• Aucun résultat trouvé

and  self-­‐incompa0bility  in  plants.  

N/A
N/A
Protected

Academic year: 2022

Partager "and  self-­‐incompa0bility  in  plants.  "

Copied!
102
0
0

Texte intégral

(1)

Evolu&on  of  ma&ng  systems  

Frequency-­‐dependent  selec0on,   dominance-­‐recessivity  

and  self-­‐incompa0bility  in  plants.  

Vincent  CASTRIC  –  CNRS  &  Université  Lille   Unité  Evolu&on-­‐Ecologie-­‐Paléontologie  

M2  Orsay-­‐  oct  18th,  2016    

(2)

B I G   Q U E S T I O N   1  

2  

(3)

B I G   Q U E S T I O N   1  

3  

(4)

Phenotype   space  

How  do  novel  phenotypes  arise  ?  

W H A T   C O N S T R A I N S   T H E   D I V E R S I F I C A T I O N   P R O C E S S   ?    

4  

(5)

Phenotype   space  

How  do  novel  phenotypes  arise  ?  

W H A T   C O N S T R A I N S   T H E   D I V E R S I F I C A T I O N   P R O C E S S   ?    

5  

(6)

Phenotype   space   Fitness  

How  do  novel  phenotypes  arise  ?  

W H A T   C O N S T R A I N S   T H E   D I V E R S I F I C A T I O N   P R O C E S S   ?    

6  

Challenge  1  :  

Fitness  

landscape  

(7)

Genotype   space   Phenotype  

space   Fitness  

How  do  novel  phenotypes  arise  ?  

Challenge  1  :   Fitness   landscape  

Challenge  2  :   Gene0c   networks  

W H A T   C O N S T R A I N S   T H E   D I V E R S I F I C A T I O N   P R O C E S S   ?    

7  

(8)

•  The  bewildering  diversity  of  plant  ma0ng  systems  :  so   many  ways  of  doing  it  !  

•  Several  different  types  of  mul0allelic  self-­‐incompa0bility   systems  

•  How  natural  selec0on  acts  on  self-­‐incompa0bility  

•  What  self-­‐incompa0bility  tells  us  about  the  molecular  

bases  and  evolu0on  of  dominance/recessivity  interac0ons  

Outline  

(9)

Régime de reproduction:

Autofécondation ó Allofécondation

Autogamie (selfing)

Allogamie (outcrossing)

Diversité des systèmes de reproduction chez les végétaux supérieurs

Prépondérance   des  allogames  

Régime mixte

(mixed mating)

(10)

Mécanismes  régulant  le  régime  de  reproduc0on  

1) Séparation temporelle: DICHOGAMIE Protogynie

t

1

t

2

2) Séparation spatiale : HERKOGAMIE

Herkogamie simple

Herkogamie réciproque:

Hétérostylie

3) Systèmes d’auto-incompatibilité:

sporophytique di-

allélique: S & s Ss [S]

ss

[s]

(11)

Varia0on  du  nombre  de  catégories   de  partenaires  sexuels  (types  sexuels)  

•  1 catégorie: hermaphrodisme et pas d’auto-incompatibilité

•  2 catégories: dioécie

(12)

Varia0on  du  nombre  de  catégories   de  partenaires  sexuels  

•  n catégories: hermaphrodisme et auto-incompatibilité multi-allélique

S1S2 S3S4 S5S6 S7S8

•  2 catégories: hermaphrodisme et auto-incompatibilité diallélique

Ss [S]

ss [s]

distylie

(13)

Systèmes  d'auto-­‐incompa0bilité:  

systèmes  mul0alléliques  

Auto-pollinisation d'une plante S

1

S

2

Allo-pollinisation d'une plante S

1

S

2

S

1

S

2  

S

1

ou  S

2    

S

1

S

2  

S

3  

ou  S

4    

S

3

S

4  

Rejet  ac0f  de  l'auto-­‐pollen  

(14)

Les  différents  systèmes    

d’auto-­‐incompa&bilité  mul&allélique  

•   Systèmes  gamétophy&ques  (GSI):  phénotype  du   pollen  dépend  uniquement  de  son  génotype  

haploïde    

•  Systèmes  sporophy&ques  (SSI):  phénotype  du   pollen  dépend  du  génotype  diploïde  du  parent    

–  rela0ons  de  dominance  entre  allèles  possibles  

•  Ex.  Génotype  "S1  S2"  et  Phénotype  [S2]  si  S2  dominant  sur  

S1  dans  l'anthère  

(15)

Combien  d’allèles?  études  empiriques  

Méthodes: croisements réciproques + observations (descendance, allongement des tubes polliniques);

et/ou typage moléculaire

•  GSI: n

échant.

= {10, 12, 13, 17, 20, 21, 22, 28, 30, 31, 34, 36}

•  SSI: n

échant.

= {6, 11, 13, 16, 17, 18, 22, 35}

(revue de Castric &Vekemans 2004, Mol. Ecol. 13: 2873)

ð beaucoup d’allèles (haplotypes) au locus d’auto-

incompatibilité

(16)

Les  différents  systèmes  d’auto-­‐incompa&bilité   mul&allélique:distribu&on  et  origine  

•  Seraient  présents  chez  40%  des  espèces  d'Angiospermes  

•  Origine  indépendante  des  systèmes  gamétophy0ques  et   sporophy0ques    

•  GSI:  très  large  distribu0on  (monocot/eudicot);  gène  cloné   chez  Solanaceae,  Plantaginaceae,  Rosaceae,  

Papaveraceae;  ≥  2  origines  indépendantes  

•  SSI:  ≥  7  familles  dont  Brassicaceae,  Asteraceae,  

Convolvulaceae,  Caryophyllaceae  

(17)

S1  

pollen   pis&l  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

Self-­‐incompa&bility:  molecular  lock-­‐and-­‐key  

O U R   B I O L O G I C A L   M O D E L  

17  

SCR  

SRK  

(18)

≈  31-­‐110  kb  

S1   S2   S3   S4  

5’  

Flanking   3’  

Flanking  

S-­‐locus  

SCR   SRK  

pollen   pis&l  

•  Large  number  of  haplotypes    

•  Specific  lock-­‐and-­‐key  combina0ons    

O U R   B I O L O G I C A L   M O D E L  

Self-­‐incompa&bility:  molecular  lock-­‐and-­‐key  

18  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

(19)

≈  31-­‐110  kb  

S1   S2   S3   S4  

5’  

Flanking   3’  

Flanking  

S-­‐locus  

pollen   pis&l  

Self  

pollina&on   Cross   pollina&on  

No  molecular     docking   Molecular    

docking  

Inhibi0on  of     self-­‐pollen   germina0on  

Cross-­‐pollen     germina0on   O U R   B I O L O G I C A L   M O D E L  

Self-­‐incompa&bility:  molecular  lock-­‐and-­‐key  

19  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

SCR  

SRK  

(20)

Sélec0on  fréquence-­‐dépendante  néga0ve  

•  Wright  (1939):  sélec&on  fréquence-­‐dépendante  néga0ve        sur  le  succès  reproducteur  mâle  

L' haplotype-S2

rare est favorisé

(21)

•  Wright  (1939):  sélec0on  fréquence-­‐dépendante  néga0ve          sur  le  succès  reproducteur  mâle  

L' haplotype-S1 commun est

défavorisé

Sélec0on  fréquence-­‐dépendante  néga0ve  

(22)

•  Conséquence  de  la  co-­‐dominance  dans  un  système  

sporophy0que:  augmente  les  risques  de  rejet  du  pollen  

Le phénotype co-dominant

S2S3

est défavorisé

Sélec0on  fréquence-­‐dépendante  néga0ve  

(23)

Combien  d’allèles?  Etudes  théoriques:  distribu0on   (spectre)  des  fréquences  alléliques    

Locus neutre: équilibre mutation ó dérive génétique

proport ion d’a ll èl es

0.00   0.05   0.10   0.15   0.20  

0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9  

Fréquence  allélique  (x)  

N = 10

6

u = 5 10

-8

n

a

= 1.6

≠ allèles rares

1 allèle commun

"U-shaped frequency spectrum"

Temps

Fréquences alléliques

0

fixa&on  d'un     alllèle  mutant   élimina&on  d'un    

alllèle  mutant  

1

(24)

Combien  d’allèles?  Etudes  théoriques:  

distribu0on  des  fréquences  alléliques    

locus-S: (Wright 1939) équilibre

mutation ó dérive génétique ó sélection

0.00   0.05   0.10  

0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9  

Fréquence  allélique  (x)  

N = 100 u = 5 10

-8

n

a

= 6.0

proport ion d’a ll èl es

è Prédiction théorique:

allèles S en fréquences

similaires ≈ 1/n

a

(25)

Table 2 Occurrence of known S-alleles in the adult and offspring populations of A. halleri.

Number of individuals with 0, 1, 2 or 3 S-alleles detected, and number of individuals carrying each S-allele

Number of individuals with 0

S-allele 1 S-allele

2 S-alleles

3 S-alleles

AhSRK01 AhSRK02 AhSRK04 AhSRK12 AhSRK15 AhSRK20 AhSRK22 AHSRK24

Adult sample (n=322)

27 129 166 5 124 38 55 97 36 95 23 8

Offspring sample (n=245)

6 71 168 0 94 27 75 72 35 75 15 13

8 different S alleles in this population

Allele frequencies are far from equal ! … ?

Llaurens  et  al.  (2009)  

(26)

Maternal plants

GENOTYPES

S01S01 S01S02 S01S04 S01S12 S01S15 S01S20 S01S22 S02S02 S02S04 S02S12 S02S15 S04S12 S04S20 S12S15 S12S20 S20S24

Inferred paternal phenotype

S01S01 0.07

(0.05) 1.00 1.00 1.00 1.00 1.00 1.00 S1

S01S02 0.83 0.0

(0.0) 1.00 0.00 0.10 0.20 1.00 S2

S01S04 1.00 0.0

(0.0) 1.00 0.20 0.00 0.32 1.00 S4

S01S12 1.00 1.00 0.0

(-) 0.67 1.00 0.00 0.00 0.00 0.20 1.00 S12

S01S15 1.00 0.0

(0.17) 0.00 0.00 S15

S01S20 0.90 0.0

(-) 1.00 0.06 0.20 0.20 S20

S01S22 1.00 0.0

(-) S22

S02S02 0.00 1.00 0.0

(0.0) 0.00 1.00 S2

S02S04 1.00 0.10 0.0

(0.0) S4

S02S12 1.00 0.00 1.00 0.0

(-) 0.00 S12

S02S15 1.00 0.00 0.17

(0.0) 0.00 S15

S04S12 0.80 0.12 0.25 0.0

(-) S12

S04S20 0.97 0.00 0

(0.21) S20

S12S15 1.00 0.00 0.80 0.00 0.0

(0.13) S15

S12S20 1.00 0.10 0.2

(-) S20

S20S24 0.00 1.00 0.1

(-)

S20 or S20-S24 Inferred

maternal phenotype

S 1 S 2 S 4 S 1 2 S 1 5 S 2 0 S 2 2 S 2 S2-S4 S2-S12 S 1 5 S4-S12 S 2 0 S12-S15 S12-S20 S20 or

S20-S24

1

Controlled crosses between 16 A. halleri

Llaurens et al.Evolution 2009

à Dominance relationships between alleles

?

(27)

Most dominant

01

02 04

12 15 20

Pistil phenotype Most

recessive

01

02

04

12

20

Pollen phenotype

Observed dominance network

à  Not strictly hierarchical

à  Different b/w pollen and pistil

15

(28)

Dominance and intensity of selection

Billiard et al. 2007

Asymetrical intensity of selection:

stronger for dominant alleles weaker for recessive alleles

à  “hiding” effect allows recessive

alleles to increase in frequency

(29)

0 0,1 0,2 0,3 0,4 0,5 0,6

AhSRK01 AhSRKS02AhSRK04 AhSRK12 AhSRK15 AhSRK20 AhSRK22 AhSRK24 Observed

Wright model - Pattern 1

Fecundity selection model - Pattern 1

S-alleles

Observedand expectedfrequencies

0 0,1 0,2 0,3 0,4 0,5 0,6

AhSRK01 AhSRKS02AhSRK04 AhSRK12 AhSRK15 AhSRK20 AhSRK22 AhSRK24 Observed

Wright model - Pattern 1

Fecundity selection model - Pattern 1

S-alleles

Observedand expectedfrequencies

à  Asymetry of allele frequencies is well explained by position in the dominance network

Allele  frequencies  

(30)

Allele  frequency  varia0on  

Offspring from 22 maternal plants, N=245

Llaurens et al. 2008

(31)

Tab  l  e    5    O  b  ser  v  ed    a  n  d    e  x  pec  t  ed   f  reque  n  c  i  es    o  f    each     S  -  a  ll  e  l  e    i  n    t  h  e    o  ff  spr  i  n  g  p  o  pu  l  a  t  i  o  n  sa  m  p  l  e  .   S  im  ul    a  t  i  o  n  s    (  N  =  8  00,  µ  =10  -  6  )    wer  e   per  f  o  r  m  e  d  

u  n  der    W  r  i  g  h  t  s      m  o  de  l    o  f  N  F  D  S   w  i  t  h  d  o  mi  n  a  n  ce    i  n  t  erac  ti    o  ns      acc  o  rd  i  n  g   to    d  o  mi  n  an    ce    pa  tte  r  n    1   (  see  Fi  g.    4  )  .      

 

S  -  a  ll  e  l  e     Obse  r  ved    fr  equency     Ex    pected    95  %    

bounda  ries        

Ah  S  R  K  0  1     0.263     0.25  - 0.32      

Ah  S  R  K  0  2     0.  065     0.05  - 0.09      

Ah  S  R  K  0  4      0.18    4*     0.08  - 0.13      

AhSR  K  12     0.156*     0.16  - 0.22      

Ah  S  R  K  15     0.  071     0.06  -   0.1    

Ah  S  R  K  20     0.  148     0.14  -   0.2    

Ah  S  R  K  22      0.    030*     0.04  - 0.08      

Ah  S  R  K  24     0.0  28     0  -    0.03        

à  Again, the observed variation of allele frequencies is compatible with a model of negative frequency-dependent selection

implementing the dominance network (but…)

Allele  frequency  varia0on  

(32)

This effet is strong

It is only correctly understood when taking into account : -  the complex dominance network

-  the particular mode of selection (on male vs. male + female fitness)

Modifies  the  distribu0on  of  allelic  frequencies  and  its   evolu0on  between  successive  genera0ons  

Balancing  selec0on    

at  the  self-­‐incompa0bility  locus  

(33)

•  The  bewildering  diversity  of  plant  ma0ng  systems  :  so   many  ways  of  doing  it  !  

•  Several  different  types  of  mul0allelic  self-­‐incompa0bility   systems  

•  How  natural  selec0on  acts  on  self-­‐incompa0bility  

•  What  self-­‐incompa0bility  tells  us  about  the  molecular  

bases  and  evolu0on  of  dominance/recessivity  interac0ons  

Outline  

(34)

Raphael  

MEHEUST   Eléonore  

DURAND   Jonathan  

KITT   Pauline  

GOUBET  

L’équipe  “Ecologie  et  évolu&on  de  l’auto-­‐incompa&bilité”  

(35)

Dominance/recessivity  

Phenotypic  effect  of  an  allele  (recessive)  masqued    

by  that  of  another  allele  at  the  same  locus  (dominant).      

   

(36)

Dominance/recessivity  

wt/wt   -­‐/wt   -­‐/-­‐  

1  

1-­‐s   trait  

(37)

Dominance/recessivity  

wt/wt   -­‐/wt   -­‐/-­‐  

?  

1  

1-­‐s   1-­‐hs  

trait  

(38)

Dominance/recessivity  

wt/wt   -­‐/wt   -­‐/-­‐  

?  

1  

1-­‐s   1-­‐hs  

trait  

wt/wt   -­‐/wt   -­‐/-­‐  

h<0.5   recessive  

(39)

Dominance/recessivity  

wt/wt   -­‐/wt   -­‐/-­‐  

wt/wt   -­‐/wt   -­‐/-­‐  

?  

h=0.5  

co-­‐dominant  

h<0.5   1  

1-­‐s   1-­‐hs  

trait  

recessive  

(40)

Dominance/recessivity  

wt/wt   -­‐/wt   -­‐/-­‐  

?  

1  

1-­‐s   1-­‐hs  

trait  

wt/wt   -­‐/wt   -­‐/-­‐  

h=0.5  

co-­‐dominant  

h<0.5   h>0.5  

recessive   dominant  

(41)

copy (hence have higher than average heterozygous effect).

In the second case, because holes are independent of trait effects, heterozygous effects of strongly and mildly deleteri- ous mutations should be drawn from the same distribution and thus have the same mean value. The data on lethal mutations in Drosophila (Simmons and Crow 1977) and yeast (Szafraniec et al. 2003) clearly support the second possibility. The data on the fitness effect of gene deletion in yeast (Steinmetz et al. 2002) also show that strongly deleterious deletion (around 20% of the deletions) have independent heterozygous and homozygous effect as indi- cated by the analysis of Agrawal and Whitlock (2011). Using their “model7” (providing the best fit to the data), muta- tions with s = 0.05 have hs = 0.013 while mutations with s = 0.5 (a 10-times increase) have hs = 0.014 (a 1.06 times increase). In other words, mean heterozygote fitness is constant for a wide variation ofsvalues within the minority of deletion of large effect. Such a flat relationship is exactly

what is predicted if the ruggedness on homozygotes takes the form of holes as we intuitively present it (Figure 10B).

These observations show first that a smooth landscape model is not sufficient to account for the distribution of mutations of large effects. Second they show that incorpo- rating ruggedness in the form of holes (rather than thresh- olds) may account for the distribution of effect of this class of mutations. This is not so surprising; genetic incompati- bilities are commonplace as revealed by recent progress on the genetics of speciation (Orr and Presgraves 2000) or the observation that species can often have very similar pheno- types and yet cannot interbreed. Of course, this does not exclude the possibility that extreme trait values could be lethal or that environmental variation can cause some form of lethal fitness threshold too (Figure 10a), but it does sug- gest that incompatibilities are the main source of strongly deleterious mutation in the laboratory experiments men- tioned above. New data would be valuable to further study

Figure 9 Survey of empirical estimates of average dominance. We confronted our prediction (hRwithin [0.25–0.5] and closer to 0.25, shaded region) with different empirical estimates ofhR(with their condence interval), across species and different traits.D. melanogaster: (A) viability (Chavarriaset al.

2001), (B) viability (Fry and Nuzhdin 2003), (C) female early fecundity, female late fecundity, male longevity, female longevity, male mating ability, weighted mean (not used to calculate our composite estimate of average dominance) (Houleet al. 1997), (D) viability, recalculated hR from different Mukais experiments (Simmons and Crow 1977).C. elegans: (E) productivity, survival to maturity, longevity, intrinsic rate of increase, convergence rate, generation rate (Vassilievaet al. 2000), (F) relative tness (Peters et al. 2003). Saccharomyces cerevisiae, (G) growth rate (Szafraniec et al. 2003). (H) Composite weighted estimate ofhR across studies 0.27 [CI 0.18–0.36].

Figure 10 Alternative models for mutations of large ef- fect and lethals. (A) The tness function is truncated for extreme trait values: any mutation with effect larger than some tness threshold has a much stronger deleterious effect than with a smooth landscape model. As a conse- quence, the average heterozygous effect of mutations of weak homozygous effect (pink) is necessarily smaller than that of mutations of large homozygous (blue). (B) Muta- tions of large effects and lethals result from genetic in- compatibilities unrelated to the trait values. For the sake of illustration, these incompatibilities are illustrated as small random holes on thetness surface, but these holes are not necessarily a xed feature of the tness surface, they may differ across genetic background or environ- ments. In this case the average heterozygous effect of mild and strongly deleterious mutations (including lethal) is equal on average.

932 F. Manna, G. Martin, and T. Lenormand

Dominance/recessivity  

à   Most  major-­‐effect  muta0ons  are  recessive;  

 i.e.,  the  wild-­‐type  allele  is  almost  always  the  dominant  allele    

Manna  et  al.  2012  

(42)

What  makes  dominant  alleles  dominant  and  recessive  alleles  recessive  ?  

 à  A  major  scien0fic  controversy  of  the  XXth  century    

Fisher  (1928):    

 

Existence  of  dominance  modifiers      

Wright  (1929,  1934)  

MIR5629  

Dominance/recessivity  

(43)

 «  …there  is  a  tendency  always  at  work  in  nature  which  modifies  the  response   of  the  organism  to  each  mutant  gene  in  such  a  way  that  the  wild  type  tends   to  become  dominant.  »        Fisher  (Am.  Nat.  1928)  

à  The  dominance  of  wt  alleles  would  have   evolved  to  decrease  the  impact  of  muta0ons  

à  Fisher  postulates  the  existence  of  genes  M/m  modifiers  of   dominance  between  alleles  of  other  genes  A/a  

Dominance/recessivity  

(44)

Wright  (Am  Nat.  1929)  

Equilibrium  frequency  of  allele  a  :   µ /hs  

à  Selec0ve  advantage  exists  but  is  very  small  !  

Dominance/recessivity  

(45)

Wright’s  physiological  model  (1934)  

Kaczer  &  Burns  1981     à  Dominance  =  a  simple  physiological  consequence  

of  the  structure  of  metabolic  networks  

Dominance/recessivity  

(46)

Le  coup  de  grâce  ?  

Even  in  Chlamydomonas  (mostly  haploid),   muta0ons  tend  to  be  recessive.  

 «    This  result  falsifies  Fisher's  theory  of   dominance  and  provides  strong  support   for  the  alterna0ve  physiological  theory.  »  

           

         Orr,  Nature  1991  

Dominance/recessivity  

(47)

What  makes  dominant  alleles  dominant  and  recessive  alleles  recessive  ?  

 à  A  major  scien0fic  controversy  of  the  XXth  century    

Fisher  (1928):    

 

Existence  of  dominance  modifiers      

Wright  (1929,  1934):    

Dominance  modifiers  very  unlikely     rather  :  physiological  theory    

(Kaczer  &  Burns  1981).  

MIR5629  

Dominance/recessivity  

(48)

What  makes  dominant  alleles  dominant  and  recessive  alleles  recessive  ?  

 à  A  major  scien0fic  controversy  of  the  XXth  century    

Fisher  (1928):    

 

Existence  of  dominance  modifiers      

Wright  (1929,  1934):    

Dominance  modifiers  very  unlikely     rather  :  physiological  theory    

(Kaczer  &  Burns  1981).  

MIR5629  

0-­‐1   ✔  

✗  

Dominance/recessivity  

(49)

…  an  old  and  resolved  issue  ?  

  Main  argument  :  low  heterozygote  frequency  

  …  but  what  about  gene0c  systems  in  which  heterozygote   frequency  is  high  ?  

  -­‐   selec0on  in  heterogeneous  environnement   -­‐   during  spread  of  a  favorable  allele  

-­‐   heterozygote  avantage  

-­‐   nega0ve  frequency-­‐dependant  selec0on  

O}o  &  Bourget  (Am.  Nat  1999)  

Dominance/recessivity  

(50)

Self-­‐incompa&bility  in  the  flowering  plants  

(51)

Self-­‐incompa&bility  in  the  flowering  plants  

✔  

(52)

S1  

SCR   SRK  

pollen   pis&l  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

Brassicaceae  self-­‐incompa&bility  at  a  glance  

(53)

≈  31-­‐110  kb  

S1   S2   S3   S4  

5’  

Flanking   3’  

Flanking  

S-­‐locus  

SCR   SRK  

pollen   pis&l  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

Brassicaceae  self-­‐incompa&bility  at  a  glance  

•  Large  number  of  haplotypes    

•  Specific  lock-­‐and-­‐key  combina0ons  

(54)

≈  31-­‐110  kb  

S1   S2   S3   S4  

5’  

Flanking   3’  

Flanking  

S-­‐locus  

SCR   SRK  

pollen   pis&l  

Self  

pollina&on   Cross   pollina&on  

No  molecular     docking   Molecular    

docking  

Inhibi0on  of     self-­‐pollen   germina0on  

Cross-­‐pollen     germina0on  

Goubet  et  al.  (2012),  Castric  et  al.  (2013)  

Brassicaceae  self-­‐incompa&bility  at  a  glance  

(55)

mécanisme  moléculaire  

Hi sco ck  e t  a l.,  T RP S   SCR1

 

SCR2   SRK1  

SRK3  

Pollen  S1/  S2  

Pis0l  S1/  S3  

molecular recognition

signalling pathway

Self-­‐incompa&bility  in  the  Brassicaceae  

(56)

(from Schierup &

Vekemans 2008 Curr.

Op. Pl. Biol. 11: 116)

A  textbook  example  of  balancing  (nega0ve  frequency-­‐dependent)  selec&on    

è   mul0allelism  (Wright  1939)  

è   long-­‐term  maintenance  of  S-­‐alleles  (Vekemans  &  Slatkin  1994)   è   high  heterozygosity  

Self-­‐incompa&bility  in  the  Brassicaceae  

(57)

[S

2

]   [S

1

]   S

2

,S

1  

S 2 >S 1  

Dominance/recessivity    

at  the  self-­‐incompa&bility  locus  

(58)

Dominance/recessivity    

at  the  self-­‐incompa&bility  locus  

7

Le réseau de dominance chez Arabidopsis

Arabidopsis lyrata Arabidopsis halleri

Castric et al., 2008

Ah01 Ah03 Ah28 Ah29Ah10 Ah04 Ah12 Ah13 Ah20 Ah15

=>>>>>>>

?

Dr Éléonore Durand

> 50 haplotypes

→ > 1225 combinaisons hétérozygotes possibles !

→ 26/45 combinaisons testées

→ 1 seul cas de codominance

→ Hiérarchie de dominance linéaire

Eléonore   DURAND  

Ah01   Ah03   Ah04   Ah12   Ah13   Ah20  

Ah01      

 "  "  "  "  "

Ah03   1.00(5)0.00(9)11            "  "  "

 "

Ah04   1.00(10)0.00(22)22       1.00(10)1  

0.07(15)1          "  "

 "

Ah12   1.00(12)0.00(19)22     0.83(6)1  

0.00(5)1   0.90(20)1  &  2  

0.09(23)  1  &  2          "

 "

Ah13   1.00(5)0.00(4)11       0.83(12)1  

0.00(10)1   1.00(11)1  

0.08(13)1     1.00(10)1  

0.00(11)1        

   

Ah20   0.90(10)0.00(16)22     1.00(5)0.00(5)11       0.97(32)0.00(15)22     1.00(11)0.10(10)2  2   0.00(11)0.00(11)11        

(59)

Dominance  is  prevalent:  

almost  no  co-­‐dominance.  

Dominance/recessivity    

at  the  self-­‐incompa&bility  locus  

7

Le réseau de dominance chez Arabidopsis

Arabidopsis lyrata Arabidopsis halleri

Castric et al., 2008

Ah01 Ah03 Ah28 Ah29Ah10 Ah04 Ah12 Ah13 Ah20 Ah15

=>>>>>>>

?

Dr Éléonore Durand

> 50 haplotypes

→ > 1225 combinaisons hétérozygotes possibles !

→ 26/45 combinaisons testées

→ 1 seul cas de codominance

→ Hiérarchie de dominance linéaire

Eléonore   DURAND  

Ah01   Ah03   Ah04   Ah12   Ah13   Ah20  

Ah01      

 "  "  "  "  "

Ah03   1.00(5)0.00(9)11            "  "  "

 "

Ah04   1.00(10)0.00(22)22       1.00(10)1  

0.07(15)1          "  "

 "

Ah12   1.00(12)0.00(19)22     0.83(6)1  

0.00(5)1   0.90(20)1  &  2  

0.09(23)  1  &  2          "

 "

Ah13   1.00(5)0.00(4)11       0.83(12)1  

0.00(10)1   1.00(11)1  

0.08(13)1     1.00(10)1  

0.00(11)1        

   

Ah20   0.90(10)0.00(16)22     1.00(5)0.00(5)11       0.97(32)0.00(15)22     1.00(11)0.10(10)2  2   0.00(11)0.00(11)11        

(60)

Ah01   Ah03   Ah04   Ah12  

Ah13  

=  

Ah20  

>   >   >   >  

Dominance  is  prevalent:  

almost  no  co-­‐dominance.  

Dominance/recessivity    

at  the  self-­‐incompa&bility  locus  

7

Le réseau de dominance chez Arabidopsis

Arabidopsis lyrata Arabidopsis halleri

Castric et al., 2008

Ah01 Ah03 Ah28 Ah29Ah10 Ah04 Ah12 Ah13 Ah20 Ah15

=>>>>>>>

?

Dr Éléonore Durand

> 50 haplotypes

→ > 1225 combinaisons hétérozygotes possibles !

→ 26/45 combinaisons testées

→ 1 seul cas de codominance

→ Hiérarchie de dominance linéaire

Eléonore   DURAND  

Linear   hierarchy  

Ah01   Ah03   Ah04   Ah12   Ah13   Ah20  

Ah01      

 "  "  "  "  "

Ah03   1.00(5)0.00(9)11            "  "  "

 "

Ah04   1.00(10)0.00(22)22       1.00(10)1  

0.07(15)1          "  "

 "

Ah12   1.00(12)0.00(19)22     0.83(6)1  

0.00(5)1   0.90(20)1  &  2  

0.09(23)  1  &  2          "

 "

Ah13   1.00(5)0.00(4)11       0.83(12)1  

0.00(10)1   1.00(11)1  

0.08(13)1     1.00(10)1  

0.00(11)1        

   

Ah20   0.90(10)0.00(16)22     1.00(5)0.00(5)11       0.97(32)0.00(15)22     1.00(11)0.10(10)2  2   0.00(11)0.00(11)11        

(61)

Dominance/recessivity    

at  the  self-­‐incompa&bility  locus  

Allele  frequencies  

in  natural  popula0ons   Pa}erns  of  molecular  evolu0on  

V. LLAURENS ET AL.

Figure 3.Frequencies of S-haplotypes observed in the adult population and predicted from finite population simulations according to dominance pattern 1 assuming three dominance classes in pistils and strictly hierarchical relationships in pollen (see Fig. 4). Black bars:

observed frequencies in adult population; white bars: expected frequencies under Wright’s model; gray bars: expected frequencies under the fecundity selection model; error bars represent the 95% confidence intervals obtained across 10,000 simulation runs.

AhS22 was dominant over AhS01. Overall, these results demon- strate for six S-haplotypes (all but AhS22 and AhS24) that they are expressed and functional inA. halleri.

COMPARING OBSERVED AND EXPECTED HAPLOTYPE FREQUENCIES IN THE ADULT POPULATION

When computing S-allele frequencies in the adult population sample, we assumed that when each of the most recessive S- haplotypes AhS01, AhS02, and AhS04 were found alone in an individual, this individual was a homozygote. The results showed that AhS01, the most recessive S-haplotype, had by far the highest observed frequency, as expected from theory (Fig. 3). In contrast, for the other haplotypes, we found no clear relationship between frequencies and dominance levels.

To simulate the evolution of haplotype frequencies at the S- locus, we used the dominance interactions inferred from the exper- imental pollinations, and for the unresolved cases (see above) we tested three alternative dominance patterns (Fig. 4). Under both frequency-dependent selection models (Wright’s and fecundity selection models), pattern 1 provided the best fit to the empirical data, followed closely by pattern 2, whereas the worst fit was ob- tained when assuming strict codominance among all S-haplotypes (Table 3). This analysis demonstrates that the pattern of domi- nance interactions among S-haplotypes has a paramount influence on haplotype frequencies in natural populations. Wright’s model under patterns of dominance 1 and 2 significantly outperformed

(!AIC>25) the fecundity selection model (Table 3, Fig. 3).

The rank orders of likelihoods of the different models and dom- inance patterns were consistent under various mutation ratesµ and population sizesN(results not shown).

HAPLOTYPE DIVERSITY AT THE S-LOCUS

To determine whether haplotype diversity at the S-locus in this population was compatible with a model of mutation/drift/NFDS, we recorded the proportion of simulation runs in which any of the eight S-haplotypes was lost (Table 4). Both models of selection showed similar overall proportions of haplotype loss, with only 21% and 24% of simulations losing at least one S-haplotype, under Wright’s model and the fecundity selection model, respectively.

However, the distributions of allele losses were strikingly different between models. In Wright’s model, only recessive S-haplotypes (AhS01, AhS02, or AhS04) were likely to be lost, whereas domi- nant S-haplotypes (AhS22 and AhS24) were more susceptible to drift in the fecundity selection model. This suggests either that the population is young and will probably lose S-haplotypes in the future, or that low but recurrent levels of gene flow into the population are maintaining the observed haplotype diversity.

As we found 33 individuals with no S-haplotype identified in a total of 567 individuals (5.8%), we are certainly missing one or a few additional S-haplotypes. Because the number of gene copies observed for S-haplotypes ranged from 21 (AhS24) to 218 (AhS01), with a median around 100, it is likely that we did not miss 2 5 5 2 EVOLUTIONOCTOBER 2008

Llaurens  et  al.  Evolu0on  2008   Goubet  et  al.  PLoS  Gene0cs  2012  

Evolu0onary  consequences  

Références

Documents relatifs

In this section, we discuss the implementation of computational agents that are limited in their ability to make use of theory of mind while playing the limited bidding game, similar

Within Belgian opposition parties, however, the staffing advantage is far from clear and the human resources of parliamentary – and central offices seem to be in

9.In 16---, the Pilgrim fathers , the Puritans established the

57.7 and 57.17 : “The following collective rights of indigenous communes, communities, peoples, and nations are recognized and guaranteed, in accordance with the Constitution

We observed from tongue contour tracings that the Mid Bunched configuration generally has a lower tongue tip than the Front Bunched one in speakers who present both bunched

As pointed out by Katz and Mair (1993), “the resources of the party in public office may not be visible in pure party terms, especially when the party in question includes a

(1968) Factors influencing expression of oxidant damage to plants. Micronutrients and cancer prevention. Dietary antioxidant flavonoids and risk of coronary heart disease:

Drawing inspiration from the Belgian Constitution of 1831, Art. 37 was last modified by the 1956 constitutional amendment. During the revision, Art. 37 was at the centre of a debate