ~l~l ':~:t~':1:i::Z~::t*{,'i '

bemadein

~rk1n~

it.

~ut. ~ c~~n' a~sumpti~

is

t~t

'th e,

!

. -,' -.---'

..

' . ,- - ',' .~'.. - " . ',.. . .' ,

, .,. "

-.. '. "..

fl~,is.'~nc~es.ible."?~i~th~.a~.s',exa.~~s,':~~'.~~'t~e, :'r.sults

":~;f-re~~i~~'''thi~' ~~1~,~~~:> Thi;"~l~~"i's, ~~ -,9~~h~';~~~i , . . ~ >"

<~ign'i~~i~~n~:~ :-~:>:·:>·

. ...

.' . . :.. ,..\::..--.

.,

~

.

..' . "', '. '.: ' ".' '"--, ,

",.~

(

'~: :;'; >(. ,< .'. ~!i~1~~~~~~~;7~~~i:; Roeb~ ste; (~9?9r

have

. ~~orn,

by,an,a.l ysis'of' ,t he

equ~ti~n~'

.:

r- ..'" ..: r r

..

~

,

~~~:'rnl~~

,:t he

'~ynaiui,fs', ~,~:'~h~ ,' : l~~~'~d : c ore', tha"t' ~OInpr~ss'ibi1ity

'.."

"":',"<~ :,'. ; , : :,. . ... ~.!~ '·~p~~~a~t~ ~o,~· 1~~ge : ~c~~,e

..

:-~ti?~~ .:.':'~, .~

...

,~.

.

. ~:

.":":

,'~ ;,~

.'; :

. : :.:"~h~~·;_~~ise.~~;t~·,·'~~~db~::~~'~';'h~~b~t:,~~~~~~~~ib,i~i:;, ~~i~'~~',', _ , :

.nt)~beof iftl.~.r~,~nceindynamothe~ryas "'ell._'Dimensi~nal~

-"";

,:--

.

,:,:,

.' .... ...:.... ,

:'." ~:""::.. ,:-,.,;<'~~:',,~. ~.:

:.'

(16)

.~.

? '\

'-

"

, , .

. . .

,a r g U: e n.t s showthat-the l.\ffects

o~

cornp r e s s i b'H ity ar e\fl"ta Iways small and'canbesubstant iaL 1>.strikingre .'lultconcernsthe

·,secondclass~o!AOT's. The-opr oo f sof thi s grou pall relyOilflow inthe fluid beingdivergenceles e. This follow s inthe proof s fromthe assumptionth at·the.fLu Ldisincompres sible. Flow in.an. incompr es sible flui a'issOleno~da l,th a t'!;.p ,has adive r g e nc eof zero. Solenoidal

-

fl ow rn- a oompr-esis. \ibfe fluidis, ofcou r s e ,

possiblebut, notnece~sary; . • ,,,~ >

IThis-Ls,not,a, stiltementthat.dyn<;trnos "Violatingthe conditi ons lit'ld downbyth e

A~T'

5

~xistl the~E"

ar-eno existencepro.ofshere.

· The'non- e x i s t e n c epr o o f s are.h,:wcve rnu lli£ied.

The compressi:biiityofth~core is of importance chiefly

\oI~n m~:7.a1 rise.'~

through

~ht; 'hYdrostat~c

.pres suregradient. The

key pareme te c-iswha t I havel.clliled (ve ry,much forwan t ofanything

', ' ,/ . .

·bett.e.rl the compressiblepart of thersaqnetIoReynolds number'f

" R...

c.

n: i~

't heprod uc t.of the

conve,n~i~na~

magl'!.'eUcgeynoIds

nlUll\::!-~r

~ "" ~nd. ' l.h~

Smyli:-,-Rschest;r compressi.bility

n~r,C

.

The neceS$ a r r c o n.d i ti o n forth e AOT,st~fail is

,

. \ \ ..

~- ,'~ .

T~i5is l ike ly'f~1filleb.·fo:r.the 'axis ynune t ri c and two dimensional cases'. Howev e r t~eAOT'for non-radia lve1oci.1;Yfieldsis not

affect~ /tY,

,'the

p>u.re~

radial:

hYdrost~tic

pre ssu r e.gr adien:. The effe c t s of compressibilityonth e firstclas s of AOT's

, '-..."

"-

arefUc h1e ~ smarked. Indeed,Nami kawa andMa t s u s h i t a(197 0 )

(17)

remarkthat compressibility is like ly tobe of impo rtancefor dyna~theory; Th e assumpt i onof st ea d y magneticfields'is quite a stri ctcondition. Any fluctuation anywhereis forbidden.

Thefailure of th e second class of ADTisimpor ta n t as their ef f e c t s on th ehistoryof dynamo theory have been great.

Th i sis especia llysofo r theaxis ymme t ricthe o r em: Thema gnetic field isobserve d tobe hi gh l y exfsyrranet.rIcwhilerotati on is .e xpec ted tomakeaxial symmetrylikelyfo~thevelocity fie l d aswell.

A wa y our of this'difficu l tywas pr opo s e d by Park e r (1~55).

lie rea lizedthata sys temnot ax i symmetr i c indetail couldstill be ax.i.eytamet.r Lc in the mean , Thi s 1mpprtantconceptwaspu r s ue d bY.Steenbeck , Krause,andJ~adl er (Eng lishtransla tion in Roberts "

and Stix,1971) who separated theve loci t y fie ld into two pa r t s having t';o d.iffere ntscaie~of length,one large -scale me a n part and a smaller -sca leturbulentor randompart. Much progres s has beenmadealon gthi,s roa d (s eee.g.Mo f f a t t, 1978).

~differen t,ap p r oac hi~thenear~yax is ymme tric dy namo.of

;- Brag ins kii(19 64a , b). Thecircu l a tion'ofthecore is conceived as beingla:rge scale. It ,and themagneticfie ld,are repres ented .by a pre d omi na n t ax isymmetricpart and asma l l er non-axdsyrrmeer Ic

part. Solutionsare soug htbya pe rturba ti o n tec hnique . This modeland its derivattvesarethe.Le adLn qexemp tes ofthe one-scale method (Gubbins , 19 74 ) .

Bothscho olsgrewoutof the ne c e s sit y of avoidin g Cowli ng ' s

(18)

at thenatureof the cor e'of the Earth ami othe r.such matters .

. '

di mens ionalvel o c i t y fie ldsarea~so-'of inte restfO,I:reasonsthat willbediscussed.

of~hfltime depe nd en t version

of

thethe ?re m in a cOr.lpr e Ss i b l e fLuc d, The failure ofthe theoremson non- radialandtwo

This'is the

~portancc

of the

failun~

. .

analys is but.somest artscanbema-de. -

Befo r e turning tomat hemat i c al"pl'ly-sic swe must.'first..lool<:.

If reeujts as impo r t a nt.as thes ecanbe changed .b yrelaxing theassumpt io nof Lncompr'e ssi.hkeflow,perh a ps th eress

o t

dyn amo

theoryneeds tobe examinedwith that

in

mind." Theint"ract~ble na t u re ofthesub-te e t;'mak~ s.t.hisdifficult. wi t hou t.extende~. theoremonaxial symmetry.

I

/

I

I

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

(19)

2 _ TheCor e of the Earth

This chapter is a brief exposition of some of the properties of thtl core. Asthe core is shielded from us by a great thicknes s of rockou r knowledge0.( i t is indirect; sometimes exceed~nglYso .

..seismologyreveals that the core canbe divided into two

parts:an outer'corethatfa Lf s to transmitshear wavesan dlin inner one that does. The solidinner core has a radius of"'so me 1200kmwh ile thefl ui d outercore extends' to 3500 km, The th i c kn e s s of the- outer core is thus about<:23 00km•.ThiS\ wiilbe taken

as

the typical length for ~rocessesinvo'lving.ch e,whole

"( ~ut~ r ) core.

Th e averagedensity and moment -of inertia of the1 ~arth toge,ther indicate a high central density. Th e zero pressure densityof th e outer core is perhaps 6.3x 10 3kgm~J (Stacey, 1972) The cosmicabundance ofth e elementsmak.es iron the,mostlikely main constituent. The density of moltenir o nis7.0x 103

kg m-3 A lightercompcneee must be present, silicon, sulphur,

:,

and'

.

oxygen all beingpossible'(Loper. 1978).

The lighter componentmay have importantc:~nsequencesas a

·POs s i b l e source of the energy needed to power the qeo-dynamo,

:.115 the Earth cools the solid inrier c,oregrows from the melt. Since the solid is more metallicthan the melt,thelay e r abovethe

4')

inner core becomes enriChed in theli g h t e rnon-meta lliccomponent whichnaturallymoves towards the top ofthe core,driven by buoyancy. This mechiini;als~irringofthe core is sai? to be a

(20)

\

\

.

.

\

\ \

. .

.

hiqhlyeffe ct ivemea n sof dr i v ing circ;ulation.there. Thermal convection drivenby rad Ioec t.Lvedecay, perhapsofpo ta s si u m,

is'muc hle s sef fic ie n t as theconductionofhe~tup the '

ad i ab a t i c.t e mper a turt;gra d ient would be lar g e ( per.;.~1378). If the cercu jatLcnis vigorousenough , th core'is we ll-'.mixcd : that Lu , che mic a llyhomog eneou saml41d i a b a t ica ll Y : str~ti fied . Anot herpossibilit yis thatthe core- is therma l l ystablys-tratified,(Higginsand Kennedy ,19 71 ). In'

th iscase

':radia~ mati?" 'wo~ld ' b~

.inh i b i t e d, "th6 ug h

oscil la to ry zadd aI moti o n wo uld

.

~till~epossib'l i! .. However, the Hi g g ins-Kenne dy hypo t.hes Lsrests'on'th e'E!x t ra p o l a ti on of axp er Lment; at modest.pres s u::es to very.highones , and on I t he o r-etLcaI argumentscfunc erta In validity·50 that the 'ev ide n ceforItisnot compelling.

Th ean t i - dyna mot.heo r amrc r- n o n-r adt armcti.on mus t be co n sid.e r cd an arg u mentagains t th is idea..Th} Smat t e r....il l be discusse d be l ow .

.

Achemicall yhomogeneousoute z;cor e

.

~a n<...acco untfor theobserve dvariationofden s i t y whh dept;hwJ:lcnthe effe ct s ofpre s sure areCO~Sid~red(Dzi.ewo n sk i et a,i.~~975) Figure 1showsthat; th~,den si t y.of theoute rco r e'varies from

~2 . 1

?t10 3 kgm-3 at

th~ bot~om

·t o.9,9at th etop, a'

differ,e nc e'o f.a bout.20~. Ma t e r i a lmovi~g:large.d i s t i n c;e ra di al lywil l expa n dand.con tra c t by conside r ableamourtbs,

Aquan t i t y,tha t wi l l be.ofi~t'e1i"es t is· th:;ad ia l .

r

der i vati ve ofdena feydivi ded by't;.hedensity. Figur~'2.5,:owsl

(21)

0

~ ~

~ .,

~ f

.) ~

~ ...

s II

1

~

0

1

g

~.

I

~

~

L ,

!.

.-.' "." ~. '.-~" ","> .,'"-,~'

.

(22)

II

.

'{

. .1 ,

L i.

I

-.':

.' .'

(23)

12

that tlU.s qua"ltity var i.e s frrra "l:HI-e,rn.-1 at the bJttan of the liq uidcoreto about 16 x Hi- 8m-1,at~hetop. Ave raged ove r thecore,a ty p i c a l ve Lue is 11 x10- 8 m-1 .

'Animporta~t,pa r a met e r'i,ndynamo theo ry'

is

the eIec t'rIcej conductivity o.f the cpre.:·.E.xtra po.l,at 'ion o-f

lab.orator~ d~ta

suggests a .valueof

.a~Oi.ln? '

~ "lO~

Sm-1.

( Gardi~er. ~nd- !?~~~~~ ,'

19?1).

. - , " , . .

.j,,~

,- ,:

I .,' "

The spe e d and patternof flow;',~-e.th e velocityfield ,

.:. .... .-..,'. ~' ., " " ,"'t.,- , " ,"" ,.:,,:":,.-'

is po;orlY:.knowp..Howe ve r ,-itmay,b epo~ib le to.:ire,t-"~OI\\~"

ld~~'-o~ a ' t~P'iC~l >~;_~ed~:,_~ l\~~o~~m o{ ~~ ~ay~" , ~h:~~;'~'

:·-~.:i:.g~ ~~·i·e·~i~ld., ~~ ' 4" h:i'9h~y

.co nduc ti ng

flUid ::~~ds

.

.-t:~:~ve· ·

-Wi:th:' ~h~~: fli~.id; 'the i~~ld ~S

.,

~roze~· i~,< ·;·W~~'~>·th:~ i~';'c:~' .

fe:t~:.eS·o_fthe Earth'smagnetic field are mapped ye ar by year, they showasl o w westwarddrif ...ofsome 11 min utes,of arc ayear. If'·thischange iscaused. bythe motionof core

~te'rialthe,~

tbecor'resp?nding,speed

i~

about 10 -.4 mS-1.

Thismight -b edescribed·a s a plausiblees t i mate of the:t y p i c il l speed (Bullardetat, 1950).

The'pau:c;;n'of,_fl o w.ts eve n'mo r e,unclea r~ Howeve r;

using-the:·typi~·al,va Locd't y,t h e~ypicil, ilength scaleand

. '

.

the,angular velocity,of the'Earth'5 rotat ion,we,ca n express

th~ i~por.tanc~

'o f rotation bythe:'

Ros sb/.numb~~

"thetypical

,:\...

j

[:' I

')

I

J

I 1

(24)

Thefl o w in~h ecoremay be said to be magne t o- qeoae roph Icrthat-is,theCOriol is fo r cesar ebalan ce d by theL,?r e n p forces.

Th~

fieldsrequired,

pe~ps

10-2~cslas

u

ec gauss')"are notunreasonable (Bullard and Gellman,1954).

Observation s.. in 'lhe sci.ersys t.em.Lnd Ic et;e tha t ro t a t i o n,must'be11,majo r-fact'o rin't he

~eneration

of.

rni:l<jnetic'£ields:Th~way the'"dipolefield- of'theEa r t h

" ·::"~~.~~_~~~:~:i.~f;~:ht .. ;~~:~~t~?n' ~~ia

-is:

o~e~ln~

....

: ~~:~le

2-

..coll e ct-s'>s o me tiacts"abo u t t h e inner':five,planetS.

,, '{ ; : ...:".-"",'." .', .: -.'. .,.'.>, '.",. .~

···interest~n.g:,~~tte.r~_~X.ist~tn.the

first_ : th,rl:ie ':Which'

all

have abou tthe'same,dens ity."

E~rth ~as ~he{

highest

rotationrateandthe stron g e s t magneticfiel<l. Venus. rotates

IIlOst

slo....iyan d tiae a very ....eak fie:l d . ifany.

13

-

I ..

(25)

14

Ra di us'o fin nercor e 1200,km'

Ra di us ofout e r cor e 350 0,kill"

Table 3. core sereeeters

Thi c k ne s sofou t e r'core 230 0km 10.9 x103"k g/ m3 11<Ox 10--8Ill-I

5x,1 05 S/m

"10 -4

'm-/~

v

Table a. PI.aru;tary Magnetic Fields,

Density Rotation Per i od TypicalBFi e l d gr/cc Earth da y s atsurface,gauss

5.' 59 3. 3 x10-3

5.2 ·2 4--3 1.8 x10..,4

5.5 ,1.0 a.ai .x10",,1

.,

/1. 02 6 x10-4

3.' 6'.36

3.34 I:t7.3

,

x10-4

1.3,& \'0:41 '3 .61

!

~FromM9 ff att Wq S}p ,76

andHart mann (1972 ) p. 265

DeilSi~y"'o f'o u: "er"'co re Fr a ctional'den s ity deri v a t ive ' Electri c a l:oonduc ti v i ty Typicalvelocity Earth Mars,

Jupi ter 'Mercury

..

(26)

3. Introductionto DynamoTheory

Dynamoth eory might be calledti:le astroph ys i cal br a n c hof maqnetohyd'rodynamics (MHO). It is dividedfr om la bora t o ryMHO"bythe' large typical lengthscale·of the processeswi thwhic h iti'S.concern,ed. 'MlIDisit s e l f 5epaiate~from'plasmaphY~,ics.in th';t'it'd ea ls with

.field~ t~at

va ry only

siowl~""

withtime . We

" co~si'~er

an

.ele c t r i c a l ly ccnd.uc.t.i.nq.fluid'ob~yingOhmIslaw •

•.

Th~,

equations' d:f·.'mq't i o r{,

~f'

the'fluid

,ar~

jiist't,he

normal

'~~i:lrodYnllmic ones wit~ :~he ~dditfon,

of,. ,

~orent'z

force,. 'He r e,

we 'mus~

make a

~i~hnction

between,kinematic.

dyriamotheory and the full'hy.d~tn.l.gneticprobjem. In kinematicdynamo theory we takethe velocityfie l d as

•knc:'wn and'a s k whetherit isc~pableof su s ta i n i n gor increasi~g'a mag-ne ticfield. ':Th eforces,that drivethe flow, in paz-ticuLar thbLo re nt.~:'force,'areig~ored.

Hydrornll.gne t ic ordynamicdynamo.'~heory'~ntroduces't~e'. forces and there a c ti on 'of the,m~g:neti'cf~eld,onthe velo c i ty fie ld. Th i sis clear ly.il.'more difficult task:

Anti-d y na mo

~heorems ~~rtunatelY

belong to the

k:ine~t\c

branchso thatwe may rest rictours,elvestoth esi mpl.e r of thetwotheories.

Evenin the kLneme t.Lc t.beory, the velo ci tyfieldmust. be a'po s s LbLev on e, Mass~ustbeconserved; the,flowmust

i s

/

(27)

16

obe ythe equ a t i p n of continuity:

3.3

"3 . 4

+

V= 0

!L =

/)t

' ~

Ot

A_

:velo~ity'

fie l d__

l?b.eYi~g,·

t.h i s·equa t Ionis' ,said.,__

to. ~e

aoLeno LdaL,' -Flo w:inan incompressible fluid'is,divergenc;::eies s,. Flowin " a

~6ompre.~~ible f~:Uid-. lIlay ' ~~: , SOlen.~~~<jl

but

. - --. ' .

,

thatparcelmoves.

in

the'

va'lacity

fi~ld,,~

Now

th~

densLt y

'~f 'a 'Pa~.c.,i

at'

inco'm~resSi~~e /;U~d

will not,chang.e ; Thus.t he.~qua t.i:o~·'ofcOli.t inu i ~Ybecosee is theLa gran g ia n,orma~erialderivativ e. I t is'therate of,cha n ge in,

a

quant ityover,asrn.illl'pa r c e l'of:fluid'as wh e re

...wheze

~iS

thed(mSlty:

t

'Ls time,and

V

thO§!vel ed

t! fi~ld.

Wema y ' $.ethis<IS ~ . -

(28)

17

isn~tgenera llyso.

L~tus wri t e down ,inth eMKSA system,Maxwe l l ' s

':" .

3.8. 3,.7 eq uetIons for an"isotr o p icmed i umwi t h thepe rmeability 'o f fr e e.spa c e

., I

I 1

~ . :~ j

wh~-re,' E i.sttie-:,el~~~rij:; field,

_€

,.the~ di~i:e~t~-ic' c~n~t-an.t:,·

-. ;

I :"

' 1, ~hrCha.~ge 'd~~si!Y'" B '~he

llIagn.;ti c

'f!el~'" p:?::

the

pe r nle abil i t"'yof..frE;e_.sp ac:e»,and

J:

.the current.

den;;ity.

.W

7

h ave ' liD!.~ted: ~urs~l~es \o.-fi~;tdS,

va ry i ng

si~WIY . J .

withtidme, This'isequi :v,dentt~",the n'e~lecto"ft;h~'

'.'

'diSPlace~nt ~~rent ' i!1 .~~per~ "s

'l a'w'

b .6; ·~ 'I/ "

a

t~plcal j'"

~:.:~: ::: L':;':

'tihe , -'" "

~.t~ _ "

(29)

.: .

L

T «

G

(30)

The threeequctIcns are

Il x B = !,- o 'f

3.,

f} xE _~B

IT

3.1 0

-'

·B a

.~ v

3.11

Fr o m(3. 9 ) i tfollows thatth e equatio n ofcontinuity 19

/. fo r char g e is

3. 1 2 .Wehaver'emarked th a t Ohm'5lawwillbe obe y ed . For qua nt ities (primed ) fix~dwithre sp e c t to amo v ing medium

3.13 wh ere

a-

isthec:ond\lcti vit y.

A Lorentztr ans f ormation ofth e fieldsne gle c t ing term sin V1

yiel d s - .

c' f' = f

t :;X

8 ; S ' = B ) h i

wh erethe la stfollow6 from the second .

su bsti tuti ngth e eff ective el ect r icfie ldin t o D.l ) givesOhm'slawin a mov i n gmedi um.

3.14 We are now in a posi t io n to de r iveth e induc t i o n

.equ ation ofmagnetohyd ro dyn amics.

(31)

20

p ut rrncr('-1 1\) into[3.9) giv es

3.15

Takingthecurlofth i s and using D.lOI

V xVx B = _/,-.<r ~ .tt·<rVxUxB) H

Using aVC~ LOT id e nti t y and (3. 11 l give s t;he in duc tio n equ a tio n

)' rr 8 '- ~m V'B 'V,("B)

3.16

where~"'llfJ equal to

I/,_& an d

is cal l e dthe mag n e t i c

Eqtla.t io n (3.111 meensth a twe canexpre ss

B

interms of.1t the vectorpoten tia ll

diffusiv it.y.

3.17

By choosing theCou l omb<;la ug e we ca n assur e that

3.1 8 We will eas e requireth a t

I r'

.-1 3.19

Thiswi l l : iX the ve ctor "po t e n t i a l. putting (3.17) into(3.10) gives

(32)

21

showingtha t

E

differs from -

) A /) t

by at mostI.lgr a di en t ofso me fu nction

4

"'~

ind u c t i on equa:" endtion.

-

(3 . 17)

),1 ~

in~o

ijf

(3.15) yield s the 'unc urled ' 3,20

Suppose the velo cityfie ldin. aconduc tingbo dyis ze ro. Suppose al sothat at some initi a l t imea magnet i c·

fieldis present. Theinductioneq uationbecomes

~

We may lookfor natural modes

gi

..1e c a ying exponentia lly

Suchfu nctio n s formacompl eteset50 that we mayexpress any totalmagneticfield as a sum of the eige nfunctions.

Allthe eigenvalues

p .:.

are real andnega tive {Moffatt"

197$ , pp-36-42). The.reforeeach mo d e has itsty p i c al de c a y time. Fora sphereof.ra.d i lls

R

the slowestdecayi ng mode is.e di pole. I thas a decay ti meR:;D"",lI'~ For th e

(33)

"

Eart h thi& is about2S. 00 0years. Th efield hasofcourse be enpres e nt for ve r y muchlo ng er .

Wh e nthecon~uctivi ty.ofthe flui d ishigh,...trve n-e tt)eor elllapplies. Sllt1pl y sta te d,lines ofmagneticforce behave as if they we r e frozen intothe flu i d.!lndITJ:Ive wi th it . Th eflu x~tllrouqhillsurtB.ce boun dedby a material cu rve varies in. timewith the in t e gra l of the ef f e ctive :lectr ic fieldaround thecurvebyFara day's·l aw

dF dt

f eE. vxB) ·it c

8yOhm'slaw thi sis

I f d' qcca

t'~

in fin itywh ile

J

remainsfinite. theflux

doesno t change. since thisholdsfo r each andevery cu rv einth eflui d theflux iouch flul a elemen t is Icons e rved. ByappropriatelI'lOt i o ntheeaqne.t.Lcfieldcan.

beLnct-ee s ed•

. .

Thebal a n c e betwee n magne t i c (or ohmic ldi f f us i on andtheeffec tsofflui d motion can"be exp r esse dbythe magne ti cReynoldsnumber

R.., .

Re c a l l theinduc t i onequati on

(34)

23

3.1 6

Suppose that

l

isa typicalLen qth andy atYT)icalveio ct'ey.

Then thefirst te rm onth e r Lqht; ha n d sideof(3 . 1 6). .\.9 of the order

I D~ V' 8 1 . =P~IBI ---v-

and,thesecondte~, describing the effects oftr anspo :r:; t, is of the order

I V x (ii xBJ/ ~ II fSI

L

Tbe magne t icReynolds~,umber

R rll

is the ratioofthe second to the fi r s t,th a t.is,of theeffe cts of mechanical transportto those'of ohmicdiffusion

vL

D m

3.21

/

,11.la~gemagneticReynolds nUlllberind i c a t e s the predcrainence of cren s porc overdiff u s i on w,hichis ne,,:de d for dynatn?

action.

Substituting from Chapter2 the.radius of the core, its conductivity, and th e velocity from the westwarddr if t, we findthat forwhole"~oreproblems

R . ..

is about209and we expecttransport to,dominate.

(35)

"

4. Compressible,MHO

To this point our analysisha s bee nstandard:

willn?wext end thetreatment to take intoaccount; the effectsof'compressib il ity.

Supposethat cr is lar ge so thatwe may negl e ct the diffusion termin (3.16). 'I'hentheind u c t i on equatio nbeco me s i

S'

z:

sinc e

V·8=0

,4. 1'

Nowthe equa t Icn of mass contin u ity (3 . 2) is

,so tha t

Q.o Df

v · V

+ I' (V ,V) =0

-">

- IQe l' Dt

"

Su bstit u tin g,int o (4.1) .

¥

~.:. (g ·(7)v .(i/.V)Bl- ~P.e.

d t · I' flt

4,2

Suppos e a' typica l 1~n'9th

L

an'd'a typ ica'lvelQcity V e:x:l~t..

Th en a,typica l t'ime is

ju~t· L/v.

Then all the terms.1,n'(4.2 )

(36)

areof the or de r

I ~J ;,· I ( B . V)V I = I (v . ih 8 1 =- IS/ v.

}t - . l

exceptthe las; term?ntheRHS isof theorder

25

wh e r e

i. p : 1~

a

'~YPiClIl

change'inde nsL ey an d'';;'.'a ty pical de~5ity: . , "

Thenthe

rel~t'~';;~- :itnPo;tan~c'

of

comp~eS;ibil1ty compar~d

vitJr

~he

other

pa~-~s -,~f- the t~an'~po~t' te~

in the'

.in~~cti~nequa~-ionis'9ive nby

.r.. (= . I' ~ ' .3

InastrClphyl1cal sit~atio~sthede ns it y iBa funct ion. .of raiii.us,onl y . Then~

J.~ I' .' l>t

(37)

where

Y

r Then

the radial velocity."

C=/lhI I' 'dr L

' . 5

c . = I/~ W' L

4.6

where

L

.Ie thera d i al'ccmconentof'the typical length.

wehave':remaded"that thefrac t i"cr;a l den.s-ityderiva t i ve

i~ the 'E~d:h,'

s

~ut~~'

core:is aptlroxiP.late,ly rr

~ i'o:-'~ .

m;;'(.

~when

J-

isin metre·s.

Theparame~e,r Cdef inedby {4.51 an d (4.6) is essentiallytheBmylfe-e-Roch e stec-(191 9) compressibility numbe r givenby

:i ,

wher~} isatypi cal density ,'

9'

aty p i c al val ue,o fth e ,acceleratio ndue't o.gravity and

>.

~s.th e b ulk modu lus.

I tis.·~learJ.Yeq u a l to the.f'ract~onm,at~rialisc~mpz:e8~,ed,by

its ownweight in the radia l distance

L.

~hepi!tr ameterwa s introd~edto reflectth e importanceof'compressibli i tyin

(38)

HereV.,.hasbeen, assume dto be the .s,,-measV, It is~eryhard to say wha t V... miqh t in rccebe . On th e ot h e rha nd,the ty p i cal veLoc Ltiyfromthe westwarddrif t is only barely justif ied,mostlyby being the on.lY candid ate in the field. Whileackno wle dg i ng the uncertai n t y ,we will neverthelessassume that V... is equaltoV•

ThenCisa fu n c ti on of the,le n g t hsc ale

L .

Figure 3is a plot ofC

a~~ins t

L'f o r the Earth. As canbe see'ii, forLequal tDthe'c ore radius,C'i s about;0. 4. A more.r e aso nab f e•tYP~,C~llength mightbe the'thick.ilessof the cuee r-core.:fo r whichCequals,a b out ,0. 2 5.

Ineit1'te rcase,the te rminv olvin g compress tb ttrey is of the same order asthe ent Izete rm involving tr an sport. This ma k e sits neg l e ct in anythin got h er thana firs t approxim~tionhardtoat:cept,

This do e sno t hoj d..for flows with~ty pic a l length under,say,.900 kilometr,;s (fo r which' is O.ll. Ata .ty p i c al le ngt h of 100 km. thec~ntributionof compress ib ility,

in thisanaly s i s,isabout;H,surely

neg~gible.

L~t

'usnow

~O~Sider

the

indu~tion

eq uttion

wi~h

the.

diffusionterm in place . Thenenoeher compar-Lsoncan be madebe twe enthe effects

of

that part of thetra'ns po rtt.erm arisi ngfrom compressib ilit;y and the effectso~diff usion.

. .

Icall this, somewhat apoLoqe'tdc aLky,th e 'compressibi lity

,,

(39)

28

(40)

)

I

partof themaq-neti cRe yn o l d s nueber'~R.,4' It isgive nby

4.7

Fo r a radial dil tri b u tio nof density

29

•• S

Th isqu adra tic depe nden c eon thelength sca le cont r asts

w~th

th eOrd inar(

maqnet~c

ReynoldsnWllber ....here

thedep en d e nc eis linear. :

This is wellco nve y ed

~y

fiqure

l

co mparing

R...

and

R""

fortl\e E4'~th's outercore. Wh ile

r",

is greate r than

1for lengthsas smallas20 km,

L~'

is

l~S~

"th a n1 for

len g.ths sma llertha n attout400 k;'. St ill, forittypic~l len gthonthewh olecoresc ale

i.-c:

isqu ite la:rqe . around

This is of in terestwffe nthe rest of thetr a ns por t termfail sIUS: whe n thereis an anti-dyna ll"O th eo r emthat neq lccts;orapreS8~bUi ty . r'e

R""

islarge enough,thenth e theoremmay.bi l .

_ .... •i'-".,: :'? :.: r. > .

(41)

I I ,

0:

(42)

31

5. The StationaryAxisymmetric Dy namo

The first -antLc-dynamotheorem(AnT)wasCowling's 0.9 33) theor e m that an axisYll1lle tricvelocityfieldcould notsustain an axi syrnmetrie magnetic field.,Aproof,is quit e simple.

r

Let usintrod uc e cyl-3.J\.drical"oo-ordinates',~ ','l' and i: -. B~caus~ofax ial'synmetry we .can write-'

.th e

fiel d- as

S' and components of themagnet ic

B, B, = 1 }C rAp)

5

~s

5.1

NOW ,S

A,

at infini ty.

must,eque Lze roatthe or i g1 nan d ,by 13.19), Except for th etrivial case,

sA,

mus t

.ther ef ore go,throughamaximum or mini mum.atsomedi stan ce., from the i . -ax! !,!.for:any~ivenverueof II!

;".-,-;

similar ly,

A,. .

i s zerofor

i =,

~

-

li ke wisegothr oug h a maximumormin imum. At some pair of co-o rdinates

(5.

I

. :.z . -)

B s , - J A~ J = 8 ~ • 1 )(A~ ')/, = 0

, . d

e S. ,'tO

S ~;s : 1

S...io-. 5.2

(43)

az

a.a

B.

-eceponen eyiel ds

' B, s

) A.

H .

Takingthe

.ReC:lI.~lthe"unC~r1ed' ind uctionequatio~:·( 3'.20).•

'N~w bec::aU!le

of the

a.xisymme~ry ~f

'the

veloci~Y

arid

m,;".,~etic

fieldS.

V ~ '~st

be

a con~tant

forII91ven pair .

l ? i t. ) ., S~nce

:

' ~' .

mustbe sl ngl e -v tllu ed,' 'WG

say

tha t

B... ..". h 4,s:..a ne~~al poi~t:

at.

.~:hl.s

pa i rof'

CO-O~dinat~~'''- ''There'~y

be lUCre'

tha~

one

su~~.

;' .

Usi ng thesUb~cript m todes 1911ate themerid i onal pacts

Clof ve c t ora,Wl""rite

\

\

\

\ .

I I I

\

\

\

\

)

~

'~

.

:= 'O

...}.';,

(44)

3J

Fora st~adyfield (5.3)gives

5.'

Consi derthecirc le

C

ofra d i u s,...dra wnabout the neu t r a l po i n t (So)

1.)

insomepla ne

By (5.4)

Wh'~re

the

~ . ,

iptegrai'S are over the are aof.thecirc le .. By scokes th eo rem

ccnat.ane•

5.5

.,

on the

\:f.

wlfere" theli ne

inteq.ra~ 0

iSiaroufj,d the

Circum'er~nce

of

.:. I ' . ' .

thecirc le.

Su p p ose. ttlat theave rage value 'of..'

B....-,

ci r cle

i~' B .

Th en '

(45)

34

.Supposetha t thema x l mUIIlvalueof 1/-' on the

sur race is 'I aec~use

B...

is zeroat (S;Jfa,) for a smal lenoug hcirclethelI'.e~nvatue of

e . ..

ove r the sur f ac emust be srna l l er than

e.

The n

5 v~ .. B~ ·el S s " r' It B

But by 15.5 ),t h is means

I

2irr .D_B S ;, r

2 ,;

B

D ... .: r v .

~or'

fin! te

vlll~e~

of

~'lland

V thil; isimpossib le r can be shru n k ind efinitel y. Thus.":o st e a dy' axi symmetri,cdynamocan exd e e•

The PtJ~8,1cal int e r pr e t a tion

o f

th i s isclear. Around

the neu tra l.Poi ntt~e i~ductiveeffectsrepresented by the (

..

I i

(46)

/ \

LUSof (5.5) cannot overcome th e ohmicdiffusion rep r e se nt e d by tho RHS.

Lort z (1968) claimed to have ex ten d e dthe Lheorem to arbitraryvelocityfields. Howe ve r his pr ootde pe nd s ontheassu mption th a t both

'8 ~ vi

ere

ax~syrrtrct:rk,

MId it follolm fItJl\(3.20 )that thisIU'c:urrptioni~

eq uiv a l e n t to assuming axi s ymmetr ic velocity fields,as'"'e ll.-.

The co,ntin uityequationhas not bee n in vokedin any way . Th'tpr oof is notaffectedbywhet he r thefluidis compre ssible ornot .

Supposefor amome n t thatequation (3.20) nasil

solu tio nofth efo r m

A U,-I) = A ( r ) .'p ),f

Then(3.20) becomes

Th isis aneigenvalue problem. We knowtha t ze r o is

(47)

notan eigenvalu ~;)Ytil l'!arqument above. Puther-rnorc if any given vel oc i t y fie l dis multipliedby aconstant

~

wh Lch \0aLl owed togo toaero ,we,", ,, ,: e, theproble m of th t"! uoc.ayof a mag ne t ic fieldina"0]id co nd u cto r , for wh i c h ..,,11the eigenvaluesare neqatfve . Itwo u ld se e m that in tur ning up the vel oc i ty field sotha t aneigenva l uebec omespositivewe mustp~ s !<

throughae r o which isimposs ible .

Thisargument (orext.oridd nqtheth~r emtothetime dependent caseha stwo, flaws (point,edout byBackus, 1958). 'I'hey stemfr'omthe fac tthaLtheright handnLde of (3.20) is not self-ad joint (Cowling, 1976 ,pp. 9l-9l). .Th i s hasth ec onseq u c mc es tha t th e

~;gem::alues

.>..

need notbere a l and thatthe ei genfu n ctionsneed not fo r mcompl eteeets, (Inthisof~ourseliesthedifficulty of dynamo theory. ) 'I'hereforethe path in the compLexplan e followed by " in 'turningup'thevelocityfie l d • need notpass through th e origin. Ifall the eige nvalues arereal,however, the lack ofcomple tenessdoesnot precludeth e existenceof somes~lutionincre as i ngwi th' time. Thus a more generalanti-dynamotheorem mustrun on other lines.

(48)

37

6. TheTime Depend en t Axisyll'lf\etricDyna:ro

Theer e e ree e exposi t i onof thetheorem th dlt.eve n a time depende n t axis ymmet.ricdy na mo is impossible (ifth e flowissole no idal)·1s thatofBraqinaXii't196 4al 'Wh~mwe willfollow. We willnot,ncwever,ass ume sol e noi dal flowso thatourcorlcluslonswillbe differe nt .

•we".s t a rt",'iththe'unc u rled ' ind uc tioneq '; " tio n(] . 20 1

.and the induct ionequation itsel!(~.16)

We as s ume't h e r e

are

no!I~cesat i nfi n i ty; that 19

.:

I I

We sh a llalso aSSUIlIeth a t

bm

is con stantthroughoutthe cond uc t1 M fluid.

6.1.

(49)

Conside ra homoqeneouscond uct inq fl ui d conta inedin 11volu me

VI

symmet r i cabout the Z -axrs• Asbefor ewe usethesubscri pt",-eo de s ignatethe lJIerid ionalpar tsof vec torsthus

Be cause 0[a x ia1sY/lIIT\etry'

Thusthemagnetic field is givencomple telyby two

variables

A r ;

and

B r

Let us first co nsid er

A,.

Ta kethe , •compon entof (3 . 20)

6',2

' .3

.!

}b at . , ..

j'

Be c auseofaxia l symmetry

(50)

lind.

? U • v. A] : - 1 v

M

V (sAp>

5

Putt i ri9 these.into(6.4)"give s

J9

j,

\ !

!

/

{

1

(,

.

\

. . . !

\'

(51)

In'"/~. the space outside

V I'

wehave frolll16.3) and'(3.9 1

ll. At = 0

Multipl y equation16. 5'>by S1

A,

6.7 .

I

Inta gra t'ethisove r

V. .

We mayintegrate the

s~cond

term

onthe RHS overallspa c e , i.~"over'1. +\{as the'i nt e9 ra nd 1s zero'in

V

1.'

~ ,'A, ~ JV =. )

s

A, (,,~ . V l,A,) JV

t

D_ VA," :A, JV

VI J'l- VII-VOl 6.8

Let usdea.lwiththi stenn by t.ee-a, TheoLUSof 16 .8) is

Thefirst te [lll ontheRHSis

I

:'.,

..'.~':,':.--.~ ;"-..,"~" -t-

<..

\ ", '"."" ~'

.'

.

I.

(52)

"

Bythedi verg en c ethe orem, for

5.

bounding VI

( (V , v~ ,·A. :)JV= (~'v~.JS=O

)v, 2. )5, 2.

ceceusethe norm a l compo n e n t of

V ~n

th e sur fp.ce

5.

iszero. So the firstte rmis

( ,A, (V~ · V,A,)JV = _

~

.

. ~

The second term onthe Rfis of 16.8 ) is

6.1 0

D.. ),'A,.. A,A,JV = D~ 5 v · . A/W '

1/.t Vl. v.~VI.

- D.... ) J V :A,/' J V

\l,tVL Bythedive rgencetheorem

.) V. ( ~A,V,A,- i ,A,')~ V: ) (sA, V,A, - ssA ' J.JS

v,IV, . S_

where-

S_

isthe surface at infinity . By (J.B)

A, '" 1

r '

The r e f o rethesur facein t e g r al is zero and

D.. ),'A,J,A,JV: _ D~) IV sA,/'W

ro,v..

V,+VI. 6.11

(53)

PlI t t. inqf6.91, (6.10 ),and (, 11-)in t o(6.8 ) qive s

.J.. ) cu dV =- OM ~ IV,A,I'JV. ~ ~ (V ·' )JV

6. 12

Jt ~, 2 ~,.v. '~, 2

'l'l.i:.ls oneof two equatio ris weneud .

Wemust deri ve asi mi l ar equ" t.io n

(:on~erni nq, 8"

Ta ke the ,.compone n t; of theinduc tion eq uati o n(J.16)_

. ~ z p. V _[V. S] ~ /)""~' B ,

H

6. 13.

No w ... • ...

. ? . V. [ . XBJ -5 «: V(~)_ 8

f

( V·~ )

t

~~ (V ·B · ). p .( V(~)k V,Af]

v ·a =0

60 (6.lJJ beco mes

S I

~ : ' : ,~~ . V (~) _. B, <V.•)

t

;' [ V (~ _ VI A,) . 0 .. <1, B,

From (3.9),in',.':

v ' < B, ;) - -lli; + 1 ~ i ~ 0

~. S

. as

6. 14

(54)

43

Butby (6. 1)

8 ::0

ateP

6.16 6.1 5

Multipl y (6.14 1 by~and in t egrat e ove r~. S·

~ ~ ~ dV:, - 5. §.r V~ , V(~)dV _( !!t.'(V·;JJV

1/,i'

I t V. S

'i

J", ~ J.

+ ( ~ n V(~) ,VIA,l JV + D .;. f ~ <1, 8 , 4\1

)1/,

S" ', S . .

v:

51

Wewi ll dealwiththi~termbyterm.

Th e'La Sis

( ' ~ lb' dV = d.. ( ~' JV lv,

S' } t ,

dt lv , 2,'

The firstter1!lon theRHS

is

By the di verg e ncetheor~,m

be c a u s e the re is no~oima lcQmponent of velocityacross'S, . 6.17

;

I l.

(55)

..

So

- ( ~ V

M

V (~)JV =

J.

~ (V·V).v

)",S

'i

~"I ZS1

We reevethe next twoterms in"(6 . 161 asthey st a nd.

The lasttermis

6.18

Bythe divergence theo r em

(v :(;V ~ '\f~l)JVo ((~V~f5!t.') . J5::0

) v S

'S \ SJ

lS i

S. .S" 1"

,

.

. \ .

<IS

B,:Ooo S ;

by (6.15). So the lasttermon theRHSof {6.16I'is

Put tin g(6.17 ). (6,.181,and (6.19) into(6.16)gives 6.19

..

; :.

;,,' .

(56)

45

Eq ua ti on s (6.12 ) and (6.20) co r res po nd toequat ions (2.9<1)and (2.9 b) of Brag in sk i i (19 64a)excep tthat weha ve retained th ete r ms in

V' : ..

Ifwedi s card the m{6.12) be c omes

J ( ~/JV = -D~( /9 s A

p

l'aV

n 1. 2 )

end (6.20):,oome , V.W ,

i . .

6.21

l I;" JV: ~~Jl9~/W + f ~ ;-[V(r)xVSA1 JV

dt v, 2s

1 . . ", VI 6.22

Th ese twoeq'uation sforI!).thebasis of the,anti-dyn amo theorem.

Conside r_(6 .2 1). T~ein t e.grand~ntheRHS is alwa ys

.posi tivei therefo reth e int e g ralonthe-leftmus t decrea se

withtime. As the int egran don th e lef t is alsoalways pos i t ive, thisme an s that

A,

must eventual ly.qctozero.

Now'c on s id er (6.22). solo n g as

A

pis not equa lto zero. thesecond term.onth e RllScanca use th ein teg r a l on '"\ theleft,and wi t h it

8" ,

toincreas e withti me", Howeve r

we knowfrom

'~he

first pa rt of th.e"theorem that

A

p'must go to zero. But;the integrand of theoth e rtermonthe -RBS'is

al~YS positi~c

so

t~at

on c e

A, qo~s'

to-zero the,i n teg ra lon

th eLII'Smus t de creas e withtime and

B,

vanishes-astime goe son.

Thismeansth a t noaxisymme tri c ti medependent dyn amo is possiblein an inco mpre ssibleflui d.

we kee p thedi s c arded te rms.

Thetroub l e'come swhen

.J

(57)

46 Recal l (6.12).

APp"ren~ t~nt:;:;):;he>LH ;~W51 ;;~::;,:i~ time

i f

V,

2.. . . ,

1I,+Vl 6.,'23

If·A? doe's not go to'zero then the'

sE!c~l.nd

termin (6.22) does

~6t

go to zero anq, the

.argumentabo:v ~

about

~f"' ls

,i,nva"l id. ;

E.ve'~

i f

A,.::;0 th~ " full : eq~tion (6~2q)

nowhasa

tei-m-coJ?t<l~n~

.V

,o f uncertain signthat

still.:inv~lidates

the

conClusi~~~:'

Thus.?i~en'(6.2 3 ) " the"anti-dynamotheorembreaks down':

We ';lust'now lnquiE::eWhe t h e r"the ccndi.ei.on (6~23J mtght notbe fu lfi l l 't!d 1n the core. Let us suppose thatth e ci rc u l a t i o n .in

~he

\core-Ls

:larqe~SCale,

withradial velocities

not di ffe ringm~chfro~'the horizonta l velocities inferred fromwestward drif.t. Be,cause.o f Al iven'",theorem themagn~tic field mustalso,be-la r ge - s c ale .

necause ofthe continuityequatio n wemaywri:te

, ,"

' /

(. ~' (():j),:IV= " ) sJ' ~ ~/dV

)v, 2. ' ' v, l I' d,r '

'"

,

,

! , j

I i

')

(58)

The in'tc~ral still10ntainstwo unknown fields

A ,{

anq

",. . 'Theupwa l"d and dO\mwal"d pal"tsofV,. wou l dtend to

.t1. .

ca nce l were they not

we i~hted

aga i n st the veceor poten t ial .

This.J:lay leadto " non-can c ellingpal"t Wh i ch we canexp r e s s

withth eaidofthe per.ereeter001.

tqpi ca1val ue

Su pposin g

V ,

tobea

~ ~ '., JV = "' y,( ~'JV

v, l ' . ~, 1

whe r e 0( is prcsumab11'arnaLl.and maybeneg at ive. Wemay l"t;pnrasethequeat.Lo naboutwhether (6.23 ) is fulfilled to

. .

askbow large 0( 1lIaY.beallowe dto getbefore th etheorem breaks down. Th econdition(6.23) be co me s

"'11~1Y!: 1'1, 0_

The rati o of the integrals isoftheorder

R "

an d th econdition becomes

Foz:the Ea rth'5 out e r core

R...,.

ispe rh a ps 40 . Th en'"" mus t be smal ler tha n0.025 forthe anti-dy nam o th,eore mtoappl y . Thi s isnot avery large number..As it arises from the pr o du ct

'

...

;"'.-,

-" \.

(59)

· ; .

:"

oftwounk now n fieldsthen'is noth i ngcertainthat ccnbe ,saidabout the tr uevalue of b\,. But since thepossibi l ity

exi st sthat cl, isLar qeenou gh for the dis cerdedter min theant i - dy n a motheore m1,0he as l'lr g e as the te r mthat is kept,i tis proba b lynot wis eto disca rdi t. Then ,bowe ver , there is no lon gerananti-d ynamoth e o r e mabo ut. time depe n de nt axisymmetric fieldstha tapplie s tothecoreoftheEar t h .

This is nota6ta7me~t.thataxisymme tr ic solutio ns to the dynamoequations exist; it is not an exist,ence theorem . I tis callingin to doubtof a non-ex is tence the ore m.

Suppo sethat

~ 5~' (V·f)dV" D m f IVs~;J'JV

V,

1 .---

v,fVJ

Thenby (6.12 )

At first glance'tJ;lismight-5~to contradictcowlin'9'~

theoremon the stationary-a x isymmet r i ~dynamo.

This is not; so. Only the valueof"tih eint~gral is con- stant, while

A ,

may becha~ging.loCallY. Cowling'stheorem requires the magnetic 'field

to

be eenaeene-everywhereat once.

: 10

7

(60)

7. Non-radialvelocity Fielt;l.s

Nenow turnto anot heranti-dynamotheorem. Thework"

below follows Moffatt(197,8,p.llS) except that the fluid is not assumed tobe Lncornpr-es s Ib Le. Consider a sphere,

V I ,

conta ininga homogeneous conductingfluid. Suppo s ethat V ha"S no radi a l component.

Re ca lltheinductionequation (3.l6)

Letus turn ou r at t entio nto the ra d ial co mpo ne ntof the magnetic fie l d

G I" '

Multiply ,:,q u ation (3.16 1by

,r1. Br ;

andin teg r a t e ov e r the sph ere.

) r'Br)8.dV= (r'B.i' ,(Vx(Y,8»dV

V, H ~ .

_ D~) r'Br H~, MMI

V.

Wewilldea lwit h thi s termbyterm. The LHSof (7.1)is

\

.

'.

7 ·r

. 7 . 2

_l I

(61)

TJ:iCfirstterm00 the RlIS of (7 . 1 ) is

~ r' B,;' . (V ~ (v'BJJJV: >. V· [,'B,r A(v<B)]d V

~ ~ ~

-1-.1-.8 . (VK (,"8,nJJV •

. v,

Th e"intcgr.lli~volvin</<1Jivcrg cnce Q'o.e s to zerowhe n

trans fo rm ed·in to011 e ur faco integ ralover

5.

as,of

. course .~ ~ (~16)

hasno ra d"ia l component.

)v, ' v

x

B . '(v. I'~~'?»dV= 5}' (Yr;B.') JV ·

_( r' Br'(V'v)JV )V, - 1.-

Agai~the firs t integnlgoe sto ;ero Whentra ns f o rmed into'a s~r face integ ralas

V

hasno.nonwl co.pon~n ton

SI '

Thus

50

7.3

(

The~maillin9ter min (7.1) is

)r :B, ~ '(V' (i7'B) dV : ~ V· ir'B~ rK (V.B~V ·

V. . '"

t ~V. I V r 8,)' J V

v. ' " 7.4

. .

.";"..

-.-

.

(

(62)

51

Th e Ln t.eqr-e l invol v iuga divergence goestozerowhe n tran s f o rme d'in to,asu rfa ce integ ra l

il' . ~ J VJC B sO

on the

.

sph e r e. Put ti ng 11.2),(7.31.and11,4) int o (7.1) yield s

J. V B/ JV = -5 ,'g: (V.; )JV- D~ 5 'Vi,8.JI'dV

cit " , 2 v, l

r . V,. 7.S

Nowi f

V · ~ .:. 0

then(7.51meane tha t the radial

com~nent

of the magneticfi eld mu stdeca y\awa v,a's the RHS

afn.s}Is then alwaysnegative. .. .

Defor e tur n in g to the other pere of

B

wernu~tdig ress .for alllOmen~on the,decompositionofve ctor~elds.

I tis :-'611 k~a~ntha t anyve ctor field

Q

can~edivided intocurl- f reeand divergence-freepa r ts ;

7.6 Th efield

A

lIlcl.y at sc beex pand e d (Roberts,19 6 7, p.eOI:

whe r e

l. R. T.

an d

P

are!IC&1lIrfields. By~in.s;:ber1 ca.l \ himron:i.cs

~

cansto..o thatt1"eII'E!atl,\'a1ues'of

it, T

and

P

r:Ner:a

~icalsurface

may.

\,d.t.tn.~lossofgeneralitv,be ta.1<Ento~.•

7. 7 The three part sarecall edrespectively lam e l l ar or

scaloidal,tor o i dal,and poloidal. Theto ro i ~ alpart does not tl have aradial COmpo nent : the poloidal par t in.g ene r a ldoes.

~I I .

(63)

sz

Th e ma g n e t i c fi eld canbe exc res secas a sumof t.oroidajandpoIo Lda I par t s

'. 8

Fro mAmpe re'slaw

Wh e n

J-:.O

' .9

T b

7. 10

\..

Returnin?to theant i-dynamotheorem, ifthe~a dial compone.nt of

B

is ze r o, as eventu~llYrequir ed by 1'/,.5) when the flow is so l en oidal, th e n

B

is pu r e l yto ro i dal and

- ,., (7T

7.11

From(7.10)

6 =0

outside

V,·,

~

r'

Fro mtheinduct!ion equation

'$ , ~, crxvT)

t

D~ V '(rxVT) ... VI'- VJT t rKV ID~17·T)

.Th~ re fore

7.1 2'"

(64)

5J

where

f

issome func tion of ral o ne.

Muo!..ti pl y (7. 12 ) byT andinteg rateove rt .

/

c r u.v , 5. T(HT)TJV

lv , H ~

t )

T {(dJV

V,

We will dea l wi th this tereby'te rm.

TheLHS is

1.13

(THdV : i ·( TtJV

lV, 'H Jt lv, "2

The firstte rmon the LHS is

7.14

Th e firs t in t eg ral goes to eercwhen troilnsfo:med to a sur face

~ntegral .

as

~.

ha s no ra d ialcompo nenton

S, .

The ,secon dte rm on theRHS is

~m ~ T V~TJ V: _ D "; j'VTl JV +b~)V. (TirJ<!V .

'I. \ i. ~ 7.16

The integral.invol ving a divergencegoesto zerowh e n tra nsf o rmed in toa surfacein t e g-rOllas

T.. 0

on~by(7.10).

'~---~'

(65)

54

The remainingtermis

) T H,)J V z: 0

7.17

"

asthe .wean valueof

T

is zero over th e surfa c eof allspheres.

Putting (7.)-4)-,(7.15) . (7.16), a~d (1.17 ) into(7.13J gives

i ( T'JV: - S. T'(V·;i)JV _ .D.., ( IVT/'J V

dt)". \'. )V"

7. 1 8

If the flowis solenoid a l then

T

must go tozerowilhtime.

Thus we see ~hatvelocityfieldswithou~a r adiaL componentcannot sus ta i n a dynamoin an inc o mpr e s s i ble fluid.

Su ch a ve l o c i t y fiel dcan be express e d by (7.7),as ator oida l field.

'ro eo t c etvelo~ityfie ldscannotsustainady n a mo. However, if the terms

containin9' Q'~

in (7.5)and (?lal"a r e la r g e en o ugh andof the right signthen the anti-dynamo the o r e m fails fo r compressibleflui d s .

Bythe Higgins-Ken n e dyHypothesis (Higgins andKen nedy.

19711 thecoreis sta bl y'stra tifiedand radialmoti onis st; r ong ly inhibited . Thisan d the :-nti-dynarnotheo r e m On toroida l velo c ityfi elds areinapp a rentcon t radictionand muc heff o r t has beensp en t en__;teco nc i l i ng th e two(Busse ,'1 9';;"5).', TheHigg i n s - Ken ned y hypd1thes isisunprov en, butthe re s ul ts . abovemay beofin tere~tinthi s connection.

Howev er,no n -rad i alvel o c i ty fieldscann ot invo lvethe la r ge ra d i a l dens ity ch a ngein the ea rth'score. This me an s that:th edens i tydi f f erence sap pe a r i n g in

(66)

,~ .

mustarise frompr e s s ur e gradi e n t s alongsu rface s of co ns ta nt radkus. As

R_c.

mu9"t be gr eaterthan onefo r the anti-dynamo theoremtofail and

R...

isatbes ta fewhundred , the excess pressure neededwouldbe high . Wh ile

Hl

isdifficultto be dogmatic, theexistenceofsuch pressures is unlikel y. Thus non-radi almo.:t,?"is'probablynotable to su s t ai n the Eart h ' smagn eti'C7..-field .

Snall<!;Rplitudeoscilla~r.ntionwithar~l~is possibleina stahly stratified core. This notionmightbe ableto~ partindriving

9:'

dynaJroas,of ccurse ,eeanti-dynano theoren onoon- radial rotion IoO,lldmtaop ly. Iftheradial\~engthofsuch an oscillaticnl..welarge,the effects of o:npressibilityonthe notion lloulddoubtless havetobe"(XlfISidered.

' .

55

I

I

Références

Documents relatifs

We observe a hierarchy of time scales similar to the Earth’s magnetic field: the duration of the steady phases is widely distributed, but is always much longer than the time needed

Revue Francophone de Recherche en Ergothérapie Volume 5, Numéro 2 | 2019 Concernant les facteurs de l’environnement social, des participants ont rapporté ne pas vouloir

Drei der Briefe enthalten keine Anrede, trotzdem lassen sie sich verwenden, weil sich diese Schreiben an Institutionen oder bekannte Personen richten, so dass sich die soziale

a minimum and finally an increase with the field. v) For high fields the velocity increases with the field, the lower the temperature the steeper the slope, and a trend

The results extend thùse of a simple Landau like model valid for small distortions (appendix A). - To calculate the deformation pattern above threshold we minimize G,

Josserand, Marty &amp; Alemany (1993) have completed this work by measuring local pressure and Strouhal frequency in the boundary layer around the cylinder. All of these

Basically, the procedure is as follows: (1) determine the average of the magnetic field vectors in the current sheet, (Bi); (2) for each vector Bi in the current sheet, compute

Projected angle between the mean magnetic field within the 1000 au central region and the outflow direction as a function of the velocity gradient of the source estimated from