• Aucun résultat trouvé

Studies on exterior wall air tightness and air infiltration of tall buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Studies on exterior wall air tightness and air infiltration of tall buildings"

Copied!
17
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Division of Building Research),

1977

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=b3b23dc5-0e28-4d98-9073-f2cad410f774

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b3b23dc5-0e28-4d98-9073-f2cad410f774

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40000456

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Studies on exterior wall air tightness and air infiltration of tall buildings

(2)

Ser

m

N 2 1 a

no,

706

c. 2

onal Research Council of Canada

BrnG

--.&eil n a t i o n a l d e r e c h e r c h e s du Canada

STUDIES ON EXTERIOR WALL A I R TIGHTNESS

AND A I R INFILTRATION OF TALL BUILDINGS

by G.T. Tamura and C .Y. Shaw

5 R e p r i n t e d from ASHRAE T r a n s a c t i o n s Vol.

8 2 ,

P a r t 1, 1976 p . 122-134 DBR P a p e r No. 706 Div'ision o f B u i l d i n g Research P r i c e 25 c e n t s

BUlLQaNG RESEARCH

-

UBRARY

w 7 m

OTTAWA NRCC 15732

(3)

Les a u t e u r s p r d s e n t e n t des v a l e u r s mesurdes d 1 6 t a n c h C i t d

B

l ' a i r

pour h u i t t o u r s de b u r e a u x (murs-rideaux e t v i tr a g e s s c e l l d s )

.

C e s v a l e u r s s o n t de beaucoup s u p 6 r i e u r e s a u x v a l e u r s mentionndes dans;

norme

i n d u s t r i e l l e . Une 6 q u a t i o n p e r m e r t a n t de c a l c u l e r l a v i t e s s e t o t a l e

de

p g n g t r a t i o n due

B

l ' a p p e l d ' a i r es t a p p l i q u d e a u x d d i f i c e s

B

l ' a i d e de v a l e u r s mesurdes de l l d t a n c h G i t d

B

l ' a i r des murs. Les a u t e u r s examinent..-Ggalemnt

l e

r3Le

que j o u e l a p d n 6 t r a t i o n de l ' a i r

, , ,*.

.

.-

.

dans

l a p e r t e g l o b a l e de c h a l e u r , y compris l a t r a n s m i s s i o n e t l a v e n t i l a t i o n m ~ c ~ d m d . ,

-

(4)

No. 2388

STUDIES ON EXTERIOR WALL AIR TIGHTNESS

AND AIR INFILTRATION OF TALL BUILDINGS

G E O R G E T. T A M U R A , P.E. C H l A Y. S H A W . P.E Member ASHRAE

One o f t h e f u n c t i o n s o f t h e e x t e r i o r w a l l s o f b u i l d i n g s i s t o s e p a r a t e o u t d o o r e l e m e n t s from t h e i n s i d e e n v i r o n m e n t . B u i l d i n g e n v e l o p e s a r e n o t n o r m a l l y c o m p l e t e l y a i r t i g h t and t h e y p e r m i t some flow o f a i r i n t o and o u t o f them t h r o u g h j o i n t s and c r a c k s i n t h e w a l l f a b r i c . T h i s l e a k a g e o f a i r c o n t r i b u t e s t o h e a t i n g and c o o l i n g l o a d s and must be t a k e n i n t o account i n any energy a n a l y s i s o f b u i l d i n g s and d e s i g n o f HVAC s y s t e m s . I n f i l t r a t i o n r a t e s depend p r i m a r i l y on t h e a i r l e a k a g e c h a r a c t e r i s t i c s o f e x t e r i o r w a l l s and t o a l e s s e r e x t e n t on t h o s e o f i n t e r i o r s e p a r a t i o n s s u c h a s f l o o r c o n s t r u c t i o n , i n t e r i o r p a r t i - t i o n s and v a r i o u s s e r v i c e s h a f t s . A r e l i a b l e p r e d i c t i o n o f t h e i n f i l t r a t i o n r a t e s o f m u l t i - s t o r e y b u i l d i n g s i s hampered, a t p r e s e n t , by t h e s c a r c i t y o f i n f o r m a t i o n on t h e a c t u a l a i r l e a k - a g ~ ~ c h a r a c t e r i s t i c s o f e x t e r i o r w a l l s .

The N a t i o n a l Research Council o f Canada h a s t a k e n measurements o f t h e a i r l e a k a g e c h a r a c t e r -

7

i s t i c s o f t h e e x t e r i o r w a l l s o f e i g h t m u l t i - s t o r e y o f f i c e b u i l d i n g s l o c a t e d i n Ottawa, Canada. Varying i n h e i g h t from 11 t o 2 2 s t o r i e s , w i t h c u r t a i n w a l l c o n s t r u c t i o n and f i x e d g l a z i n g , t h e y were b u i l t d u r i n g t h e s i x t i e s and e a r l y s e v e n t i e s . The r e s u l t s o f t h e measurements a r e r e p o r t e d i n t h i s p a p e r . A method f o r c a l c u l a t i n g i n f i l t r a t i o n r a t e s c a u s e d by s t a c k a c t i o n h a s been

,

d e v e l o p e d and i s a p p l i e d t o h e a t l o s s c a l c u l a t i o n s u s i n g t h e measured w a l l l e a k a g e v a l u e s .

/i

/

EXTERIOR WALL MEASUREMENTS

The r e s u l t s o f a i r l e a k a g e measurements o f t h e e x t e r i o r w a l l s o f f o u r m u l t i - s t o r e y b u i l d i n g s were r e p o r t e d by Shaw, S a n d e r and ~ a m u r a . l T h i s p r o j e c t was s u b s e q u e n t l y expanded t o i n c l u d e f o u r a d d i t i o n a l b u i l d i n g s , u s i n g t h e same t e s t method ( T a b l e 1 ) . B r i e f l y , i t i n v o l v e d p r e s s u r i z i n g a l l t y p i c a l f l o o r s p a c e s between t h e ground f l o o r and t h e t o p mechanical f l o o r , u s i n g 100% o u t - s i d e a i r f o r t h e c e n t r a l s u p p l y a i r s y s t e m s w i t h r e t u r n and e x h a u s t s y s t e m s s h u t down. Supply a i r r a t e s were v a r i e d and t h e c o n c o m i t a n t p r e s s u r e d i f f e r e n c e s a c r o s s t h e p r e s s u r i z e d e n c l o s u r e r e c o r d e d . To e n s u r e s t a b l e p r e s s u r e d i f f e r e n c e s a c r o s s t h e b u i l d i n g e n c l o s u r e , t h e t e s t s were c o n d u c t e d d u r i n g unoccupied p e r i o d s and when t h e r e was l i t t l e o r no wind.

Under s t e a d y - s t a t e c o n d i t i o n t h e r a t e o f s u p p l y o f o u t s i d e a i r e q u a l s t h e sum o f t h e a i r l e a k - age r a t e s t h r o u g h t h e e x t e r i o r w a l l s o f t y p i c a l f l o o r s , bottom and t o p s e p a r a t i o n s ( F i g . 1 ) . I t c a n be e x p r e s s e d a s f o l l o w s :

G.T. Tamura, D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l Research C o u n c i l o f Canada, Ottawa, Canada.

(5)

w h e r e -- Qs = t o t a l o u t d o o r a i r s u p p l y r a t e , cfm n = flow e x p o n e n t n C = flow c o e f f i c i e n t , c f m / ( s q f t ) ( i n . o f w a t e r ) AP = p r e s s u r e d i f f e r e n c e , P .

-

P i n . o f w a t e r 1 0 ' P . = i n s i d e p r e s s u r e , i n . o f w a t e r 1 Po = o u t s i d e p r e s s u r e , i n . o f w a t e r A = a r e a , s q f t N = t o t a l number o f f l o o r s w i t h t y p i c a l w a l l c o n s t r u c t i o n s u b s c r i p t s w = e x t e r i o r w a l l b = b o t t o m s e p a r a t i o n t = t o p s e p a r a t i o n

The v a l u e s o f Q APw, AP and AP c a n b e measured. By o b t a i n i n g s e v e r a l s e t s o f t h e s e v a l u e s

s' b t

i t i s p o s s i b l e t o d e t e r m i n e t h e v a l u e s o f flow c o e f f i c i e n t s Cw, C and C a n d t h e flow e x p o n e n t s

b t

n w ' nb a n d n t

'

d e f i n i n g a i r l e a k a g e c h a r a c t e r i s t i c s o f t h e t h r e e s e p a r a t i o n s . D e t a i l s o f t e s t m e t h o d s and d a t a a n a l y s i s a r e g i v e n i n Ref 1 .

TEST RESULTS

The v a l u e s o f flow c o e f f i c i e n t and e x p o n e n t , a s d e f i n e d i n Eq 1 f o r t h e e i g h t t e s t b u i l d i n g s , a r e g i v e n i n T a b l e 2. U s i n g t h e s e v a l u e s , t h e o v e r - a l l a i r l e a k a g e r a t e s i n t e r m s o f cfm p e r s q f t o f o u t s i d e w a l l a r e a v s p r e s s u r e d i f f e r e n c e were p l o t t e d on F i g . 2. These v a l u e s , which i n c l u d e t h e a i r l e a k a g e r a t e s t h r o u g h t h e t o p and b o t t o m a s w e l l a s t h r o u g h t h e e x t e r i o r w a l l s , a r e u s e f u l i n e s t i m a t i n g t h e s u p p l y a i r r a t e s r e q u i r e d f o r p r e s s u r i z i n g a b u i l d i n g . I t s h o u l d b e n o t e d t h a t l e a k a g e v a l u e s o f t h e t o p s e p a r a t i o n , g i v e n i n T a b l e 2, i n c l u d e l e a k a g e f l o w s t h r o u g h t h e c l o s e d e x h a u s t dampers a t t h e t o p o f t h e r e t u r n a n d e x h a u s t s y s t e m s ( s h u t down d u r i n g t h e t e s t s ) . The d e p e n d e n c e o f t h e e x t e r i o r w a l l a i r l e a k a g e r a t e s on p r e s s u r e d i f f e r e n c e i s shown i n F i g . 3 . T h e s e a i r l e a k a g e r a t e s v a r i e d from 0.12 t o 0 . 4 8 cfm p e r s q f t o f w a l l a r e a a t a p r e s s u r e d i f f e r e n c e o f 0 . 3 0 i n . o f w a t e r p r e s s u r e and c o n s t i t u t e d from 20 t o 55% o f t h e o v e r - a l l a i r l e a k - a g e r a t e s o f t h e t e s t b u i l d i n g s . These v a l u e s a r e w e l l above t h e s t a n d a r d s p e c i f i e d by t h e N a t i o n a l A s s o c i a t i o n o f A r c h i t e c t u r a l M e t a l M a n u f a c t u r e r s (NAAMM): 0 . 0 6 cfm p e r -sq f t o f w a l l a r e a a t t h e same p r e s s u r e d i f f e r e n c e . The e x t e r i o r f a c a d e s o f t h r e e o f t h e t e s t b u i l d i n g s , D, E a n d H , w e r e c o n s t r u c t e d o f m e t a l p a n e l s ; t h o s e o f t h e r e m a i n i n g t e s t b u i l d i n g s were o f p r e c a s t c o n c r e t e p a n e l s . A s t h e w a l l m a t e r i a l s a r e r e l a t i v e l y impermeable t o a i r , i t i s p r o b a b l e t h a t t h e a i r l e a k a g e r a t e s depended m a i n l y on t h e d e s i g n o f w a l l j o i n t s and t h e way t h e y w e r e p u t t o - g e t h e r . B u i l d i n g s F and H , which were c o n s t r u c t e d w i t h c l o s e s u p e r v i s i o n o f workmanship on w a l l j o i n t i n g t o minimize a i r i n f i l t r a t i o n , gave t h e l o w e s t l e a k a g e r a t e s ; and where j o i n t s e a l s a p p e a r e d i n a d e q u a t e , r e m e d i a l m e a s u r e s w e r e t a k e n .

CALCULATION OF INFILTRATION RATE CAUSED BY STACK ACTION

A i r i n f i l t r a t i o n i n a b u i l d i n g i s c a u s e d by b o t h wind and s t a c k a c t i o n . The c a l c u l a t i o n o f i n f i l - t r a t i o n r a t e s c a u s e d by wind i s q u i t e complex, f o r t h e wind p r e s s u r e d i s t r i b u t i o n o v e r t h e s u r - f a c e o f a b u i l d i n g depends on wind s p e e d and d i r e c t i o n , b u i l d i n g s h a p e a n d t h e n a t u r e o f t h e s u r r o u n d i n g t e r r a i n , i n c l u d i n g a d j a c e n t b u i l d i n g s . The l i t e r a t u r e on wind p r e s s u r e s on a c t u a l a n d model b u i l d i n g s i n b o u n d a r y - l a y e r wind t u n n e l s i s e x t e n s i v e . P r e s s u r e measurements h a v e b e e n made p r i m a r i l y t o d e v e l o p d a t a f o r s t r u c t u r a l l o a d c a l c u l a t i o n s and n o t f o r i n f i l t r a t i o n c a l c u l a - t i o n s , which r e q u i r e more d e t a i l e d d a t a on wind p r e s s u r e s b o t h h o r i z o n t a l l y and v e r t i c a l l y . I f w i n d p r e s s u r e d a t a f o r a b u i l d i n g a r e a v a i l a b l e , i n f i l t r a t i o n r a t e s c a u s e d by b o t h wind and s t a c k

(6)

a c t i o n can be c a l c u l a t e d w i t h t h e a i d o f a d i g i t a l computer and an a p p r o p r i a t e mathematical m ~ d e l . ~ ~ ~ , ~

The i n f i l t r a t i o n r a t e s caused by s t a c k a c t i o n a l o n e , which t e n d s t o govern t h e i n f i l t r a t i o n r a t e o f a m u l t i - s t o r e y b u i l d i n g d u r i n g c o l d w e a t h e r , can be c a l c u l a t e d r e l a t i v e l y e a s i l y . The d e r i v a t i o n o f t h e e q u a t i o n i s a s f o l l o w s : T h e o r e t i c a l p r e s s u r e d i f f e r e n c e a c r o s s e x t e r i o r w a l l s caused by s t a c k e f f e c t i s given by where y = r a t i o o f a c t u a l t o t h e o r e t i c a l p r e s s u r e d i f f e r e n c e . I f t h e e x t e r i o r wall i s much t i g h t e r t h a n t h e i n t e r i o r s e p a r a t i o n s , t h e v a l u e o f y w i l l

approach u n i t y ; i f i t i s much l o o s e r , t h e v a l u e o f y w i l l approach z e r o . The v a l u e s f o r y d e t e r - mined e x p e r i m e n t a l l y f o r a few m u l t i - s t o r e y o f f i c e b u i l d i n g s ranged from 0 . 6 3 t o 0.88.

where p = b a r o m e t r i c p r e s s u r e , l b / s q i n . h = v e r t i c a l d i s t a n c e from n e u t r a l zone, f t p o s i t i v e s i g n above n e u t r a l zone n e b a t i v e s i g n below n e u t r a l zone AT = t e m p e r a t u r e d i f f e r e n c e , T.

-

T F 1 0 ' T. = a b s o l u t e t e m p e r a t u r e i n s i d e , R 1 T = a b s o l u t e t e m p e r a t u r e o u t s i d e , R

.

0

The n e u t r a l zone i s t h e l e v e l a t which i n s i d e and o u t s i d e p r e s s u r e s a r e e q u a l . Eq 2 i n d i - c a t e s t h a t AP and AT have t h e same s i g n s f o r a l l l o c a t i o n s above t h e n e u t r a l zone and, c o n v e r s e l y , o p p o s i t e s i g n s below t h e n e u t r a l zone. Thus t h e r e w i l l be i n f i l t r a t i o n through t h e w a l l s of t h e

lower s t o r e y s and e x f i l t r a t i o n through t h e w a l l s of t h e upper s t o r e y s when t h e t e m p e r a t u r e i n - s i d e t h e b u i l d i n g i s h i g h e r t h a n t h e a i r t e m p e r a t u r e o u t s i d e . T h i s means t h a t a i r flows upward w i t h i n t h e b u i l d i n g d u r i n g t h e w i n t e r months. The flow p a t t e r n i s r e v e r s e d d u r i n g t h e summer months when t h e a i r t e m p e r a t u r e o u t s i d e i s h i g h e r t h a n t h a t i n s i d e .

A c t u a l p r e s s u r e d i f f e r e n c e depends on t h e r e s i s t a n c e s t o flow o f both t h e e x t e r i o r and i n t e - r i o r s e p a r a t i o n s . I t i s l e s s than t h e t h e o r e t i c a l p r e s s u r e d i f f e r e n c e i n d i c a t e d by E q 2

b e c a u s e o f t h e r e s i s t a n c e t o a i r movement a s s o c i a t e d w i t h i n t e r i o r components such a s p a r t i t i o n s , f l o o r c o n s t r u c t i o n s and w a l l s o f v e r t i c a l s h a f t s . The upward flow caused by s t a c k a c t i o n d u r i n g c o l d weather t a k e s p l a c e from f l o o r t o f l o o r through openings i n t h e f l o o r c o n s t r u c t i o n and through v e r t i c a l s h a f t s . I t can be e x p e c t e d t h a t most upward flow w i l l o c c u r i n t h e v e r t i c a l s h a f t s because t h e i r r e s i s t a n c e ( f r i c t i o n l o s s e s ) w i l l be c o n s i d e r a b l y l e s s t h a n t h a t a s s o c i a t e d w i t h f l o o r s , which a c t a s r e s i s t a n c e s i n s e r i e s . For t h i s d i s c u s s i o n , t h e r e f o r e , t h e f l o o r con- s t r u c t i o n i s c o n s i d e r e d t o be a i r t i g h t .

With t h i s assumption, t h e t h e o r e t i c a l p r e s s u r e d i f f e r e n c e given by Eq 2 i s t h a t between o u t - s i d e t h e b u i l d i n g and i n s i d e a s h a f t a t t h e same l e v e l . I t i s d i s t r i b u t e d a c r o s s t h e e x t e r i o r w a l l s , i n t e r i o r p a r t i t i o n s and t h e w a l l s o f v e r t i c a l s h a f t s . The manner o f d i s t r i b u t i o n depends upon t h e r e s i s t a n c e o f each o f t h e s e s e p a r a t i o n s i n r e l a t i o n t o t h a t o f t h e combined r e s i s t a n c e s a t t h e same l e v e l . I f t h e r e s i s t a n c e s o f t h e e x t e r i o r and i n t e r i o r s e p a r a t i o n s a r e uniform from f l o o r t o f l o o r , t h e r a t i o o f a c t u a l ( e x t e r i o r w a l l s ) t o t h e o r e t i c a l p r e s s u r e d i f f e r e n c e s w i l l be c o n s t a n t f o r t h e whole h e i g h t o f a b u i l d i n g .

Eq 2 can be modified t o t a k e t h i s i n t o account AP = 0 . 5 2 y p h

(7)

i

I

The r a t e of a i r f l o w t h r o u g h an i n f i n i t e s i m a l a r e a o f t h e e x t e r i o r w a l l i s g i v e n by n d\ = CwdA (AP) W where dQw = a i r l e a k a g e r a t e t h r o u g h an a r e a dA o f t h e e x t e r i o r w a l l , cfm W n Cw = flow c o e f f i c i e n t , cfm/(sq f t ) ( i n . o f w a t e r ) - W n = f l o w exponent W Combining Eq 3 and 4 g i v e s dQw = Cw [0.52 y p h [T:T)

-

lnW

S dh where S = p e r i m e t e r o f t h e b u i l d i n g , f t . For a b u i l d i n g w i t h a c o n s t a n t c r o s s - s e c t i o n a l a r e a and a u n i f o r m d i s t r i b u t i o n o f l e a k a g e o p e n i n g s w i t h h e i g h t , an e q u a t i o n f o r t h e t o t a l a i r i n f i l t r a t i o n r a t e can b e o b t a i n e d by i n t e g r a - l

t i n g Eq 5 from t h e ground l e v e l t o t h e n e u t r a l zone. The n e u t r a l zone l e v e l can b e e x p r e s s e d a s 6H where 6 i s t h e r a t i o o f t h e h e i g h t o f t h e n e u t r a l zone and t h e b u i l d i n g h e i g h t H i n f t .

Thus, n + 1 W Qw = CwS [0.52 y p

-

"w (6H) [T::,I

1

-- n + 1 ( 6 ) W where Qw i s t h e t o t a l r a t e o f i n f i l t r a t i o n f o r t h e whole b u i l d i n g . A s t h i s e q u a t i o n assumes a w a l l w i t h a u n i f o r m a i r l e a k a g e c h a r a c t e r i s t i c , a s e p a r a t e i n f i l t r a t i o n h e a t l o s s c a l c u l a t i o n u s i n g Eq 3 and 4 s h o u l d be made f o r t h e e x t e r i o r w a l l s o f t h e ground f l o o r s i n c e t h e i r a i r l e a k a g e v a l u e s t e n d t o be h i g h e r t h a n t h o s e o f o t h e r f l o o r s . INFILTRATION HEAT LOSSES CAUSED BY STACK ACTION

From F i g . 3 , a i r l e a k a g e v a l u e s f o r a t i g h t , a v e r a g e and l o o s e w a l l were a s s i g n e d a r b i t r a r i l y f o r h e a t l o s s c a l c u l a t i o n . A flow e x p o n e n t , n of 0 . 6 5 was assumed f o r t h e s e w a l l s ( i t v a r i e d from

W '

0 . 5 0 t o 0 . 7 5 f o r t h e t e s t b u i l d i n g s ) . The f l o w c o e f f i c i e n t s were assumed a s f o l l o w s :

A i r Leakage R a t e , Flow C o e f f i c i e n t , Cw Wall cfm/sq f t T i g h t n e s s a t 0 . 3 i n . w a t e r cfm/ ( s q f t ) ( i n . w a t e r ) 0.65 NAAMM 0.06 0 . 1 3 t i g h t 0 . 1 0 0 . 2 2 a v e r a g e 0 . 3 0 0 . 6 6 l o o s e 0.60 1 . 3 0 These v a l u e s

w i l l

p r o b a b l y a p p l y t o e x t e r i o r w a l l s o f c u r t a i n w a l l c o n s t r u c t i o n w i t h f i x e d g l a z i n g b u t n o t t o e x t e r i o r w a l l s o f masonry c o n s t r u c t i o n . Measurements on one b u i l d i n g 8 o f t h e l a t t e r c o n s t r u c t i o n i n d i c a t e d t h a t i t s l e a k a g e r a t e s a r e c o n s i d e r a b l y h i g h e r t h a n t h o s e shown on F i g . 3 . The e q u a t i o n f o r i n f i l t r a t i o n r a t e , Eq 6 , c a n be s i m p l i f i e d f o r p r a c t i c a l p u r p o s e s b y assuming t h e f o l l o w i n g : y = 0 . 8 0 , p = 14.7 p s i a , T. = 530R, n = 0 . 6 5 , 6 = 0 . 5 0 . S u b s t i t u t i n g 1 W t h e s e v a l u e s i n Eq 6 Qw = 0.00974 C w S - (H) (7)

(8)

The s e n s i b l e h e a t l o a d due t o i n f i l t r a t i o n i s given by Y = 1 . 0 8 QwAT

where

Y = s e n s i b l e h e a t l o s s , Btu/hr S u b s t i t u t i n g Eq 7 i n Eq 8 g i v e s

The l a t e n t h e a t l o s s when i n d o o r humidity r a t i o i s t o be maintained a t a c o n s t a n t l e v e l i s given by

where

i

Z = h e a t r e q u i r e d t o i n c r e a s e m o i s t u r e c o n t e n t o f i n f i l t r a t i o n a i r from W t o W i , Btu/hr

0

W. = humidity r a t i o o f i n d o o r a i r , pounds o f w a t e r p e r pound o f d r y a i r 1

W = humidity r a t i o o f o u t d o o r a i r , pounds of w a t e r p e r pound o f d r y a i r

0

S u b s t i t u t i n g Eq 7 i n Eq 10 g i v e s

I n f i l t r a t i o n r a t e s were c a l c u l a t e d f o r t h e f o u r a i r leakage v a l u e s and v a r i o u s b u i l d i n g h e i g h t s u s i n g Eq 7, e x p r e s s e d i n a i r changes p e r hour and assuming a f l o o r p l a n 150 f t s q . A

t e m p e r a t u r e d i f f e r e n c e o f 70 F was assumed between i n d o o r and o u t d o o r a i r . The r e s u l t s of t h e s e c a l c u l a t i o n s ( F i g . 4) i n d i c a t e d t h a t a i r change r a t e s i n c r e a s e with b u i l d i n g h e i g h t a s w e l l a s w i t h i n c r e a s i n g w a l l leakage v a l u e s .

These v a l u e s may be compared w i t h t h e o u t d o o r a i r requirement f o r v e n t i l a t i o n . ASHRAE STANDARD 62-73 g i v e s t h e minim? r e q u i r e d v e n t i l a t i o n a i r w i t h o u t temperirig o r f i l t e r i n g a s 15 cfm p e r person f o r g e n e r a l o f f i c e space (0.15 cfm p e r sq f t , based on 10 p e r s o n s p e r 1000 s q f t o f f l o o r a r e a ) . This r e p r e s e n t s 0.9 a i r change p e r hour. As t h i s value i s much h i g h e r t h a n t h e v a l u e s shown on Fig. 4 , i t a p p e a r s t h a t a i r i n f i l t r a t i o n by i t s e l f w i l l n o t u s u a l l y s a t i s f y t h e v e n t i l a t i o n r e q u i r e m e n t .

The s e n s i b l e and l a t e n t i n f i l t r a t i o n h e a t l o s s e s were c a l c u l a t e d u s i n g Eq 9 and 11, assum- i n g an i n d o o r - o u t d o o r t e m p e r a t u r e d i f f e r e n c e o f 70 F, a humidity r a t i o f o r i n d o o r s o f 0.0047 l b o f w a t e r p e r l b o f d r y a i r (70 F, 30% RH) and one f o r o u t d o o r s o f 0.0006 l b o f w a t e r p e r Ib o f dry a i r (0 F, 80% RH). The r e s u l t s o f t h e c a l c u l a t i o n given i n Btu p e r hour p e r s q u a r e f o o t of w a l l a r e a a r e shown i n F i g . 5 f o r v a r i o u s b u i l d i n g h e i g h t s . For t h i s example, t h e l a t e n t h e a t l o s s e s a r e 28% of t h e s e n s i b l e h e a t l o s s e s .

In F i g . 6 , t h e i n f i l t r a t i o n h e a t l o s s e s ( s e n s i b l e p l u s l a t e n t ) a r e compared w i t h t h e t o t a l h e a t l o s s e s through t h e e x t e r i o r w a l l s ( i n f i l t r a t i o n p l u s t r a n s m i s s i o n ) . The o v e r - a l l U v a l u e was assumed t o be 0.30, w i t h v a l u e s o f 0.15 f o r t h e i n s u l a t e d w a l l s and 0.55 f o r d o u b l e - g l a z e d win- dows, which c o n s t i t u t e d 40% o f t h e t o t a l w a l l a r e a . Transmission h e a t l o s s was 21.0 B t u / ( h r )

( s q f t ) a t a t e m p e r a t u r e d i f f e r e n c e o f 70 F. For a b u i l d i n g w i t h an average w a l l l e a k a g e v a l u e , t h e p e r c e n t a g e o f t o t a l h e a t l o s s c o n t r i b u t e d by a i r i n f i l t r a t i o n v a r i e d from 22 t o 46% f o r b u i l d i n g h e i g h t s o f 200 t o 1000 f t , r e s p e c t i v e l y ; t h e s e v a l u e s a r e reduced t o 9 t o 22% f o r b u i l d i n g s w i t h r e l a t i v e l y a i r - t i g h t w a l l s . As i n f i l t r a t i o n h e a t l o s s e s i n c r e a s e w i t h b u i l d i n g h e i g h t , t h e s i g n i f i c a n c e o f a i r t i g h t n e s s f o r w a l l s o f t a l l b u i l d i n g s i s a p p a r e n t .

The v e n t i l a t i o n requirement f o r g e n e r a l o f f i c e space o f 15 cfm of o u t d o o r a i r p e r person demands an o u t d o o r a i r supply o f 0.56 cfm p e r s q f t o f o u t s i d e w a l l a r e a , a s s w n i n g a f l o o r dimension o f 150 by 150 f t and f l o o r h e i g h t o f 10 f t . Using Eq 8 and 10, t h e h e a t l o s s

(9)

and humidity ratio, indoors, of 0s.0047 lb of water per lb of dry air and, outdoors, of 0.0006 lb of water per lb of dry air. This heating load imposed by ventilation air has been compared with

those of transmission and jnfiltration through a wall of average air tightness in Fig. 7. It I

may be seen that the ventilation heating load is the largest component of the total heating load I

(infiltration plus transmission plus ventilation). For a 200-ft high building it constitutes I I

67% of the total heating load, whereas infiltration heating load is only 7%. ASHRAE Standard

62-73 permits reduction in the ventilation air to 5 cfm per person (0.05 cfm per sq ft of floor

I

area) if the air is tempered and filtered. This reduction in ventilation air results in heat

losses due to ventilation and infiltration of 40 andl2% of the total heat loss, respectively.

1

During unoccupied periods with no ventilation air, the infiltration heat loss is 22% of the total

for walls of average air tightness and 9% for tight walls.

i

These calculations recognized stack action alone at a given inside-outside temperature dif- I

ference. It is probable that infiltration rates of tall buildings depend primarily on stack action during cold weather and average wind velocity. The infiltration rates calculated in the previous examples would have been somewhat higher if wind action had also been considered. A complete analysis would involve integration of heat losses over the seasons, taking into account

i

both wind and stack action.

HEAT LOSSES CAUSED BY BUILDING PRESSURIZATION

. . . -

HVAC systems are sometimes designed and operated to minimize air infiltration, particularly at the entrance level, by means of building pressurization. Its effect is to increase the inside pressures and thereby lower the level of the neutral zone. If the neutral zone is lowered to ground level, air infiltration is eliminated but air exfiltration is increased. The required rate of supply of outside air to achieve this can be calculated from Eq 6 ; for this, the value of 6, the ratio of the neutral zone height to building height, is taken as unigy. The ratio of total exfiltration rate with pressurization

(6

= 1.0) to infiltration rate without pressurization

(6

= 0.5) is about 3.2; i.e., the outside supply air rate required to pressurize a building fully is 3.2 times the infiltration rate. This value would be greater if the exfiltration rate through

the top of the building were also considered. Reducing infiltration rate by pressurization in- I

curs a high heating cost penalty. It is more economical to pressurize the ground floor only, provided the ground floor enclosure is reasonably air tight.

CONCLUSIONS

1. The air leakage rates of the exterior walls of eight test buildings varied considerably,

with values of 0.12 to 0.48 cfm per sq ft of wall area at a pressure difference of 0.30 in. of water. They were much above that specified by an industry standard of 0.06 cfm per sq ft of wall area at the same pressure difference.

2. For a wall with average air tightness and U value of 0.30 Btu/(hr) (sq ft)(F),the percentage of total heat loss through the walls contributed by infiltration during cold weather varied from 22 to 46% for building heights of 200 to 1000 ft, respectively; these values are reduced to 9 to 22% for buildings with relatively air-tight walls. They indicate the necessity of assuring re- latively air-tight walls for tall buildings.

3. Air infiltration alone cannot be relied upon to provide an adequate amount of outdoor air

for ventilation of buildings with curtain wall construction and fixed glazing. The heating laad caused by ventilation air was found to be a major component of the total heating load.

4. Reducing air infiltration by mechanically pressurizing a building can mean a high heating

cost penalty.

REFERENCES

1 C. y. Shaw, D. M. sander, G. T. Tamura, "Air Leakage Measurements of the Exterior

Tall Buildings," ASHRAE TRANSACTIONS, ~ 0 1 79,part 2, 1973,

PP-

40-48.

2 National Association of Architectural Metal Manufacturers, Metal Curtain a

Specifications, pp. 4-9, December 1962.

3 p . J. Jackman, "A Study of the Natural Ventilation of Tall Office Buildings," of the Institute of Heating and Ventilating Engineers, vol 38, August 1970,

PP-

103-118-

4 R.E. Barrett and D.W. Locklin, llComputer Analysis of Stack Effect in High-Rise ASHRAE TRANSACTIONS, vol 74, part 11, 1968, pp. 155-169.

(10)

D . M . S a n d e r and G.T. Tamura, " S i m u l a t i o n o f A i r Movement i n M u l t i - S t o r e y B u i l d i n g s , " p r e s e n t e d a t Second Symposium on t h e Use o f Computers f o r Environmental E n g i n e e r i n g R e l a t e d t o B u i l d i n g s , P a r i s , 13-15 J u n e 1974.

ASHRAE HANDBOOK OF FUNDAMENTALS, C h a p t e r 1 9 , " I n f i l t r a t i o n and N a t u r a l V e n t i l a t i o n , " 1972. G.T. Tamura and A . G . Wilson, " P r e s s u r e D i f f e r e n c e s Caused by Chimney E f f e c t i n T h r e e High B u i l d i n g s , " ASHRAE TRANSACTIONS, v o l 7 3 , p a r t 11, 1967, pp. 11. 1.1 - 11. 1 . 1 0 .

G.T. Tamura and A . G . Wilson, " P r e s s u r e D i f f e r e n c e s f o r a N i n e - S t o r e y B u i l d i n g a s a R e s u l t o f Chimney E f f e c t and V e n t i l a t i o n System O p e r a t i o n , " ASHRAE TRANSACTIONS, v o l 72, p a r t I , 1 9 6 6 , p p . 180-189.

9 ASHRAE HANDBOOK OF FUNDAMENTALS, C h a p t e r 2 1, "Heating Load

,"

1972.

ASHRAE STANDARD 62-73, " S t a n d a r d s f o r N a t u r a l and Mechanical V e n t i l a t i o n , " 1973. ACKNOWLEDGEMENTS

T h e a u t h o r s a r e i n d e b t e d t o t h e Department o f P u b l i c Works, C a r l e t o n U n i v e r s i t y , and Campeau C o r p o r a t i o n f o r c o o p e r a t i o n i n making t h i s s t u d y p o s s i b l e ; a l s o t o t h e o p e r a t i n g p e r s o n n e l o f t h e t e s t b u i l d i n g s f o r t h e i r a s s i s t a n c e d u r i n g t h e t e s t s . The a u t h o r s wish t o acknowledge t h e a s s i s t a n c e of R . G . Evans i n t h e f i e l d t e s t s and i n t h e p r o c e s s i n g o f t e s t r e s u l t s . T h i s p a p e r

i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g R e s e a r c h , N a t i o n a l Research C o u n c i l o f Canada, a n d i s p u b l i s h e d w i t h t h e a p p r o v a l o f t h e D i r e c t o r o f t h e D i v i s i o n .

(11)

G o c d

4 a 3

z

g

.5

o\o

(12)

T e s t Building

T A B L E 2

Flow C o e f f i c i e n t s and Exponents o f T e s t Buildings

O u t s i d e Wall Cw n W Bottom S e p a r a t i o n Cb n b Top S e p a r a t i o n C t n t n Cw i n cfm/(sq f t o f w a l l a r e a ) ( i n . o f water) w Cb i n cfm/(sq f t o f f l o o r a r e a ) ( i n . o f w a t e r l n b C t i n cfm/(sq f t o f f l o o r a r e a ) ( i n . o f water)"t S U P P L Y A I R F A N M E C H A N I C A L F L O O R E X T E R I O R W A L L S

-i

T Y P I C A L F L O O R S B O T T O M S E P A R A T I O N Q S = O U T S I D E S U P P L Y A I R Q W = L E A K A G E F L O W T H R O U G H W A L L S Q g = L E A K A G E F L O W T H R O U G H B O T T O M S E P A R A T I O N Q T = L E A K A G E F L O W T H R O U G H T O P S E P A R A T I O N F i g . 1 F l o w b a l a n c e u n d e r w a l l l e a k a g e t e s t s

(13)

T E S T B U l l D l N G

/ *

F i g . 3 A i r l e a k a g e r a t e s o f e x t e r i o r w a l l s F i g . 2 O v e r - a l l a i r l e a k a g e r a t e s of p r e s s u r i z e d e n c l o s u r e P R E S S U R E D I F F E R E N C E A C R O S S E X T E R I O R W A L L , I N C H O F W A T E R TEST B U I L D I N G G 0 D C E F H 0 N A A M M

I

P R E S S U R E D I F F E R E N C E A C R O S S E X T E R I O R W A L L , I N C H O F W A T E R

(14)

W A L L T I G H T N E S S

F L O O R D I M E N S I O N

-

I S O F T BY 1 5 0 F T I N S I D E

-

7 0 F

O U T S I D E

-

OF, N O W l N D

. 5 0 N O T E : CURVES BASED O N

SEE TEXT FOR BA A S S U M P T I O N S . 1 0 . 3 0 . 2 0 . 1 0 U 0 200 4 0 0 6 0 0 BOO 1 0 0 0 B U I L D I N G H E I G H T , FT F i g . 5 S e n s i b l e a n c a u s e d b y i d l a n f i l e w 1 4 t e n t h e a t l o s s e s t r a t i o n ZJ ,.. m F i g . 4 I n f i l t r a t i o n r a t e vs b u i l d i n g h e i g h t

r

W A L L T I G H T N E S S L O O S E

-

S E N S I B L E H E A T L O S S

---

L A T E N T H E A T L O S S + I N S I D E

-

7 0 F . 3 0 % R . H . O U T S I D E

-

OF, 8 0 % R . H .

-

N O W l N D N O T E : C U R V E S BASED O N

-

E Q 9 A N D 1 1

SEE TEXT FOR B A S I C A S S U M P T I O N S

-

-

-

. A V E R A G E L O O S E N A A M M

-

0 2 0 0 4 0 0 6 0 0 B O O 1 0 0 0 B U I L D I N G H E I G H T , FT

(15)

I N S I D E

-

7 0 F . 30"o R . H . O U T S I D E - OF, 8 0 % R . H . . N O W I N D 1 0 0 U ( W A L L ) = 0 . 3 0 B T U / ( H R ) ( S Q F T ) ( F ) + I N F I L T R A T I O N HEAT LOSS

c -

(SENSIBLE + L A T E N T ) u Z 0 0 N O T E CURVES BASED O N +, 8 0 2" E Q S E E TEXT FOR B A S I C 9 A N D I 1 W A L L T I G H T N E S S

z z

A S S U M P T I O N S : z - a .= 60 LA

-

F i g . 6 C o m p a r i s o n o f i n f i l t r a t i o n h e a t l o s s w i t h t r a n s m i s s i o n h e a t l o s s 0 200 4 0 0 6 0 0 BOO 1 0 0 0 B U I L D I N G H E I G H T , FT I N S I D E = 7 0 F , 30°0 R . H . < 1 0 0 - L u O U T S I D E = OF, 8046 R . H

. .

N O W I N D w Q 2 _I Q 3 8 0

-

I N F I L T R A T I O N H E A T L O S S LL

/

W A L L S O F A V E R A G E A I R T I G H T N E S S , 0 + u. T R A N S M I S S I O N H E A T L O S S U = 0 . 3 0 B T U / ( H R ) ( S Q F T ) ( F )

51

,o

-

w W c l I F i g . 7 C o m p a r i s o n o f v e n t i l a t i o n h e a t l o s s w i t h i n f i l t r a t i o n a n d \ I V E N T I L A T I O N H E A T L O S S t r a n s m i s s i o n h e a t l o s s e s c 4 0 - 1 5 C F M PER P E R S O N m ( 0 . 1 5 C F M PER S Q FT O F F L O O R A R E A ) v, m

9

C 2 0

-

Q ", 1 0

I

1

1 1 ' 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 B U I L D I N G H E I G H T , FT

(16)

DISCUSSION

DAVID T. HARRJE, S e n i o r R e s e a r c h E n g i n e e r a n d L e c t u r e r , P r i n c e t o n Univ.,

P r i n c e t o n , N J : Has t h e r e b e e n any a t t e m p t t o u s e t h e c e n t r a l s h a f t w i t h b l o w i n g downward a t t h e n e u t r a l l i n e t o a t t e m p t t o b e n e f i t b o t h t h e u p p e r a n d l o w e r p o r - t i o n s o f t h e b u i l d i n g t h r o u g h r e d u c e d a i r i n f i l t r a t i o n ?

TAMURA: Computer s t u d i e s on t h i s a p p r o a c h t o r e d u c e i n f i l t r a t i o n a r e g i v e n i n a p a p e r e n t i t l e d " B u i l d i n g P r e s s u r e s Caused by Chimney A c t i o n a n d M e c h a n i c a l Ven- t i l a t i o n " by A.G. W i l s o n a n d m y s e l f (ASHRAE TRANSACTIONS, v o l . 7 3 , P a r t II,, 1 9 6 7 ) . The r e d u c t i o n o f p r e s s u r e d i f f e r e n c e s a c r o s s t h e e x t e r i o r w a l l s would depend on t h e r e c i r c i i l a t i o n r a t e a n d t h e i n t e r n a l r e s i s t e n c e o f a b u i l d i n g ; i n s i d e p r e s s u r e s o f a b u i l d i n g w i t h a low i n t e r n a l r e s i s t a n c e w i l l n o t be a l t e r e d s i g n i f i c a n t l y t o a f f e c t t h e p r e s s u r e d i f f e r e n c e s a c r o s s t h e e x t e r i o r w a l l s . I t s h o u l d b e r e c o g n i z e d t h a t i f b o t h i n f i l t r a t i o n and e x f i l t r a t i o n a r e e l i m - i n a t e d by t h i s means, t h e n t h e p r e s s u r e d i f f e r e n c e s c a u s e d by s t a c k a c t i o n would b e t r a n s f e r r e d f r o m t h e e x t e r i o r w a l l s t o t h e w a l l s o f v e r t i c a l s h a f t s which c a n g i v e r i s e t o d i f f i c u l t i e s i n o p e r a t i n g e l e v a t o r and s t a i r d o o r s . I t i s p r o b a b l e t h a t e f f e c t i v e o p e r a t i o n o f t h i s s y s t e m w i t h c h a n g i n g c o n d i t i o n o f wind a n d s t a c k a c t i o n would b e d i f f i c u l t . The p r e f e r r e d a p p r o a c h t o m i n i m i z e i n f i l t r a t i o n i s by c o n t r u c t i n g o u t s i d e w a l l s t h a t a r e r e l a t i v e l y a i r t i g h t r a t h e r t h a n by u s i n g v e n t i l a t i o n f a n s a s s u g g e s t e d o r f o r b u i l d i n g p r e s s u r i z a t i o n .

RONALD N . J E N N E R , NASA, Hampton, VA: I n r e g a r d s t o i n f i l t r a t i o n d u e t o wind on l o w - r i s e b u i l d i n g , w h a t d o e s y o u r s t u d y show?

TAMURA: I t was s t a t e d t h a t i n f i l t r a t i o n r a t e s o f h i g h , r i s e b u i l d i n g s depend p r i m a r i l y o n s t a c k a c t i o n d u r i n g c o l d w e a t h e r a n d a v e r a g e wind v e l o c i t y . I t i s e x p e c t e d t h a t t h e e f f e c t o f wind a c t i o n compared t o t h a t o f s t a c k a c t i o n would b e g r e a t e r f o r l o w - r i s e b u i l d i n g s t h a n f o r h i g h - r i s e b u i l d i n g s ; t h a t d u e t o s t a c k a c t i o n , however, it s h o u l d n o t b e n e g l e c t e d a s f i e l d s t u d i e s i n d i c a t e t h a t e v e n f o r h o u s e s i t s e f f e c t i s s i g n i f i c a n t .

(17)

This publication is being distributed by the Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada. I t should not b e reproduced in whole o r i n p a r t without p e r m i s s i o n of the original publisher. The Di- vision would be glad to b e of a s s i s t a n c e in obtaining such permission.

Publications of the Division m a y be obtained by m a i l - ing the a p p r o p r i a t e r e m i t t a n c e ( a Bank, Express, o r P o s t Office Money O r d e r , o r a cheque, m a d e payable t o the R e c e i v e r General of Canada, c r e d i t NRC) to the National R e s e a r c h Council of Canada, Ottawa. K1A OR6. Stamps a r e not acceptable.

A l i s t of a l l publications of the Division i s available and m a y be obtained f r o m the Publications Section, Division of Building Research. National R e s e a r c h Council of Canada, Ottawa. KIA OR6.

R e p r i n t e d f r o m ASHRAE TRANSACTIONS, V o l u m e 8 2 , P a r t 1 , 1 9 7 6 , p a g e s 1 2 2 - 1 3 4 , b y p e r m i s s i o n of t h e A m e r i c a n S o c i e t y o f H e a t i n g , R e f r i g e r a t i n g a n d A i r - C o n d i t i o n i n g E n g i n e e r s , I n c . @ C o p y r i g h t 1 9 7 7 .

Références

Documents relatifs

Studies have shown that daylight-linked lighting control systems such as automatic on/off and continuous dimming have the potential to reduce the electrical energy consumption

We have investigated the full three-dimensional momentum correlation between the electrons emitted from strong field double ionization of neon when the recollision energy of the

9 Measured (symbols)and calculated (lines)x-ray brightness profiles using the charge state density profiles of Fig.10a are shown in the top frame. The solid lines are from

BoardLab is a smart, context-aware oscilloscope probe that can be used to dynami- cally search for just-in-time information on electronic circuit board design data and

Cette tendance, combinée à l'avènement de nouveaux matériaux de construction, pose un défi pour le maintien d'une bonne qualité de l'air intérieur (QAI), laquelle dépend en effet

Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum states J ⬃ 420..

The mean peak forces in both horizontal and vertical directions were measured and found to be almost independent of Froude Number below 0.02, but increased significantly at