• Aucun résultat trouvé

The interaction between arbuscular mycorrhizal fungi and Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets.

N/A
N/A
Protected

Academic year: 2021

Partager "The interaction between arbuscular mycorrhizal fungi and Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets."

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

The

interaction

between

arbuscular

mycorrhizal

fungi

and

Piriformospora

indica

improves

the

growth

and

nutrient

uptake

in

micropropagation-derived

pineapple

plantlets

B.C.

Moreira

a

,

F.C.

Mendes

a

,

I.R.

Mendes

a

,

T.A.

Paula

a

,

P.

Prates

Junior

a

,

L.C.C.

Salomão

b

,

S.L.

Stürmer

c

,

W.C.

Otoni

d

,

A.

Guarc¸

oni

M.

e

,

M.C.M.

Kasuya

a,∗

aLaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO,DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil bDepartamentodeFitotecnia,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil

cDepartamentodeCiênciasNaturais,Fundac¸ãoUniversidadeRegionaldeBlumenau,89012-900Blumenau,SC,Brazil

dLaboratóriodeCulturadeTecidos(LCTII)/BIOAGRO,DepartamentodeBiologiaVegetal,UniversidadeFederaldeVic¸osa,36570-900,Vic¸osa,MG,Brazil eInstitutoCapixabadePesquisa,AssistênciaTécnicaeExtensãoRural,29375-000,VendaNovadoImigrante,ES,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14April2015 Receivedinrevisedform 22September2015 Accepted23September2015 Availableonline9October2015 Keywords: Ananascomosus AMF P.indica Phosphoruslevels

a

b

s

t

r

a

c

t

Arbuscularmycorrhizalfungi(AMF)andPiriformosporaindicaarewellknownforpromotinggrowth, development,andnutrientuptakeandforimprovingplantphotosynthesis.Thesefungirepresent promis-ingtoolssupportingmicropropagatedplantsduringtheacclimatizationstage,andtheirusecanreduce theapplicationofphosphatefertilizers,providingeconomicandenvironmentalbenefits.Therefore,this studyaimedtoevaluatethebenefitsofinoculationwithAMFandP.indicaforthegrowthofplantletsof theImperialcultivarofpineappleinoculatedduringtheacclimatizationstageandgrownwithdifferent levelsofphosphorus(P).TheexperimentconsistedofsixPlevels(0,20,40,80,160and320mgkg−1soil) withinoculationofClaroideoglomusetunicatum,Dentiscutataheterogama,Rhizophagusclarus,P.indica,a mixtureofallfungi(Mix),orcontrol(noinoculation).Theparametersvegetativegrowth,thenutrient contentsintheplants,photosyntheticefficiency,andthecomponentsofdependenceandcolonization byfungiwereassessed.Thefungalinoculationwaseffectiveforplantletgrowth,especiallyuptoaPdose of40mgkg−1,increasingbothplantbiomassandtheabsorptionofallevaluatednutrients.WithPat 80mgkg−1,onlythetreatmentswithC.etunicatumandMixproducedplantletsofbetterqualitythanthe non-inoculatedcontrol.ThecolonizationbyAMFandP.indicawasnotaffectedbytheadditionofPtothe soil,althoughfungaldependencedecreasedundertheseconditionsandcouldbeconsideredmoderate evenat40mgkg−1forplantsinoculatedwithC.etunicatum,R.clarus,P.indicaorMix.Theinoculation ofpineappleplantletsisapromisingmethodthatcanbeemployedtoproducehigh-qualitypropagative materialforthemarket.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Pineapple(Ananascomosus(L.)Merrill;Bromeliaceae)isnative

to the southern and southeastern regions of Brazil, Argentina

and Uruguay(Melo etal., 2006).It is a cropof great economic

importancein manytropical countries(Beand Debergh, 2006),

andapproximately23.34milliontonsofthisfruitwereproduced

worldwidein2012(FAOSTAT,2014).Brazilianpineapple

produc-∗ Correspondingauthorat:LaboratóriodeAssociac¸õesMicorrízicas/BIOAGRO, DepartamentodeMicrobiologia,UniversidadeFederaldeVic¸osa,Campus Univer-sitário,AvenidaPeterHenryRolfss/n,UniversidadeFederaldeVic¸osa,36570-900, Vic¸osa,MG,Brazil.Fax:+553138992573.

E-mailaddresses:mkasuya@ufv.br,catarinakasuya@gmail.com

(M.C.M.Kasuya).

tioncorrespondsto10.6%oftotalworldwideproduction,occupying

the equivalentof 6% of thetotal areaof pineapple plantations

worldwide. Brazil ranks third worldwide in the production of

pineapplefruit,behindThailandandCostaRica(FAOSTAT,2014).

Pineapple is vegetatively propagated,and thequality of the

propagationmaterialsignificantinfluencesplanthealth,

develop-mentandyield(BeandDebergh,2006;Kapooretal.,2008;Souza

et al., 2013).A wide variety of plant material can beused for

propagationofpineapple,includingfruitcrown,lateralbranches

(suckersandslips),andseedlingsgrownfromstemsectionsorvia

micropropagation(Hepton,2003).Researchhasbeenconducted

to enhance themultiplication of pineappleby means of tissue

culturetechniques(Smithetal.,2003;Souzaetal.,2013).

Pineap-ple explantscan be multiplied in vitro onsolid and liquid MS

medium(MurashigeandSkoog,1962)(BeandDebergh,2006;Silva

http://dx.doi.org/10.1016/j.scienta.2015.09.032

(2)

etal.,2007).Thismediumcanbesupplementedwithsucroseand

cytokininsorauxins(dependingonthepurpose)asa meansto

initiateculture,proliferationorgrowthoftheshoots,orevenas

a meansof rooting(Smithet al., 2003;Be and Debergh, 2006;

Silvaetal.,2007).Toachievelarge-scaleproductionofpineapple

plantletsatareducedcost,Escalonaetal.(1999)proposed

micro-propagationusingtemporaryimmersionsystemsinabioreactor,

andthisapproachhasbeenwidelyusedsince.

Micropropagatedplantsare moreuniformand showgreater

synchronyoffloweringandfruitinginthefield(Singhetal.,2012).

Micropropagationalsofacilitatestheintroductionofplantletsin

newareas(Escalonaetal.,1999),theproductionofhigh-quality

materialinanyseason(Chandraetal.,2010),large-scaleproduction

andpathogen-freecrops(Routetal.,2006;Souzaetal.,2013).This

techniqueisusedtoobtainalargenumberofplantsthatare

genet-icallyidenticaltotheparentplant.Forpineapple,thistechnique

hasseveraladvantagesoverconventionalmethodsofpropagation,

includingarapidandefficientincreaseintheproductionofplantsof

selectedvarieties(González-Olmedoetal.,2005;Farahani,2013).

Althoughmicropropagationisefficient,ahighmortalityratehas

beenobservedduringtheacclimatizationprocessdueto

physiolog-icalchangescausedbytheinvitroenvironment,suchaschanges

inthefunctionofthestomataandroots,undevelopedcuticles,and

photosyntheticinefficiency(Pospíˇsilováetal.,1999;Hazarikaetal.,

2002;Hazarika,2006;Xiaoetal.,2011;KumarandRao,2012;Singh etal.,2012).

Ifestablishedduringtheearlystageofacclimatization,an

asso-ciationwithbeneficialfungicanreducethestressofacclimatization

andpromotethegrowthofmicropropagatedplants(Kapooretal.,

2008;Singhetal.,2012;Yadavetal.,2013a,b).Inoculationwith

arbuscularmycorrhizalfungi(AMF)(Glomeromycota)and

Pirifor-mosporaindica(rootendophyticfungus,Basidiomycota)hasproven

tobeapromisingalternativefortheproductionofplantletsof

supe-riorquality(SahayandVarma,1999;Kapooretal.,2008;Yadav

etal.,2013a,b).Thesefungihavealsobeenreportedtoincrease

plants’nutrientuptake(Smithetal.,2010;Varmaetal.,2012),

tol-erancetodroughtandsaltstresses(Augé,2001;Varmaetal.,2012),

resistancetotheeffectsofheavymetals(Azcón-Aguilaretal.,1997;

Varmaetal.,2012)andphotosyntheticefficiency(Estrada-Lunaand Davies,2003;Achatzetal.,2010;Boldtetal.,2011;Yadavetal., 2013a,b).

Phosphorus (P) fertilization and phytosanitary control play

important roles in the production of high-quality pineapple

propagules.ThemanagementofPinthesoilisamajorfactorin

achievingsustainableagriculturalsystems(Kahiluotoetal.,2000).

PlantsexposedtohighlevelsofPinthesoilshowreduced

mycor-rhizalcolonization(Mengeetal.,1978;Kahiluotoetal.,2000;Grant

etal.,2005).Thus,itishighlyimportanttoidentifytheamountof

PthatwillmaximizetheeffectofbothAMFandP.indicaandallow

properuptakeofthisnutrienttoprovideanadequatenutritional

statusfortheplant.Likewise,itishighlyimportanttoestablishan

associationwiththesefungithatwillenabletheplanttoextract

themaximumbenefitfromthesymbiosis.

Theaimofthisstudywastoobtainhigh-qualitypropagation

materialbyevaluatingthebenefitsofinoculationwithAMFand/or

P.indicaattheacclimatizationstageandbyexaminingtheroles

ofthesefactorsinthegrowth,nutrientuptakeandphotosynthetic

efficiencyofpineappleplantletsunderdifferentPlevels.

2. Materialsandmethods

2.1. Invitroculture

Micropropagatedplantletsofpineapple,cultivarImperial,were

subcultivated in liquid MS (Murashige and Skoog, 1962)

cul-turemediumformultiplication.Themediumwassupplemented

with30gL−1sucrose,1.8mgL−1␣-naphthaleneaceticacid(NAA),

2mgL−1indole-3-butyricacid(IBA),and2.1mgL−1kinetin(KIN)

atpH5.5.Theculturesweregrownin250-mLglassjars

contain-ing15mLofculturemediumandsealedwithrigidpolypropylene

covers.Cultureswerekeptina growthroomat 26±2◦Cunder

a photoperiodof16hlight/8hdarkand underan irradianceof

36␮molm−2s−1,providedbywhitefluorescentlamps.Subcultures

wereperformedevery40d(seeSupplementarymaterial).

2.2. Fungalinoculants

Isolates of AMF Dentiscutata heterogama PNB102A (=

Scutel-lospora heterogama), Claroideoglomus etunicatum RJN101A (=

Glomus etunicatum) and Rhizophagus clarus RJN102A (= Glomus

clarum)wereobtainedfromtheInternationalCultureCollection

ofGlomeromycota(CICG,www.furb.br/cicg)attheUniversidade

RegionaldeBlumenau,SantaCatarina,Brazil.Singlecultureswere

establishedfollowingtheproceduresadoptedattheCICG.Briefly,

sporeswereextractedfromtrapcultures,separatedby

morpho-typesandinoculatedontherootsof15-day-oldSorghumbicolor

seedlingsthat hadbeengrown onsterilizedsubstrate.Sorghum

seedlingswerethentransplantedtocones(270cm3)ina

steril-izedsand:expandedclay:soil (2:2:1v:v:v)mixandgrown for4

monthsundergreenhouseconditions.Afterthatperiod,coneswere

checkedforsporulation.Plantswereallowedtodry insitu,and

thecontentsofconeswerestoredinziplockplasticbagsat4◦C

for6months.TheinvitrocultureofP.indicawasobtainedfrom

themicrobialcollectionoftheLaboratoryofMycorrhizal

Associ-ationsofUniversidadeFederaldeVic¸osa—MinasGeraisand was

maintainedandmultipliedinKaefermedium(KM)(HillandKaefer,

2001)andstoredinthedarkat30◦C(Kumaretal.,2011)for30d.

2.3. Characteristicsandsoilpreparation

Thesubstratewassterilizedinanautoclavefor1hat121◦C

and was composed of a mixture of soil and sand (1:1 v:v)

withthefollowingcharacteristics:pH(water)=4.9,P=1.1mgdm−3

(Mehlich 1),K=34mgdm−3, Ca=0.2cmolcdm−3,Mg and Al=0,

sumofexchangeablebases (SB)=0.29cmolcdm−3,organic

mat-ter (OM)=1.1dagkg−1 and Premaining=6.6mgL−1. Liming was

performed according toSouza et al. (1999), following the

rec-ommendationsforpineapplecultivationtomeettheCaandMg

requirements for 2cmolcdm−3. The substrate was moistened,

placedinplasticbagsandallowedtorestfor30datroom

tempera-ture.Afterthisperiod,phosphorusfertilizationwasperformedfor

eachdoseofP(0,20,40,80,160and320mgkg−1 soil)usingan

aqueoussolutionofKH2PO4justbeforetransplantationatthetime

ofacclimatization.

2.4. Experimentaldesignandinoculation

Theexperimentwithpineappleplantlets(cultivarImperial)was

conductedinagreenhouseandconsistedofsixdosesofP(0,20,

40,80,160and320mgkg−1ofsoil)andinoculationwithC.

etuni-catum,D.heterogama,R.clarus,P.indica,amixtureofallfungi(Mix)

oranon-inoculatedcontrol(Cont).Therewerefourreplicates,and

theexperimentswereperformedfollowingacompletely

random-izeddesignwitha6×6factorialarrangement(seeSupplementary

material).

The50-day-oldplantlets,withanaverageheightof4.4cmand

12–15leaves,weretransplantedintoplasticpotscontaining1kg

ofsterilizedsubstrate.Whentheplantletsweretransplanted,the

substratewasinoculatedneartheroot,usinganaverageof120

sporesoftheAMFperplantlet.InoculationwithP.indicawas

(3)

(hyphaeandchlamydospores).IntheMixtreatment,40sporesof

eachAMFandtwo1-cmdiscswithKMcontainingP.indicawere

usedforinoculation.Controlplantsreceivednofungalinoculum.

Themoistureofthesubstrateinthepotswascorrected

periodi-callywithdistilledwater.Clark’snutrientsolution(50mL)without

Pwasappliedevery20days(Clark,1975).

2.5. Plantgrowthmeasurementsandshootnutrientanalysis

At210daftertransplanting,theplantheight(H),thenumber

ofleaves(NL),andtheshootdrymatter(SDM)weredetermined.

The SDMwas determinedafter drying toa constant weightat

70◦Cinanovenunderforcedventilation.Thismaterialwasthen

groundinaWileymillwitha0.420-mmsieveandsubjectedto

nitroperchloricdigestion(JohnsonandUlrich,1959)todetermine

theconcentrationsofthenutrientsP,K,Ca,andMg.These

nutri-ents,exceptP,weremeasuredbyopticalemissionspectrometry

withinductivelycoupledplasma(ICP-OES)(Optima8300ICP-OES

Spectrometer,PerkinElmer).ForNanalysisoftheshoots,the

min-eralizationwasperformeddry,bydirectincinerationofthesample

inmuffles,anditscontentwasdeterminedbytheKjeldahlmethod

(EMBRAPA,1999).ThePcontentoftheshootswasdetermined

col-orimetricallybythevitaminCmethodasmodifiedbyBragaand

Defelipo(1974).

2.6. Photosyntheticparameters

Thevaluesofthephotosyntheticparameterswereassessedwith

aPAMfluorometer[JUNIOR-PAMTeachingChlorophyll

Fluorome-ter(Walz,Mess-undRegeltechnik)].Thefollowingphotosynthetic

parameterswereusedforanalysis:maximumphotochemical

effi-ciency or maximum quantum yield (Fv/Fm) and quenching or

non-photochemicaldissipation(qNandNPQ).Thesevalueswere

obtainedfromintermediateandfullyexpandedleaves.The

min-imal fluorescence (Fo) was measured after the application of

modulatedlight (<0.1␮molphoton m−2s−1)toleavesthat had

beendark-adaptedforatleast30min.Themaximalfluorescence

(Fm)wasobtainedbyimposingapulsesaturationof10,000␮molm

−2s−1for0.6s.

2.7. Fungalcolonization

Approximately0.5gofrootsystemperplantwasdiaphanized

in10%KOH(w:v)for12h,followedbythreesuccessivewashes

intapwater.Afterwashing,therootsystemwasplacedinHCl2%

(w:w)for5minandthenwasstainedwith0.05%trypanbluein

lactoglycerol(w:v)at70◦Cfor30–40min.Thesamplewasthen

storedinlactoglycerol(PhillipsandHayman,1970;Brundrettetal.,

1996).Rootcolonizationwasquantifiedbyusingthegridline

inter-sectmethod(Giovannettiand Mosse,1980)withastereoscopic

microscope.

The mycorrhizal fungidependence was determined

accord-ing to Plenchette et al. (1983) with modifications, using the

equation:(FD)={(SDMofinoculatedplants−SDMnon-inoculated

plants)/SDMof inoculatedplants}×100. Thesameformulawas

usedtocalculatetheP.indicadependence.So,wearedenominating

fungaldependence(FD)toreferatbothfungi.

2.8. Statisticalanalysis

Thedata weresubjected toanalysisof variance (ANOVA)at

an˛ levelof 5%.Themeanswerecompared usingTukey’s test

(p≤0.05).Quantitativedataweresubjectedtoaregression

anal-ysis,andtheregressioncoefficientswereanalyzedusingStudent’s

t-test.Thedatarelatingtofungalcolonizationwerefirst

normal-izedviaanarcsin√(x/100)transformationforasubsequentANOVA.

TheFD datawere classifiedaccordingtoHabte andManjunath

(1991):>75%=excessivedependence;50–75%=highdependence;

25–50%=moderatedependence;<25%=marginaldependence;and

noresponsetoinoculation=independence.

3. Results

3.1. Plantgrowthmeasurements

ThepineappleplantletsrespondedtoinoculationwithbothAMF

and P. indica. A quadratic regression model successfully fit the

responseofthegrowthparameterstoincreasesintheapplication

ofPtothesubstrate(Fig.1).

Ingeneral,theinoculatedplantletsgrewbetterthantheir

non-inoculated counterparts at doses of P up to40mgkg−1 for all

treatmentswithfungi(Fig.1).However,withincreasingamountsof

Pinthesubstrate,thisgrowthwaslesspronounced.At80mgkg−1

P, only the C. etunicatum and Mix treatments showed positive

effects onSDMafterinoculationcompared withthecontrol. At

160mgkg−1,theSDMinthecontroltreatmentwassuperiortothe

correspondingvaluesintheothertreatments(Fig.1).

AtlowerdosesofP(0–40mgkg−1P),dependingonthe

inoc-ulatedfungi,pineappleplantletsshowedasignificantincreasein

thegrowthparametersdependingonfungalidentity.Atthedoseof

0mgkg−1,therewereincreasesinHof70.8,53.4,49.5,52.4and65%

inplantletsinoculatedwithP.indica,C.etunicatum,R.clarus,D.

het-erogamaandMix,respectively,whereasNLincreasedby24.7,41.1,

51.3,31.4and60.2%,respectively,forthesamefungi.Forthissame

doseofP,SDMincreasedby2079.6,1310.4,1456.1,2003.8and

1889.2inresponsetoP.indica,C.etunicatum,R.clarus,D.heterogama

andMix,respectively.

At40mgkg−1,thisbenefitwaslower,butincreasesof25.4,27.9,

18.5,1.1and29.4%inHandof10.2,24.9,24.1,4.9and31.5%inNL

wereobservedforP.indica,C.etunicatum,R.clarus,D.heterogama

andMix,respectively.Further,theSDMincreasedby27.1,43.2,10.7

and45.4%forP.indica,C.etunicatum,R.clarusandMix,respectively.

Atthe40mgkg−1dose,theplantletsinoculatedwithD.heterogama

showedadecreaseof17.71%inSDM(Fig.1).Ingeneral,thebest

resultsforgrowthparameterswereobservedwhenplants were

treatedwiththemixedfungalinoculum,C.etunicatumorR.clarus.

Theplantletsthatreceived80mgkg−1Pandwereinoculated

withR.clarusorP.indicashowed19.53%and13.99%decreasesin

SDM,respectively.Atthesamedose, theC.etunicatumandMix

treatmentsforthesameparametersproducedincreasesinSDMof

4.50%and13.48%,respectively(Fig.1).

3.2. Nutritionalcontentofplants

Thefungal inoculation(AMFand/or P.indica)wasbeneficial

(p≤0.05)forthenutritionalstatusofthepineappleplantlets.The

increasedPinthesubstrateinfluencedthecontent(mgplant−1)

ofPandoftheothermacronutrients,N,K,CaandMg(Fig.2).The

levelsofthesenutrientsincreasedwiththeapplicationofhigher

dosesofPforalltreatments.Atthelowestdoses(0–40mgkg−1),

thetreatmentswithfungishowedhighervaluesthanthosefound

inthecontrolplants.AtthehigherdosesofP,increasescompared

tothecontrolswereobservedinthecurvesforonlyafewfungal

treatments(Fig.2).

GreatereffectsoffungalinoculationonPuptakebyplantswere

observedatlowerdosesofP,andthemagnitudeoftheseeffects

variedinrelationtothecontroldependingontheinoculated

fun-gus.Atthedoseof 20mgkg−1,the plantletsinoculated withP.

indicashowedanincreaseofapproximately260%overthecontrol,

whereasC.etunicatum,R.clarus,D.heterogamaandMixtreatments

(4)

Fig.1.Numberofleaves(NL),plantheight(H)andshootdrymatter(SDM)ofpineappleplantletsmicropropagatedandinoculatedwithC.etunicatum,D.heterogama,R. clarus,P.indica,Mixorcontrol.Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.◦,*and**,significantat10,5

and1%probability,respectively.

thePcontentperplant.TheincreasedPuptakewasconsiderably

lesspronouncedatthehigherPdoseof40mgkg−1.Thesevalues

were−2,192,194,4and228%forP.indica,C.etunicatum,R.clarus,

D.heterogamaandMix,respectively.Atdosesabove80mgkg−1,

onlythefungiC.etunicatum,R.clarus,andMixwereeffectivefor

increasingthecontentofP.Atthisdose(80mgkg−1),theC.

etuni-catum,R.clarus,andMixtreatmentsproducedgainsof114,80and

139%,respectively,relativetothecontrol(Fig.2).

TheeffectsofthetreatmentsonNcontentweresimilartotheir

effectsonPuptake.Atthedoseof0mgkg−1,increasesinNcontent

of110,58,84,126and140%wereobservedforthetreatmentswith

P.indica,C.etunicatum,R.clarus,D.heterogamaandMix,

respec-tively.ThesevalueswerealsolowerwithincreasingdosesofP,

showinggainsinNcontentof13,19,0.8,−0.88and36%,

respec-tively,forthesametreatmentsatthedoseof40mgkg−1(Fig.2).

At80mgkg−1,onlytheC.etunicatumandMixtreatmentsshowed

significantgainsintheNcontentperplant,namely7.7%forC.

etuni-catumand36.6%forMix.Fortheothertreatmentsatthe80mgkg−1

doseand foralltreatments atgreater doses,thecontrol plants

showedahighermeanNcontent.

ThelevelsofKandMgwerealsoinfluencedbyfungal

(5)

Fig.2.Content(mgplant−1)ofP,N,K,MgandCainmicropropagatedpineappleplantletsinoculatedwithC.etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol.

Measurementswereobtained210daysafterinoculationinthegreenhousewithdifferentPlevelsinthesoil.◦,*and**,significantat10,5and1%probability,respectively.

20mgkg−1,theplantletsinoculatedwithP.indica,C.etunicatum,R.

clarus,D.heterogamaandMixshowedincreasesof105,161,138,85

and181%inKcontentandof157,211,214,315and374%inMg

con-tent,respectively.At80mgkg−1,mostoftheinoculatedplantlets

stillshowedrelativeincreasesintheabsorptionofKof8,36,10,

and29%forP.indica,C.etunicatum,R.clarus,andMix,respectively.

OnlytheplantletsinoculatedwithC.etunicatum,D.heterogamaand

MixshowedahigherMgcontentthanthecontrols,withgainsof

9,21and38%,respectively,whenPwasappliedat80mgkg−1soil

(Fig.2).

TheCacontentwasalsoaffectedbytheinoculationofpineapple

plantletswiththesefungi.TheabsorptionofCaincreasedmainly

underexposuretolowerdosesofP,reaching91%(P.indica),126%(C.

etunicatum),113%(R.clarus),133%(D.heterogama)and253%(Mix)

ofthecontrollevelatadoseof20mgkg−1.ThishighCacontent

comparedwiththecontrolalsodecreasedwithincreasingPdoses.

ForCa,thestrongestpositiveresponsesat80mgkg−1werethose

forC.etunicatumandMix(Fig.2).

3.3. Measurementsofphotosyntheticparameters

P.indicaandAMFpositivelyinfluencedthephotosynthetic

effi-ciencyoftheplants,especiallyatlowdosesofP(P≤40mgkg−1)

(Fig. 3).The Fv/Fm parameter, which indicatestheefficiency at

whichlightenergycapturedinPSIIistransferredtoother

devel-opingphotochemicalreactions,waslowerinthecontrolsthanin

theothertreatmentsuptoadoseof40mgkg−1(oruptoadose

of320mgkg−1inthecaseoftheP.indicaandMixtreatments).At

80and160mgkg−1,nodifferencesinFv/Fmwerefoundamongthe

treatments.Fortheparametersmeasuringtheamountofenergy

capturedbyPSIIthatwasdissipatedasheat(qNandNPQ),the

controlsweresuperiortomosttreatmentsatvariousdosesofP.

TheMixtreatmentshowedthelowestqNandNPQatvirtuallyallP

levels,followedbytheremainingAMF,C.etunicatum,R.clarusand

D.heterogama,whichbehavedsimilarly.ThefungusP.indicawas

lessefficientthantheAMFinreducingqNandNPQbutwasmore

efficientthanthecontrolatdosesof40and80mgkg−1(Fig.3).

3.4. Fungalcolonization

Thefungal colonizationwassuccessful bothfor plants

inoc-ulated with AMF and for those inoculated with P. indica, with

structurescharacteristicofintraradicularcolonizationobservedin

treatedplantsandnocolonizationinthecontrolplants(Fig.4).

Withinthegroupsoftreatedplantsthatreceivedeachindividual

AMF,therewasnodifference(p0.05)inthepercentageof

fun-galcolonization,evenwhenhigherdosesofPwereappliedtothe

(6)

Fig.3.Maximumphotochemicalefficiency(Fv/Fm)andquenching(qN)ornon-photochemicaldissipation(NPQ)inmicropropagatedpineappleplantletsinoculatedwithC.

etunicatum,D.heterogama,R.clarus,P.indica,Mixorcontrol(notinoculated).Measurementswereobtainedafter210daysofgrowthinthegreenhousewithdifferentPlevels inthesoil.MeansfollowedbythesameletterwithinthesamedoseofPdonotdiffer(Tukey’stest,5%probability).

Table1

PercentageofcolonizationbyP.indicaandmycorrhizalfungiinmicropropagation-derivedpineappleplantletsunderdifferentphosphorus(P)levelsafter210daysof acclimatizationinthegreenhouse.

P(mgkg−1) P.indica R.clarus C.etunicatum D.heterogama Mix

0 20.94±9.54 bA 67.40±10.41 aA 37.64±27.10 abA 57.75±30.66 abA 59.50±11.39 AB 20 22.78±10.12 cA 72.88±7.03 aA 26.11±22.31 cA 45.49±19.06 bcA 67.82±7.58 abAB 40 28.11±6.32 bA 69.41±7.89 aA 46.95±20.54 abA 42.72±27.27 abA 76.50±15.59 aAB 80 27.31±5.81 bA 74.35±3.58 aA 69.08±15.79 aA 37.45±25.82 abA 74.19±9.01 aAB 160 21.13±5.36 dA 71.07±5.76 abA 46.53±13.24 bcA 39.67±23.02 cdA 75.50±3.70 aAB 320 18.71±6.79 bA 69.95±7.43 abA 41.49±31.66 abA 40.56±22.38 bA 81.50±6.56 aA Meansfollowedbythesamelowercaseletterinthesamerowandmeansfollowedbythesamecapitalletter,inthesamecolumn,donotdifferbyTukeytestat5%probability.

colonizationbutdidnotdifferfromtheotherfungaltreatments underthesameconditionsofPfertilization(Table1).FortheAMF

treatmentswiththesamedoseofP,thetreatmentsinoculatedwith

MixorR.clarushadthehighestaveragepercentageofmycorrhizal

colonizationatthehigherdosesofP(Table1).Furthermore,the

percentageofcolonizationwithP.indicadidnotvarywith

increas-ingdosesofP,andremainedlowerthanthatforAMF-inoculated

(7)

Fig.4. TypicalstructuresobservedinassociationwitharbuscularmycorrhizalfungiandPiriformosporaindica.(A)Controlwithoutfungalcolonization;(B,DandF)colonization witharbuscularmycorrhizalfungi,withthepresenceofarbuscules,vesiclesandhyphae;(C)colonizationwithP.indicaintherootcortex;and(E)colonizationbyP.indica intheroothairs,withhyphaeandchlamydospores.Theassessmentwasperformed210daysafterinoculationinagreenhouseinthepresenceofvariousPlevelsinthesoil.

3.5. Fungaldependence

Thefungaldependenceofthepineappleplantletswasexcessive

at0mgkg−1andwasmoderatetohighatdosesof20,40mgkg−1

P in the soil for all fungal treatments (Fig. 5). At 80, 160 and

320mgkg−1Pinthesoil,theplantsdidnotdependonfungal

col-onizationforgrowthanddevelopmentintermsoftheresponseof

shootbiomass.

4. Discussion

StudiesontheeffectofAMFontissueculture-derivedpineapple

plantletsarescarce.However,paststudiesonthistopichaveused

variousAMFspecies,includingClaroideoglomusclaroideum(=

Glo-musclaroideum),Rhizophagusfasciculatus(=Glomusfasciculatum)

(Gutiérrez-Olivaetal.,2009)andFunneliformismosseae(=Glomus

mosseae)(Rodríguez-Romeroetal.,2011),whichwerenotusedin

thecurrentstudy.

Ingeneral,plantscolonizedbyAMFandP.indicashowedbetter

growthandincreasedabsorptionofnutrients,especiallyifallfungi

wereinoculatedtogether(Mix)andatlowerdosesofP.Positive

responsestocolonizationbyAMFhavealreadybeenreportedin

pineapple(Gutiérrez-Olivaetal.,2009;Rodríguez-Romeroetal.,

2011).Note,however,thatthisstudyisthefirstreportevaluating

thecolonizationofP.indicaanditseffectsonpineappleplantlets

andshowingroothaircolonization(Fig.4)asnotedbyWalleretal.

(2005).

Strongresponsesinthegrowthanddevelopmentofplants

inoc-ulatedwithAMFhavebeenwelldocumentedforseveralspeciesof

plants,e.g.,maize(ZeamaysL.)(Cozzolinoetal.,2013),oregano

(Ori-ganumonites),mint(Mentharequienii)(Karagiannidisetal.,2011),

papaya(Caricapapaya)andpineapple(Rodríguez-Romeroetal.,

(8)

Fig.5. FungaldependenceinpineappleplantletsinoculatedwithC.etunicatum,D. heterogama,R.clarus,P.indicaandMix.Measurementswereobtained210daysafter inoculationinthegreenhousewithdifferentPlevels.>75%=excessivedependence; 50–75%=high dependence; 25–50%=moderate dependence; <25%=marginal dependence;noresponsetoinoculation=independence.

L.(Yadavetal.,2011),GlycyrrhizaglabraL.(Yadavetal.,2013a)and

GloriosasuperbaL.(Yadavetal.,2013b).P.indicainoculationhas

beenreportedtobenefitbarley(Hordeumvulgare)(Walleretal.,

2005), cabbage(Brassica rapa)(Sunet al.,2010)and beet(Beta

vulgaris)(Varmaetal.,2012),particularlyifthesoilPlevelsare

low.

Althoughthepositiveresponsesofthegrowthparameterswere

stronglyrelatedtothecontrolsatsmallerdosesofP,thegrowth

ofinoculatedplantletsatthedoseof80mgkg−1wassuperiorto

theirgrowthatthedoseof40mgkg−1.Thisresultindicatesthat

bothofthesedoses,whichareabovethatrecommended

(approx-imately36mgkg−1)forcultureunderconditionsoflowsoilPin

thefield(Souzaetal.,1999),aregoodoptionsfortheproduction

ofplantletsinoculatedwiththesefungi.TheincreasesinNL,Hand

SDMresultingfromassociationswithAMFand/orP.indica,

espe-ciallyatrelativelylowdosesofP,arecloselylinkedwiththefungal

colonizationandmorphologyoftheroots.Thepineapplehasashort

andcompactrootsystemnearthestem,withmanythickrootsand

limitedbranching(d’EeckenbruggeandLeal,2003).This

character-isticindicatesthatfungalcolonizationplaysanimportantrolein

theuptakeofwaterandnutrients.Colonizedrootscanexplorea

greatervolumeofsoil(SmithandRead,1997)andshowmorethan

100timesthecoverageareaoftherootsofanon-colonizedplant

(Sieverding,1991).Moreover,thesmaller-diameterhyphalfungi

allowaccesstothesoilmicropores(Grantetal.,2005),andthe

broadgrowthofthecolonizedrootsresultsinawell-developed

networkofseveralcentimetersinextent,whichcanreachareas

wherePisnotdepleted(Smithetal.,2011).Incontrast,plantsnot

colonizedwiththesesymbioticfungicannotexploretheseareas.

NutrientabsorptionwasconsiderablyinfluencedbyAMFand

P.indica,especiallyuptoaPdoseof40mgkg−1(Fig.2).Thefungi

increasedthecontentsofP,N,K,CaandMgcomparedwiththe

non-inoculatedcontrols.However,theseedlingsinoculatedwithMix

andC.etunicatum,followedbyR.clarus,presentedbetter

absorp-tionformanyofthesenutrients,evenataPdoseof80mgkg−1.

Thesebenefits observedin colonized plantlets have oftenbeen

describedfortheuptakeofP(Kahiluotoetal.,2000;Yadavetal.,

2010;Rodríguez-Romeroetal.,2011;Tongetal.,2013;Xieetal., 2014),ofN(Azcónetal.,2008;Oelmülleretal.,2009; Rodríguez-Romeroetal.,2011;Tongetal.,2013),ofK(Rodríguez-Romero etal.,2011),ofS(Oelmülleretal.,2009),ofCuandZn(Kahiluoto

etal.,2000;Karagiannidisetal.,2011;Tongetal.,2013),andofCa, FeandMn(Karagiannidisetal.,2011).Thesefindingsincludethe

resultsofstudiesofpineappleplantlets(Rodríguez-Romeroetal.,

2011)andmayvarybasedonthespeciesofplant-colonizingAMF

incombinationwiththeconcentrationofPinthesoil(

Gutiérrez-Olivaetal.,2009).Inaddition,differencesinthesebenefitsmay

dependontheplantvarietystudied(Karagiannidisetal.,2011)or

thehosttissueanalyzed(Tongetal.,2013).

For the pineapple plantlets that received more than

160mgPkg−1, the controls presented better growth

parame-ters and nutrient contents per plant, indicating that the fungi

tend tohave deleteriouseffects onthese characteristicsat this

highlevelofPinthesoil.TheincreasingavailabilityofPinsoil,

incombinationwiththehighrateofcolonization,canreducethe

growthoftheplantduetothehighercostofcarbonsynthesizedby

theplanttosupplythefungianddecreasedbenefitsfornutrient

absorptionbecausetheiravailability isgreater(Kahiluotoetal.,

2000).

AtlowerdosesofP,pineappleplantletsinoculatedwithAMF

showedhigher efficiencyof PSIIin capturingenergy, which is

senttootherphotosyntheticreactions.However,thecontrolslost

moreenergyasheat,showinghigherqNandNPQvaluesthanthe

inoculatedplants,particularlyatdosesof20,40and80mgkg−1

(Fig.3).Asaresult,thephotosyntheticrateofinoculatedplantlets

washigherthanthatofthecontrols.Thisbehaviorwasalsofound

intomatoplantsinoculatedwithF.mosseae(Boldtetal.,2011).In

barleyseedlings,ahigherphotosyntheticratewasobservedunder

lowlightconditionswhenplantswereinoculatedwithP.indica

(Achatzetal.,2010).Investmentsofplantresourcesin the

syn-thesisofphotoassimilatestobetransferredtofungisuchasAMF

andP.indicaareoffset,inpart,bythehigherphotosyntheticrates

(Balotaetal.,2011;Smithetal.,2011)and/orbysavingsresulting

fromthereductioninrootproduction (Smithetal.,2011).

Fac-torsthat enhancephotosynthesisbymycorrhizalplants include

increasesinthetransportofinorganicelementsfromthesoilto

theplant(Soleimanzadeh,2010),inchlorophyllcontent(

Estrada-LunaandDavies,2003;Yadavetal.,2013a,b),andintheratesof

photosyntheticstorageandexport(Augé,2001).

Thesecharacteristicsofgrowthpromotion,improvednutrient

contentandenhancedphotosyntheticefficiencyhavemotivated

increasingresearchactivityontheinoculationofplantlets with

AMF(Estrada-LunaandDavies,2003;Kapooretal.,2008;Singh etal.,2012;Yadavetal.,2013a,b)andwithP.indica(Sahayand Varma,1999)toaidin theacclimatizationstage.Forpineapple,

theinoculated plantletsweremorevigorous andshowedbetter

developmentduringthisstage.

Ingeneral,increasesintheavailabilityofsoilPtendtodecrease

mycorrhizalcolonization(Kahiluotoetal.,2000;Soleimanzadeh,

2010;Balotaetal.,2011;Smithetal.,2011;Shuklaetal.,2012).This

decreaseinrootcolonizationmayberelatedtotheincreased

con-centrationofPpergramofdrymatterintheplant(Liuetal.,2000).

However,here,inpineappleplantletsexposedtothesame

treat-ments,thepercentagesoffungalcolonizationremainedhigh,even

athighdosesofP(Table1).Similarresultswerenotedinthe

stud-iesofXavierandGermida(1997),Cozzolinoetal.(2013)andTong etal.(2013),andthecolonizationpercentagesweremuchhigher

thanthatfoundbyRodríguez-Romeroetal.(2011)inpineapple.

Thismaybeduetothedilutioneffectofthenutrientsinplant

tis-sue,inwhichincreasedabsorptionproducesahigheramountof

biomassratherthanagreaterconcentrationofnutrients,increasing

theexudationofcarbohydratesandthusstimulatingmycorrhizal

colonization(Liuetal.,2000;Azcónetal.,2003).

Foralmostallevaluatedparameters,thetreatmentcontaining

amixtureofallfungiwasmoreeffectiveinpromotingthegrowth

oftheplantlets,whichhasbeenobservedinthestudiesofYadav

(9)

ofdifferentspeciesallocatedindifferentorders(Glomeralesand

Diversisporales—Redeckeretal.,2013)hasbeenshowntohavea

positiverelationshipwithbiomassproductioninPlantago

lanceo-lata(MaheraliandKlironomos,2007).BecausedifferentAMFmay

transmitdifferentamountsofPtotheplant,theireffectsonplant

growthmaybedifferent(Shuklaetal.,2012).However,because

theplantscanbecolonizedsimultaneouslybyfungifrom

differ-enttaxa(Smithetal.,2011),thebeneficialcharacteristicsofeach

funguscouldpotentiallybeexploitedbytheplant.Thispatternis

observedunderfieldconditions,inwhichthesumofallthe

bene-fitsofcolonizationbydifferentfungicontributestothesuccessof

mycorrhizaeinfacilitatinggrowthandreproduction(Smithetal.,

2011).

ThedecreaseobservedinfungaldependencewithincreasingP

levelssuggeststhattheeffectoffungalinoculationismore

pro-nouncedatlowerdosesofP(Kahiluotoetal.,2000;Balotaetal.,

2011).However,evenwithnodependenceoftheplantletsatthe

80mgkg−1doseandmoderatedependenceatthe40mgkg−1dose

forC.etunicatumandMix,thehighrateofcolonizationunderthese

conditionsishighlysignificantforpineapplecultivationbecause

therecommendedsoilPlevelforthiscultureinsoilswithalowP

levelisapproximately35mgkg−1 (Souzaetal.,1999).Thiseffect

maybemoresignificantunderfieldconditions,wherethesoilisless

homogeneousandmycorrhizalassociationcanimprovenutrient

absorption.

Inthefield,pineappleis considerednon-responsiveto

phos-phatefertilizationintermsoffruitproduction(Spironelloetal.,

2004; Guarc¸oni M. and Ventura, 2011; Caetano et al., 2013),

withmycorrhizalcolonizationconsideredoneofthemainfactors

responsibleforthesupplyofPtoplants(Guarc¸oniM.andVentura,

2011).Therefore,inviewoftheimportanceofPnutritioninthe

earlystagesofcropdevelopment,theroleofmycorrhizal

associa-tionattheseedlingstageremainstobeestablishedinthecontextof

theexplorationoftheoverallproductivepotentialofplants(Grant

etal.,2005).

For pineapple plantlets, inoculation withAMF and P. indica

confersmanybenefitsanddoesnotinterferewiththeprocessof

producingpropagativematerialovertime.Inaddition,itdoesnot

addalabor-intensivecomponenttotheproductionchainbecause

theinoculationmethodissimpleandplantletsmustremaininthe

greenhouseforapproximatelysixmonths(Farahani,2013).

5. Conclusions

MicropropagatedpineappleplantletscolonizedbyAMFandP.

indicashowenhancedgrowth,nutrientuptakeandphotosynthetic

efficiency,particularlyatlow soilPlevels(≤40mgkg−1).AtaP

levelequivalenttotherecommendedfertilizationrate(35mgkg−1

inthefield),inoculatedplantletsarebetternourishedand

vigor-ous,especiallywheninoculatedwithC.etunicatumorMix.Further

fieldevaluationsareneededtodeterminewhetherinoculation

dur-ingtheseedlingstageisreflectedinproductivityorcanserveasa

meanstoreducechemicalfertilization.Suchoutcomeswouldresult

notonlyintheoptimaluseoffertilizerbutalsoineconomicbenefits

fortheproducers.

Acknowledgments

TheauthorsthanktheConselhoNacionaldeDesenvolvimento

CientíficoeTecnológico(CNPq),Coordenac¸ãodeAperfeic¸oamento

de Pessoal de Nível Superior (CAPES), Fundac¸ão de Amparo à

PesquisadoEstadodeMinasGerais(FAPEMIG)andFundac¸ãode

AmparoàPesquisaeInovac¸ãodoEstadodeSantaCatarina(FAPESC)

forfinancialsupport.TheauthorsalsothankUniversidadeRegional

de Blumenau-Santa Catarinafor providing theinoculum

main-tainedattheInternationalCultureCollectionofGlomeromycota

(CICG).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,athttp://dx.doi.org/10.1016/j.scienta.2015.

09.032.

References

Achatz,B.,Rüden,S.,Andrade,D.,Neumann,E.,Pons-Kühnemann,J.,Kogel,K.H., Franken,P.,Waller,F.,2010.RootcolonizationbyPiriformosporaindica enhancesgrainyieldinbarleyunderdiversenutrientregimesbyaccelerating plantdevelopment.PlantSoil333,59–70.

Augé,R.M.,2001.Waterrelations,droughtandvesicular-arbuscularmycorrhizal symbiosis.Mycorrhiza11,3–42.

Azcón,R.,Ambrosano,E.,Charest,C.,2003.Nutrientacquisitioninmycorrhizal lettuceplantsunderdifferentphosphorusandnitrogenconcentration.Plant Sci.165,1137–1145.

Azcón,R.,Rodríguez,R.,Amora-Lazcano,E.,Ambrosano,E.,2008.Uptakeand metabolismofnitrateinmycorrhizalplantsasaffectedbywateravailability andNconcentrationinsoil.Eur.J.SoilSci.59,131–138.

Azcón-Aguilar,C.,Cantos,M.,Troncoso,A.,Barea,J.M.,1997.Beneficialeffect arbuscularmycorrhizasonacclimatizationofmicropropagatedcassava plantlets.Sci.Hortic.72,63–71.

Balota,E.L.,Machineski,O.,Truber,P.V.,Scherer,A.,Souza,F.S.,2011.Physicnut plantspresenthighmycorrhizaldependencyunderconditionsoflow phosphateavailability.Braz.J.PlantPhysiol.23,33–44.

Be,L.V.,Debergh,P.C.,2006.Potentiallow-costmicropropagationofpineapple (Ananascomosus).S.Afr.J.Bot.72,191–194.

Boldt,K.,Pörs,Y.,Haupt,B.,Bitterlich,M.,Kühn,C.,Grimm,B.,Franken,P.,2011.

Photochemicalprocesses,carbonassimilationandRNAaccumulationof sucrosetransportergenesintomatoarbuscularmycorrhiza.J.PlantPhysiol. 168,1256–1263.

Braga,J.M.,Defelipo,B.V.,1974.Determinac¸ãoespectofotométricadefósforoem extratosdesoloseplanta.Rev.Ceres21,73–85.

Brundrett,M.,Bougher,N.,Dell,B.,Grove,T.,Malajczuk,N.,1996.Workingwith MycorrhizasinForestryandAgriculture.ACIARMonograph.

Caetano,L.C.S.,Ventura,J.A.,Costa,A.F.S.,Guarc¸oni,R.C.,2013.Efeitodaadubac¸ão comnitrogêniofósforoepotássionodesenvolvimentonaproduc¸ãoena qualidadedefrutosdoabacaxi‘Vitória’.Rev.Bras.Frutic.35,883–890.

Chandra,S.,Bandopadhyay,R.,Kumar,V.,Chandra,R.,2010.Acclimatizationof tissueculturedplantlets:fromlaboratorytoland.Biotechnol.Lett.32, 1199–1205.

Clark,R.B.,1975.Characterizationofphosphatasesofintactmaizeroots.J.Agric. FoodChem.23,458–460.

Cozzolino,V.,DiMeo,V.,Piccolo,A.,2013.Impactofarbuscularmycorrhizalfungi applicationsonmaizeproductionandsoilphosphorusavailability.J.Geochem. Explor.129,40–44.

d’Eeckenbrugge,G.C.,Leal,F.,2003.Morphology,anatomyandtaxonomy.In: Bartholomew,D.P.,Paull,R.E.,Rohrbach,K.G.(Eds.),ThePineapple:Botany, ProductionandUses.CABIPublishing,Wallingford,U.K,pp.13–32.

EmpresaBrasileiradePesquisaAgropecuária—EMBRAPA,1999.Manualdeanálises químicasdesolos,plantasefertilizantes.CentroNacionaldePesquisadeSolos, RiodeJaneiro.

Escalona,M.,Lorenzo,J.C.,González,B.,Daquinta,M.,González,J.L.,Desjardins,Y., Borroto,C.G.,1999.Pineapple(AnanascomosusL.Merr.)micropropagationin temporaryimmersionsystems.PlantCellRep.18,743–748.

Estrada-Luna,A.A.,Davies,J.F.T.,2003.Arbuscularmycorrhizalfungiinfluence waterrelations,gasexchange,abscisicacidandgrowthofmicropropagated chileanchopepper(Capsicumannuum)plantletsduringacclimatizationand post-acclimatization.J.PlantPhysiol.160,1073–1083.

FAOSTATAcessoemjulhode,2014.Disponívelem:<http://faostat.fao.org/site/ 339/default.aspx/>.

Farahani,F.,2013.Growth,floweringandfruitinginvitropineapple(Ananas comosusL.)ingreenhouseconditions.Afr.J.Biotechnol.12(15),1774–1781.

Giovannetti,M.,Mosse,B.,1980.Anevaluationoftechniquesformeasuring vesiculararbuscularmycorrhizalinfectioninroots.NewPhytol.84,489–500.

González-Olmedo,J.L.,Fundora,Z.,Molina,L.A.,Abdulnour,J.,Desjardins,Y., Escalona,A.,2005.Newcontributionstopropagationofpineapple(Ananas comosusL.Merr.)intemporaryimmersionbioreactors.InVitroCell.Dev.Biol. Plant41(1),87–90.

Grant,C.,Bittman,S.,Montreal,M.,Plenchette,C.,Morel,C.,2005.Soilandfertilizer phosphorus:effectsonplantPsupplyandmycorrhizaldevelopment.Can.J. PlantSci.85,3–14.

Guarc¸oniM,A.,Ventura,J.A.,2011.Adubac¸ãoN-P-Keodesenvolvimento, ProdutividadeequalidadedosfrutosdoAbacaxi‘GOLD’(MD-2).Rev.Bras. Cienc.Solo35,1367–1376.

Gutiérrez-Oliva,V.F.,Abud-Archila,M.,Flores-Pérez,A.,Alvarez-Solis,J.D., Gutiérrez-Miceli,F.A.,2009.Influenciadeloshongosmicorrizicosarbusculares sobreelcrecimientodevitroplantulasdepi ˜na(Ananascomosus(L.)Merr.)Con diferentesnivelesdefosforo.GayanaBot.66(1),1–9.

(10)

Habte,M.,Manjunath,A.,1991.Categoriesofvesicular-arbuscularmycorrhizal dependencyofhostspecies.Mycorrhiza1,3–12.

Hazarika,B.N.,2006.Morpho-physiologicaldisordersininvitrocultureofplants. Sci.Hortic.108,105–120.

Hazarika,B.N.,Parthasarathy,V.A.,Bhowmik,G.,2002.Thephysiologicalstatusof micropropagatedplants—areview.Agric.Rev.23(1),53–58.

Hepton,A.,2003.Culturalsystem.In:Bartholomew,D.P.,Paull,R.E.,Rohrbach,K.G. (Eds.),ThePineapple:Botany,ProductionandUses.CABIPublishing, Wallingford,U.K,pp.109–142.

Hill,T.W.,Kaefer,E.,2001.Improvedprotocolsforaspergillusmedium:trace elementandminimalmediumsaltstocksolutions.FungalGenet.News48, 20–21.

Johnson,C.M.,Ulrich,A.,1959.AnalyticalMethodsforUseinPlantsAnalyses. UniversityofCalifornia,Bulletin766,LosAngeles,pp.32–33.

Kahiluoto,H.,Ketoja,E.,Vestberg,M.,2000.Promotionofutilizationofarbuscular mycorrhizathroughreducedPfertilization1:bioassaysinagrowthchamber. PlantSoil227,191–206.

Kapoor,R.,Sharma,D.,Bhatnagar,A.K.,2008.Arbuscularmycorrhizain micropropagationsystemsandtheirpotentialapplications.Sci.Hortic.116, 227–239.

Karagiannidis,N.,Thomidis,T.,Lazari,D.,Panou-Filotheou,E.,Karagiannidou,C., 2011.EffectofthreeGreekarbuscularmycorrhizalfungiinimprovingthe growth,nutrientconcentration,andproductionofessentialoilsoforeganoand mintplants.Sci.Hortic.129,329–334.

Kumar,K.,Rao,I.U.,2012.Morphophysiologicalsproblemsinacclimatizationof micropropagatedplantsin—exvitroconditions—areview.J.Ornam.Hortic. Plants2(4),271–283.

Kumar,V.,Sahai,V.,Bisaria,V.S.,2011.High-densitysporeproductionof Piriformosporaindica,aplantgrowth-promotingendophyte,byoptimizationof nutritionalandculturalparameters.Bioresour.Technol.102,3169–3175.

Liu,A.,Hamel,C.,Hamilton,R.I.,Smith,D.L.,2000.Mycorrhizaeformationand nutrientuptakeofnewcorn(ZeamaysL.)hybridswithextremecanopyand leafarchitectureasinfluencedbysoilNandPlevels.PlantSoil221,157–166.

Maherali,H.,Klironomos,J.N.,2007.Influenceofphylogenyonfungalcommunity assemblyandecosystemfunctioning.Science316,1746–1748.

Melo,A.S.,Netto,A.O.A.,Neto,J.D.,Brito,M.E.B.,Viégas,P.R.A.,Magalhães,L.T.S., Fernandes,P.D.,2006.Desenvolvimentovegetativo,rendimentodafrutae otimizac¸ãodoabacaxizeirocv.Pérolaemdiferentesníveisdeirrigac¸ão.Cienc. Rural36,93–98.

Menge,J.A.,Steirle,D.,Bagyaraj,D.J.,Johnson,E.L.V.,Leonard,R.T.,1978.

Phosphorusconcentrationsinplantsresponsibleforinhibitionofmycorrhizal infection.NewPhytol.80,575–578.

Murashige,T.,Skoog,F.,1962.Arevisedmediumforrapidgrowthandbioassays withtobaccotissuecultures.Physiol.Plant15,473–497.

Oelmüller,R.,Sherameti,I.,Tripathi,S.,Varma,A.,2009.Piriformosporaindica,a cultivablerootendophytewithmultiplebiotechnologicalapplications. Symbiosis49,1–17.

Phillips,J.M.,Hayman,D.S.,1970.Improvedproceduresforclearingrootsand stainingparasiticandvesicular-arbuscularmycorrhizalfungiforrapid assessmentofinfection.Br.Mycol.Soc.55,158–161.

Plenchette,C.,Fortin,J.A.,Furlan,V.,1983.Growthresponsesofseveralplant speciestomycorrhizaeinasoilofmoderatePfertility.I.Dependencyunder fieldconditions.PlantSoil70,199–209.

Pospíˇsilová,J.,Tichá,I.,Kadleˇcek,P.,Haisel,D.,Plzáková, ˇS.,1999.Acclimatization ofmicropropagatedplantstoexvitroconditions.Biol.Plant42(4),481–497.

Redecker,D.,Schüßler,A.,Stockinger,H.,Stürmer,S.L.,Morton,J.B.,Walker,C., 2013.Anevidence-basedconsensusfortheclassificationofarbuscular mycorrhizalfungi(Glomeromycota).Mycorrhiza23,515–531.

Rodríguez-Romero,A.S.,Azcón,R.,Jaizme-Vega,M.C.,2011.Earlymycorrhization oftwotropicalcrops,papaya(CaricapapayaL.)andpineapple[Ananascomosus (L.)Merr.],reducesthenecessityofPfertilizationduringthenurserystage. Fruits66(1),3–10.

Rout,G.R.,Mohapatra,A.,MohanJain,S.,2006.Tissuecultureofornamentalpot plant:acriticalreviewonpresentscenarioandfutureprospects.Biotechnol. Adv.24,531–560.

Sahay,N.S.,Varma,A.,1999.Piriformosporaindica:anewbiologicalhardeningtool formicropropagatedplants.FEMSMicrobiol.Lett.181,297–302.

Shukla,A.,Kumar,A.,Ajit,J.A.,N.Rao,D.V.K.,2012.Phosphorusthresholdfor arbuscularmycorrhizalcolonizationofcropsandtreeseedlings.Biol.Fertil. Soils48,109–116.

Sieverding,E.,1991.Vesicular-ArbuscularMycorrhizaManagementinTropical Agrosystems.TechnicalCooperation,Eschborn,FederalRepublicofGermany.

Silva,A.B.,Pasqual,M.,Teixeira,J.B.,Araújo,A.G.,2007.Métodosde

micropropagac¸ãodeabacaxizeiro.Pesqui.Agropec.Bras.42(9),1257–1260.

Singh,N.V.,Singh,S.K.,Singh,A.K.,Meshrama,D.T.,Suroshe,S.S.,Mishra,D.C.,2012.

Arbuscularmycorrhizalfungi(AMF)inducedhardeningofmicropropagated pomegranate(PunicagranatumL.)plantlets.Sci.Hortic.—Amst.136,122–127.

Smith,M.K.,Ko,H.L.,Hamill,S.D.,Sanewski,G.M.,Graham,M.W.,2003.

Biotechnology.In:Bartholomew,D.P.,Paull,R.E.,Rohrbach,K.G.(Eds.),The Pineapple:Botany,ProductionandUses.CABIPublishing,Wallingford,U.K,pp. 57–68.

Smith,S.E.,Facelli,E.,Pope,S.,Smith,F.A.,2010.Plantperformanceinstressful environments:interpretingnewandestablishedknowledgeoftherolesof arbuscularmycorrhizas.PlantSoil326,3–20.

Smith,S.E.,Jakobsen,I.,Gronlund,M.,Smith,F.A.,2011.Rolesofarbuscular mycorrhizasinplantphosphorusnutrition:interactionsbetweenpathwaysof phosphorusuptakeinarbuscularmycorrhizalrootshaveimportant implicationsforunderstandingandmanipulatingplantphosphorus acquisition.PlantPhysiol.156,1050–1057.

Smith,S.E.,Read,D.J.,1997.MycorrhizalSymbiosis.AcademicPress,Cambridge, MA.

Soleimanzadeh,H.,2010.EffectofVA-mycorrhizaongrowthandyieldof sunflower(HelianthusannuusL.)atdifferentphosphoruslevels.WorldAcad. Sci.Eng.Technol.4,375–378.

Souza,F.V.D.,Souza,A.S.,Santos-Serejo,J.A.,Souza,E.H.,Junghans,T.G.,Silva,M.J., 2013.Micropropagac¸ãodoAbacaxizeiroeOutrasBromeliáceas.In:Junghans, T.G.,Souza,A.S.(Eds.),AspectosPráticosdaMicropropagac¸ãodePlantas.,2ed. EMBRAPA,DF,pp.188–218.

Souza,M.,Guimarães,P.T.G.,Carvalho,J.G.,Fragoas,J.C.,1999.Abacazixeiro.In: Ribeiro,A.C.,Guimarães,P.T.G.,Alvarez,V.V.H.(Eds.),Recomendac¸õesParaO UsoDeCorretivosEFertilizantesEmMinasGerais.,1◦ed.SBCS,Vic¸osa.

Spironello,A.,Quaggio,J.A.,Teixeira,L.A.J.,Furlani,P.R.,Sigrist,J.M.M.,2004.

PineappleyeldandfruitqualityeffectedbyNPKfertilizationinatropicalsoil. Rev.Bras.Frutic.26,155–159.

Sun,C.,Johnson,J.M.,Cai,D.,Sherameti,I.,Oelmüller,R.,Lou,B.,2010.

PiriformosporaindicaconfersdroughttoleranceinChinesecabbageleavesby stimulatingantioxidantenzymes,theexpressionofdrought-relatedgenesand theplastid-localizedCASprotein.J.PlantPhysiol.167,1009–1017.

Tong,Yu.,Gabriel-Neumann,E.,Ngwene,B.,Krumbein,A.,Baldermann,S., Schreiner,M.,George,E.,2013.Effectsofsingleandmixedinoculationwith twoarbuscularmycorrhizalfungiintwodifferentlevelsofphosphorussupply on␤-caroteneconcentrationsinsweetpotato(IpomoeabatatasL.)tubers. PlantSoil372,361–374.

Varma,A.,Bakshi,M.,Lou,B.,Hartmann,A.,Oelmueller,R.,2012.Piriformospora indica:anovelplantgrowth-promotingmycorrhizalfungus.Agric.Res.1(2), 117–131.

Waller,F.,Achatz,B.,Baltruschat,H.,Fodor,J.,Becker,K.,Fischer,M.,Heier,T., Huckelhoven,R.,Neumann,C.,Wettstein,D.V.,Franken,P.,Kogel,K.,2005.The endophyticfungusPiriformosporaindicareprogramsbarleytosalt-stress tolerance,diseaseresistance,andhigheryield.PNAS102(38),13386–13391.

Xavier,L.J.C.,Germida,J.J.,1997.GrowthresponseoflentilandwheattoGlomus clarumNT4overarangeofPlevelsinaSaskatchewansoilcontaining indigenousAMfungi.Mycorrhiza7,3–8.

Xiao,Y.,Niu,G.,Kozai,T.,2011.Developmentandapplicationofphotoautotrophic micropropagationplantsystem.PlantCellTissueOrganCult.105,149–158.

Xie,X.,Weng,B.,Cai,B.,Dong,Y.,Yan,C.,2014.Effectsofarbuscularmycorrhizal inoculationandphosphorussupplyonthegrowthandnutrientuptakeof Kandeliaobovata(Sheue,Liu&Yong)seedlingsinautoclavedsoil.Appl.Soil Ecol.75,162–171.

Yadav,K.,Singh,N.,Aggarwal,A.,2011.Influenceofarbuscularmycorrhizal(AM) fungionsurvivalanddevelopmentofmicropropagatedAcoruscalamusL. duringacclimatization.J.Agric.Technol.7,775–781.

Yadav,K.,Aggarwal,A.,Singh,N.,2013a.Arbuscularmycorrhizalfungiinduced acclimatizationandgrowthenhancementofGlycyrrhizaglabraL.:apotential medicinalplant.Agric.Res.2,43–47.

Yadav,K.,Aggarwal,A.,Singh,N.,2013b.Arbuscularmycorrhizalfungi(AMF) inducedacclimatization,growthenhancementandcolchicinecontentof micropropagatedGloriosasuperbaL.plantlets.Ind.CropsProd.45,88–93.

Yadav,V.,Kumar,M.,Deep,D.K.,Kumar,H.,Sharma,R.,Tripathi,T.,Tuteja,N., Saxena,A.K.,Johri,A.K.,2010.Aphosphatetransporterfromtheroot endophyticfungusPiriformosporaindicaplaysaroleinthephosphate transporttothehostplant.J.Biol.Chem.285,26532–26544.

Figure

Fig. 1. Number of leaves (NL), plant height (H) and shoot dry matter (SDM) of pineapple plantlets micropropagated and inoculated with C
Fig. 2. Content (mg plant −1 ) of P, N, K, Mg and Ca in micropropagated pineapple plantlets inoculated with C
Fig. 3. Maximum photochemical efficiency (F v /F m ) and quenching (qN) or non-photochemical dissipation (NPQ) in micropropagated pineapple plantlets inoculated with C.
Fig. 4. Typical structures observed in association with arbuscular mycorrhizal fungi and Piriformospora indica
+2

Références

Documents relatifs

This study intended to evaluate the effects of dual inoculation with Rhizobium and mycorrhizal fungi on growth of Anadenanthera peregrina and its contribution to intercropped

Pritsch and Garbaye 2011, this issue) for measuring acid phosphatase activities on individual root tips, together with the molecular identification of the fungal species forming

So far, the method to obtain event logs is the following: speech intentions are process activi- ties; each utterance, automatically annotated with a speech intention, represents

Diederik van Tuinen, Marie-Lara Bouffaud, Eric Bernaud, Annie Colombet, Daniel Wipf, Dirk Redecker.. To cite

Environmental studies of the oxidation of toluene nitroderivatives by permanganate anion show that hydrogen atom abstraction from the methyl group competes with the ring oxidation..

The title of this collection of richly suggestive essays contains the paradox at its core: On the one hand, it seeks to engage the conceptual term ‘precariousness’ and to enlarge

ries infantiles modernes plagiant plus ou moins la doctrine génitale mater-nelle du yin et du yang, la part zoociométrique est femelle comme la zoociotonique

Miss rates of nativelikeness criteria for a single task depending on the size of the native control sample (8, 32, or 128 speakers), the distribution of the task scores in the