• Aucun résultat trouvé

Seismic overturning moments in single-storey structures with ground compliance

N/A
N/A
Protected

Academic year: 2021

Partager "Seismic overturning moments in single-storey structures with ground compliance"

Copied!
24
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Seismic overturning moments in single-storey structures with ground

compliance

Rainer, J. H.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=2925fde6-9698-48b3-b2ed-13a999dfccc9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=2925fde6-9698-48b3-b2ed-13a999dfccc9

(2)
(3)
(4)

SEISMIC OVERTURNING MOMENTS IN SINGLE -S TOREY S T R U C T U R E S WITH GROUND C O M P L I A N C E J . H. R a i n e r (1) SYNOPSIS A m e t h o d i s p r e s e n t e d f o r d e t e r m i n i n g o v e r t u r n i n g m o m e n t s in s i n g l e - s t o r e y s t r u c t u r e s with f l e x i b l e f o u n d a t i o n s s u b j e c t e d to e a r t h q u a k e s . By m e a n s of a t r a n s f o r m a t i o n of f r e q u e n c y r e s p o n s e c u r v e s , a n e q u i v a l e n t s i n g l e - d e g r e e - o f - f r e e d o m m o d e l i s d e r i v e d to r e p r e s e n t t h e o v e r t u r n i n g m o m e n t of t h e s t r u c t u r e . T h i s m o d e l i s c h a r a c t e r i z e d by t h e f u n d a m e n t a l r e s o n a n c e f r e q u e n c y of t h e i n t e r a c t i o n s t r u c t u r e and a n e q u i v a l e n t d a m p i n g r a t i o . R e - s p o n s e c a l c u l a t i o n s a r e p r e s e n t e d and r e s p o n s e s p e c t r u m t e c h n i q u e s a r e d e s c r i b e d f o r finding m a x i m u m o v e r t u r n i n g m o m e n t s .

The r e s u l t s f r o m a p a r a m e t e r s t u d y show t h a t s t r u c t u r e s with a h e i g h t - t o - b a s e width r a t i o g r e a t e r t h a n 1 . 0 g e n e r a l l y h a v e l a r g e r o v e r t u r n i n g m o - m e n t s t h a n f i x e d - b a s e d s t r u c t u r e s with t h e s a m e r e s o n a n c e f r e q u e n c y and i n - t e r s t o r e y d a m p i n g .

I

Research O f f i c e r , Building Physics S e c t i o n , Division of Building Research, National Research Council of Canada, Ottawa.

(5)

SEISMIC OVERTURNING MOMENTS IN SINGLE-STOREY STRUCTURES WITH GROUND COMPLLANCE

b Y J. H. Rainer

The subject of s t r u c t u r e-ground interaction in buildings under s e i s m i c d i s t u r b a n c e s h a s lately received considerable attention (1, 2, 3, 4, 5, 6). These studies have concerned themselves exclusively with relative s t o r e y displace- m e n t s in s t r u c t u r e s that r e s t on deformable foundations. Although the d e t e r - mination of i n t e r s t o r e y displacements and the resulting f o r c e s a r e of g r e a t significance in the a s s e s s m e n t of s t r u c t u r a l adequacy, the overturning m o - m e n t s a s s o c i a t e d with the dynamic f o r c e s a r e a l s o of importance. The over- turning moments a f f e c t the axial loads i n the v e r t i c a l supporting m e m b e r s of a building, which a r e then t r a n s m i t t e d to the foundation where finally they have to b e r e s i s t e d by the soil.

If the a x i a l load in the columns i s exceeded, c o m p r e s s i o n f a i l u r e s a r e possible, a s was observed i n s o m e buildings a f t e r the C a r a c a s 1967 earth- quake (7). When the load capacity of the soil i s exceeded, s h e a r f a i l u r e s in the foundation m a t e r i a l s may r e s u l t , e. g. Niigata Earthquake 1964 (8). The behaviour of the foundation m a t e r i a l i s f u r t h e r complicated by tendency of

s o m e soils to liquefy under dynamic loading. In either c a s e , a c l e a r defini- tion of the loads imposed by overturning moments i s e s s e n t i a l to be able to a s s e s s the safety and p e r f o r m a n c e of s t r u c t u r e and foundation under e a r t h - quake motions.

With the consideration of g r o u n d - s t r u c t u r e interaction under dynamic loads, the determination of overturning moments becomes a m o r e complex p r o b l e m than f o r a comparable fixed-based s t r u c t u r e . To aid in the under-

standing of the phenomenon involved, a relatively simple c a s e i s investigated f i r s t , namely that of the single- s t o r e y s t r u c t u r e . The r e s u l t s presented here, however, will have d i r e c t applicability to s t r u c t u r e s such a s elevated s t o r a g e tanks and to s t r u c t u r e s that c a n be idealized r e a l i s t i c a l l y by the dynamic model of a s i m p l e oscillator founded on a flexible b a s e .

The method of analysis employed h e r e i s to d e r i v e a n equivalent single-degree-of -freedom (S. D. F . ) model f o r the overturning moment of the i n t e r a c t i o n s t r u c t u r e . This approach has been developed previously f o r studies of r e l a t i v e s t o r e y displacements in s i n g l e - s t o r e y interaction s t r u c - t u r e s under earthquake loadings (9). Among the advantages of using an equiv- a l e n t S. D. F. model i s the d i r e c t applicability of techniques that have been developed f o r S. D. F. o s c i l l a t o r s , such a s n u m e r i c a l integration and the r e - sponse s p e c t r u m . F u r t h e r m o r e , extensive p a r a m e t e r studies can be p e r - f o r m e d without having to r e l y on the r e s u l t s of lengthy r e s p o n s e calculations.

h

the following pages a r e described the interaction model that was employed i n the study, the derivation of a n equivalent single-degree-of- f r e e d o m model to r e p r e s e n t the overturning moment of the interaction s t r u c - ture, and n u m e r i c a l r e s u l t s f r o m a p a r a m e t e r study. The u s e of the

(6)

e q u i v a l e n t S . D. F. m o d e l i s i l l u s t r a t e d with s p e c i f i c r e s p o n s e c a l c u l a t i o n s a n d with e a r t h q u a k e r e s p o n s e s p e c t r a . The r e s u l t s a r e d i s c u s s e d and g e n e r a l c o n c l u s i o n s a r e p r e s e n t e d .

INTERACTION MODEL

T h e i n t e r a c t i o n m o d e l u n d e r study i s t h a t shown i n F i g . 1, which i s i d e n t i c a l t o t h e one u s e d i n R e f e r e n c e s 3 and 9 . S i n c e d e t a i l e d d e r i v a t i o n s a r e a v a i l a b l e i n t h e s e r e f e r e n c e s , only the m a i n r e s u l t s a r e p r e s e n t e d h e r e . With t h e i n t r o d u c t i o n of r e l a t i v e h o r i z o n t a l b a s e d i s p l a c e m e n t and rocking, t h e S. D. F. s y s t e m h a s b e c o m e a t h r e e - d e g r e e - o f - f r e e d o m s y s t e m . F o r t h e t h r e e g e n e r a l i z e d c o o r d i n a t e s , r e l a t i v e i n t e r s t o r e y d i s p l a c e m e n t , h o r i z o n t a l d i s p l a c e m e n t of s t r u c t u r e , and r o c k i n g a b o u t t h e b a s e , t h e e q u a - tions of m o t i o n a r e , r e s p e c t i v e l y ,

. .

I , ,

t I 0 @ t n q h u H t M = 0 w h e r e r 2 = m - r 2 I0 0 4

+

m1

4'

-

&

= m l h 2 , UH

-

u t UB t h @ t U m , g a n d d o t s above a v a r i a b l e r e p r e s e n t d i f f e r e n t i a t i o n with r e s p e c t to t i m e . Of t h e s e , E q . 3 i s of p r i m a r y i n t e r e s t f o r t h e d e t e r m i n a t i o n of o v e r t u r n i n g m o - m e n t s . Under a s i n u s o i d a l b a s e d i s t u r b a n c e , ug = welpt, the amplification f a c t o r s X, Y and Z f o r r e l a t i v e s t o r e y d i s p l a c e m e n t Um, b a s e d i s p l a c e - m e n t UB and t h e a n g u l a r r o c k i n g component @ a r e given by

i p t UB = We X = u

( 5

+

i & ) g ( 4 i p t

m

= We Y = u (Y1

+

i Y 2 ) g ( 6 )

(7)

F o r a c i r c u l a r b a s e

w h e r e

t h e

K's

c a n b e i n t e r p r e t e d a s S. D. F. s t i f f n e s s and the C1s a s damping t e r m s f o r t h e foundation (10) and a r e plotted i n Fig. 2 . T h e s e i n t u r n a r e a function of t h e Bycroft coefficients fl and f, (11). The s u b s c r i p t s H and

R

r e f e r to h o r i z o n t a l and rocking d i s p l a c e m e n t s , r e s p e c t i v e l y . G = s h e a r modulus of t h e ground, r = r a d i u s of b a s e , i =

f l

a = p r / V s = non-dimensional frequency, Vs = s h e a r wave velocity of ground, p = frequency. Substitution i n t h e equation of motion, simplification and r e - a r r a n g e m e n t gives t h e f ollow- ing r e l a t i o n s h i p f o r the s t e a d y s t a t e d i s p l a c e m e n t amplification factor:

(8)
(9)

which c a n b e e x p r e s s e d m o r e compactly a s

In Eq. (11)

and

A = r e l a t i v e i n t e r - s t o r e y damping r a t i o ,

p = d e n s i t y of ground

The t r a n s f e r function f o r the s y s t e m , T ~ due to ground d i s p l a c e m e n t i s ~ ,

obtained by r e a r r a n g i n g Eq. 1 1. g

The t r a n s f e r function f o r ground a c c e l e r a t i o n m a y then b e obtained a s follows:

w h e r e d d e n o t e s the g e n e r a l i z e d d i s p l a c e m e n t v e c t o r f o r t h e s t r u c t u r e . OVERTURNING MOMENTS

The o v e r t u r n i n g m o m e n t M acting on the e l a s t i c h a l f - s p a c e a s a r e s u l t of t h e dynamic r e s p o n s e of the s t r u c t u r e i s obtained f r o m Eq. 3 :

Upon s u b s t i t u t i o n of s t e a d y - s t a t e amplification f a c t o r s , Eqs. 4 to 6,

and a p p r o p r i a t e s t r u c t u r a l c o n s t a n t s , the t r a n s f e r function f o r overturning m o m e n t r e l a t i v e t o ground a c c e l e r a t i o n , M, i s given by

M l t a

Tii

-1

h Y t ~ t Z

(10)

F o r a r i g i d l y b a s e d s t r u c t u r e , Y = 0, X = 1 ; thus

X, Y , and Z m a y b e computed f r o m Eq. 12, and the addition in Eq. 15 has to be c a r r i e d out with due r e g a r d to s i g n s and r e a l and i m a g i n a r y components. T h e f r e q u e n c y r e s p o n s e c u r v e f o r t h e o v e r t u r n i n g m o m e n t of a typical s t r u c - t u r e ( S t r u c t u r e No. 1, T a b l e 1 ) i s p r e s e n t e d in Fig. 3 ( a ) .

EQUIVALENT S. D. F. FOR OVERTURNING MOMENTS

The r e s p o n s e of a l i n e a r d y n a m i c a l s y s t e m i s c o m p l e t e l y d e t e r - mined by i t s f r e q u e n c y r e s p o n s e c u r v e , which r e p r e s e n t s a plot of the t r a n s - f e r function of the s y s t e m v e r s u s f r e q u e n c y . The t r a n s f e r function of o v e r - turning m o m e n t d u e to ground a c c e l e r a t i o n i s given by E q . 15, which, when plotted a s a function of f r e q u e n c y , r e s u l t s in the f r e q u e n c y r e s p o n s e c u r v e f o r o v e r t u r n i n g m o m e n t s shown in F i g . 3 ( a ) . Also shown in dotted l i n e s , i s the f r e q u e n c y r e s p o n s e c u r v e f o r o v e r t u r n i n g m o m e n t s of a n S . D. F. s y s t e m with the s a m e r e s o n a n c e f r e q u e n c y

R

when subjected to ground a c c e l e r a t i o n ug.

DERIVATION O F EQUIVALENT S . D. F. MODEL

To s e t up a n equivalent S . D. F. m o d e l f o r o v e r t u r n i n g m o m e n t s , i t i s n e c e s s a r y t o c o n v e r t the f r e q u e n c y r e s p o n s e c u r v e f o r o v e r t u r n i n g m o - m e n t s shown in F i g . 3 into that of a n S . D. F. s y s t e m . With r e f e r e n c e to F i g . 3 ( b ) , t h r e e conditions a r e to b e s a t i s f i e d by the equivalent S . D. F . m o d e l and the o r i g i n a l i n t e r a c t i o n s y s t e m : ( 1 ) i d e n t i c a l r e s o n a n c e f r e q u e n c y ;

( 2 ) a g r e e m e n t of o r d i n a t e s of the f r e q u e n c y r e s p o n s e c u r v e s away f r o m r e s - onance; and ( 3 ) a g r e e m e n t of o r d i n a t e s of the f r e q u e n c y r e s p o n s e c u r v e s a t the r e s o n a n c e f r e q u e n c y .

1. I d e n t i c a l R e s o n a n c e F r e q u e n c y

S i ~ i c e the r e s o n a n c e f r e q u e n c y of the equivalent S . D. F. m o d e l iz the s a m e a s the f u n d a m e n t a l f r e q u e n c y of the i n t e r a c t i o n s y s t e m , s t a n d a r d r i g e n - v a l u e m e t h o d s applied to the m a t h e m a t i c a l m o d e l of the i n t e r a c t i o n s y s t e m will yield the r e q u i r e d r e s o n a n c e f r e q u e n c y . By e l i m i n a t i n g the r o w s and c o l u m n s c o r r e s p o n d i n g to the i m a g i n a r y t e r m s of the m a t r i x i n E q . 11, the r o o t s of the r e s u l t i n g d e t e r m i n a n t a r e the eigenvalues of the i n t e r a c t i o n s y s t e m . The l o w e s t f r e q u e n c y c o r r e s p o n d s to the fundamental, and c o n s e - quently to the r e s o n a n c e f r e q u e n c y of the equivalent S . D. F. m o d e l . A l t e r - natively, a n u m e r i c a l s e a r c h f o r the l o w e s t r e s o n a n c e peak in the f r e q u e n c y r e s p o n s e c u r v e s , using Eq. 11, will a l s o give the r e s o n a n c e f r e q u e n c y of t h e equivalent S. D. F. m o d e l .

2. A g r e e m e n t of O r d i n a t e s Away F r o m R e s o n a n c e

F o r a n S . D. F. o s c i l l a t o r the quantity t h a t i s usually computed i s t h e r e l a t i v e d i s p l a c e m e n t b e t w e e n the b a s e and t h e s p r i n g - s u p p o r t e d m a s s . In

(11)

o r d e r t h a t s p e c t r a l techniques and S . D.

F.

n u m e r i c a l i n t e g r a t i o n m e t h o d s m a y b e employed f o r r e s p o n s e c a l c u l a t i o n of i n t e r a c t i o n s t r u c t u r e s , the f r e q u e n c y r e s p o n s e c u r v e f o r o v e r t u r n i n g m o m e n t s of the i n t e r a c t i o n s y s t e m m u s t b e c o n v e r t e d i n t o the f r e q u e n c y r e s p o n s e c u r v e f o r r e l a t i v e d i s p l a c e m e n t of the equivalent S. D. F. s y s t e m . The z e r o f r e q u e n c y i n t e r c e p t of the f r e q u e n c y r e s p o n s e c u r v e f o r r e l a t i v e d i s p l a c e m e n t Um

,

obtained by evaluating the t r a n s f e r function T;;

Vm

f r o m E q s . 11, 12 and 13 a t p = 0, c o r r e s p o n d s t o the d i s p l a c e m e n t r e s u l t - ing f r o m a b a s e input of z e r o f r e q u e n c y , i. e . a c o n s t a n t a c c e l e r a t i o n ii = 1. 0 .

The r e s u l t i n g r e l a t i v e d i s p l a c e m e n t of the . . S. D. F. s y s t e m i s then g

On the o t h e r hand, the z e r o f r e q u e n c y i n t e r c e p t f o r o v e r t u r n i n g m o m e n t s i s obtained f r o m Eq. 15, by s e t t i n g p = 0, Y = Z = 0 and X = 1, which then b e c o m e s

The o r d i n a t e s of the f r e q u e n c y r e s p o n s e c u r v e s f o r o v e r t u r n i n g m o m e n t a t f r e q u e n c i e s below r e s o n a n c e a r e brought t o c o i n c i d e with the o r d i n a t e s of a n S. D. F. s y s t e m if t h e f o r m e r a r e multiplied by 1 / R 2 . As will b e ex- plained l a t e r , a g r e e m e n t of o r d i n a t e s above r e s o n a n c e i s not c o m p l e t e l y

s a t i s f i e d by t h i s m u l t i p l i c a t i o n f a c t o r d u e t o d i f f e r e n c e s i n p h a s e . 3 . A g r e e m e n t of O r d i n a t e s a t R e s o n a n c e

T h e a m p l i t u d e of the r e s o n a n c e peak of the equivalent S. D. F. f r e - quency r e s p o n s e c u r v e obtained by m e a n s of t h e above multiplication i s now c h a r a c t e r i z e d b y a n equivalent damping r a t i o .

The damping r a t i o of a n S. D.

F.

s y s t e r n c a n b e computed f r o m the r e l a t i o n s h i p 1 ), = - 25 (18) w h e r e

5

= nondimensional a m p l i f i c a t i o n f a c t o r of a n S. D. F. o s c i l l a t o r a t t h e r e s o n a n c e f r e q u e n c y R

.

T h e f r e q u e n c y r e s p o n s e c u r v e of Tli of ti;e equivalent S. D.

F.

m o d e l h a s to b e c o n v e r t e d t o the nondimension%l f o r m

i n o r d e r t h a t E q . 1 8 m a y b e a p p l i c a b l e . A s a c o r o l l a r y to E q . 13, T..

rr,

26

b e m u l t i p l i e d by t h e v a r i a b l e p2 t o give T~:". But a t the r e s o n a n c e ug f r e q u e n c y , p e q u a l s R . T h e r e f o r e

I t should a l s o b e r e c a l l e d f r o m p r e c e g p a r a g r a p h s t h a t the c o n s t a n t

p l i c a t i o n f a c t o r 1 /R2 i s a p p l i e d to Tii

wm

t o a c h i e v e a g r e e m e n t with Tii

?2lt

- of the equivalent S. D. I?. m o d e l a t t h g z e r o f r e q u e n c y inte;cept. c o n s e q 6 e n t l y

(12)

the a m p l i t u d e

5,

of the nondimensional amplification f a c t o r of the equivalent S. D. F. model a t r e s o n a n c e b e c o m e s

This m e a n s t h a t f o r the calculation of the equivalent damping r a t i o

X e

,

the a c t u a l a m p l i t u d e s of the overturning m o m e n t t r a n s f e r function a t r e s o n a n c e , a s given by Eq. 15, c a n be u s e d i n Eq. 18 ( L I ) .

With r e s o n a n c e f r e q u e n c y R

,

the multiplication f a c t o r 1 /R

,

and the equivalent damping r a t i o Xe, the f r e q u e n c y r e s p o n s e c u r v e of the

equivalent S. D. F. s y s t e m i s completely d e s c r i b e d . S i n c e a l l a m p l i t u d e s of the f r e q u e n c y r e s p o n s e c u r v e f o r overturning m o m e n t s have b e e n multiplied by 1 /R any r e s p o n s e computed with t h i s equivalent S. D. F. m o d e l h a s to be multiplied by

n 2

i n o r d e r to obtain the o v e r t u r n i n g m o m e n t M / q h.

RESPONSE CALCULATIONS FOR OVERTURNING MOMENTS

F i g u r e 4 shows r e s p o n s e c a l c u l a t i o n s f o r o v e r t u r n i n g m o m e n t s f o r S t r u c t u r e s No. 1 and 2 of Table 1. F o r both i n t e r a c t i o n s y s t e m s the o v e r - turning m o m e n t , shown by solid l i n e s , i s l a r g e r than f o r a r i g i d l y b a s e d s t r u c t u r e of the s a m e n a t u r a l frequency, a s r e p r e s e n t e d by the dotted c u r v e . The r e s p o n s e s obtained f o r S t r u c t u r e No. 1 f r o m the equivalent S. D. F. m o d e l differ slightly f r o m the "exact1' one obtained by F a s t F o u r i e r t r a n s - f o r m (12) with t r a n s f e r function of Eq. 24,for the following r e a s o n .

The t r a n s f e r function f o r overturning m o m e n t , Eq. 15, i s s e e n to be a c o m p o s i t e quantity of a l l t h r e e d e g r e e s of f r e e d o m . Above the r e s o n a n c e f r e q u e n c y the a m p l i t u d e s of the f r e q u e n c y r e s p o n s e c u r v e f o r overturning m o m e n t will b e diminished by the r e l a t i v e b a s e d i s p l a c e m e n t , s i n c e i t h a s p h a s e opposite to t h a t of rocking and r e l a t i v e displacement(Fig.5). Consequently, f o r f r e q u e n c i e s above r e s o n a n c e the f r e q u e n c y r e s p o n s e c u r v e of the equivalent S. D. F. m o d e l will not have the s a m e p r o p o r t i o n of a m p l i t u d e s a s the overturning m o m e n t f r e q u e n c y r e s p o n s e c u r v e . S o m e d i f f e r e n c e of r e s p o n s e can thus be expected f r o m the equivalent S. D. F. m o d e l a s c o m p a r e d to the l ' e x a c t ' l method using the t r a n s f e r function and F o u r i e r t r a n s f o r m method. Since f o r m o s t s t r u c t u r e s the r e l a t i v e b a s e d i s p l a c e m e n t i s s m a l l c o m p a r e d to the i n t e r s t o r e y and rocking d i s p l a c e - m e n t s , the e r r o r will b e s m a l l . F o r S t r u c t u r e No. 1, the d i s c r e p a n c y was i n the o r d e r of 6% of the peak r e s p o n s e amplitude.

II

In r e f e r e n c e 9 i t h a s been d e m o n s t r a t e d t h a t u n d e r c e r t a i n simplifying a s s u m p t i o n s the equivalent damping

X

f o r r e l a t i v e d i s p l a c e m e n t and over

-

turning m o m e n t a r e the s a m e .

(13)

MAXIMUM OVERTURNING MOMENT FROM RESPONSE S P E C T R A

D e t e r m i n a t i o n of the m a x i m u m overturning m o m e n t under a p a r t i c

-

u l a r b a s e motion m a y b e a c h i e v e d d i r e c t l y f r o m the r e s p o n s e s p e c t r u m f o r that p a r t i c u l a r e a r t h q u a k e . In a c c o r d a n c e with the d e r i v a t i o n of the equiv- a l e n t S. D. F. s y s t e m d e s c r i b e d above, the following p r o c e d u r e i s indicated: (1) The fundamental r e s o n a n t frequency, wl, i s d e t e r m i n e d , and the

a m p l i t u d e s of the overturning m o m e n t r e s p o n s e c u r v e a r e multiplied by l / w t .

( 2 ) T h e equivalent damping X e i s d e t e r m i n e d a f t e r obtaining M/- h f r o m a n evaluation of Eq. 15 a t r e s o n a n c e , o r a p a r a m e t e r study s u c h a s i s p r e s e n t e d l a t e r .

( 3 ) Corresponding to the f r e q u e n c y wl, the value of m a x i m u m r e l a t i v e

d i s p l a c e m e n t i s r e a d f r o m the r e s p o n s e s p e c t r u m and multiplied by

w12 to obtain the v a l u e of the r a t i o f o r overturning moment, M / q h .

An a p p r o x i m a t i o n to t h e m a x i m u m overturning m o m e n t s of t a l l s t r u c t u r e s i s obtained by taking the undamped s p e c t r a l d i s p l a c e m e n t S D and multiplying i t by

w t

to g e t M/-h ; t h i s gives a c o n s e r v a t i v e e s t i m a t e .

PARAMETER STUDY

B e s i d e s the g r e a t g e n e r a l i t y i n h e r e n t in the method of d e r i v a t i o n of the equivalent S. D. F. model, a p a r a m e t e r study c a n b e conducted f o r a wide r a n g e of p a r a m e t e r s without having to p e r f o r m lengthy r e s p o n s e c a l - c u l a t i o n s . The r e s u l t s obtained a r e p r e s e n t e d s o t h a t r e s o n a n c e f r e q u e n c i e s and equivalent damping c a n b e found f o r s t r u c t u r e s having the specific p a r a - m e t e r s c o n s i d e r e d . In addition i t i s p o s s i b l e t o a r r i v e a t s o m e g e n e r a l con- c l u s i o n s r e g a r d i n g the behaviour of s t r u c t u r e s founded on flexible founda- tions.

The r a n g e of s t r u c t u r a l and foundation p a r a m e t e r s c o n s i d e r e d i s shown in Table 2. P a r a m e t e r S e t A includes elevated s t r u c t u r e s s u c h a s w a t e r t a n k s ; P a r a m e t e r S e t B would include n u c l e a r r e a c t o r containment v e s s e l s and o t h e r m a s s i v e s t r u c t u r e s . I t should b e pointed out, however, t h a t not a l l combinations of p a r a m e t e r s p r e s e n t e d m a y r e p r e s e n t physically r e a l i z a b l e s y s t e m s .

PARAMETER S E T A

F o r P a r a m e t e r S e t A of Table 2 , when the r a t i o of f i x e d - b a s e d f r e q u e n c y t o rocking frequency, %/w + , i s plotted a g a i n s t the r a t i o of f i x e d - b a s e d f r e q u e n c y to the fundamental r e s o n a n c e frequency, wl /wo

,

the v a l u e s f a l l between the bounds shown i n F i g .

6.

The lower c u r v e c o r r e s p o n d s to the t h e o r e t i c a l r e l a t i o n s h i p d e r i v e d by M e r r i t t and Housner ( 1 ) f o r a f l e x i b l e s t r u c t u r e on a b a s e with a r o t a t i o n a l d e g r e e of f r e e d o m only:

(14)

F o r P a r a m e t e r S e t A of Table 2, the v a r i a t i o n of the r a t i o MS/M1 of peak m a g n i t u d e s of the i n t e r a c t i o n s y s t e m to t h a t of a f i x e d - b a s e d S . D. F. s y s t e m with t h e s a m e n a t u r a l f r e q u e n c y i s shown i n F i g s . 7 and 8. I t m a y be o b s e r v e d t h a t f o r the t a l l n a r r o w - b a s e d s t r u c t u r e s t h e p e a k f o r t h e i n t e r - a c t i o n s y s t e m i s c o n s i d e r a b l y l a r g e r than t h a t of a f i x e d - b a s e d s t r u c t u r e with t h e s a m e n a t u r a l f r e q u e n c y . Only f o r high v a l u e s of a, and r e l a t i v e l y low s t r u c t u r e s a r e the o v e r t u r n i n g m o m e n t r e s o n a n c e p e a k s f o r i n t e r a c t i o n s t r u c t u r e s s m a l l e r than t h e S . D. F. c a s e .

PARAMETER S E T B

S i i n i l a r l y a s f o r P a r a m e t e r S e t A, a plot of t h e r a t i o s

w o / w +

v e r s u s

w

/w, f o r P a r a m e t e r S e t B of Table 2 g i v e s the c u r v e s shown i n F i g .

9 .

Again t g e r e l a t i o n s h i p f o r a rocking b a s e i s i n d i c a t e d by b r o k e n l i n e s . I t m a y be o b s e r v e d that a s t h e s t r u c t u r e s b e c o m e t a l l e r , t h e f r e q u e n c y r e d u c t i o n a p - p r o a c h e s t h a t of the f l e x i b l e s t r u c t u r e on a rocking b a s e , E q . 21.

I n Lhe study of r e s o n a n c e peak a m p l i t u d e s , f o r P a r a m e t e r S e t B, T a b l e 2, a s i m i l a r phenomenon a s f o r P a r a m e t e r S e t A i s d i s p l a y e d . In F i g u r e s 10 a n d 1 1 f o r the s t r u c t u r e s with t h e l a r g e r r a t i o of height to b a s e r a d i u s h / r , t h e r e s o n a n c e p e a k s of the o v e r t u r n i n g m o m e n t e x c e e d t h o s e of the S. D. F. (i. e . the f i x e d - b a s e d S. D. F. ), w h e r e a s f o r t h e low s t r u c t u r e the p e a k s a r e s m a l l e r than f o r t h e S . D, F. F i g u r e 10 s h o w s t h a t t h e p e a k o v e r - t u r n i n g m o m e n t a m p l i t u d e s f o r t h e s t r u c t u r e with b a s e m a s s m o = 100 000 lb s e c 2 i n . , shown by b r o k e n l i n e s , a r e only s l i g h t l y l e s s than t h o s e f o r m o = 400 000 l b s e c 2 / i n . , both top m a s s e s rrq e q u a l to 400 000 l b s e c 2 / i n . and a l l o t h e r p a r a m e t e r s being k e p t c o n s t a n t .

DISCUSSION O F RESULTS

F r o m t h e r e s u l t s p r e s e n t e d in t h e p a r a m e t e r s t u d y i t m a y b e ob- s e r v e d t h a t the r e s o n a n c e p e a k s of o v e r t u r n i n g m o m e n t s f o r s t r u c t u r e s whose h e i g h t s exceed the b a s e d i a m e t e r g e n e r a l l y a r e l a r g e r than t h e r e s o - n a n c e p e a k s of t h e f i x e d - b a s e d , S. D. F. s y s t e m . -4s the f r e q u e n c y r e s p o n s e c u r v e s f o r t h e i n t e r a c t i o n s t r u c t u r e and t h e S . D. F. s y s t e m both h a v e t h e s a m e z e r o f r e q u e n c y i n t e r c e p t , and a r e a l m o s t i d e n t i c a l e v e r y w h e r e e x c e p t n e a r t h e r e s o n a n c e f r e q u e n c y , a c o m p a r i s o n of r e s o n a n c e p e a k s then en- a b l e s one t o m a k e q u a l i t a t i v e g e n e r a l i z a t i o n s r e g a r d i n g t h e r e s p o n s e to a n a r b i t r a r y input. That i s , when t h e r e s o n a n c e p e a k s e x c e e d t h o s e of t h e S . D. F. s y s t e m , the r e s p o n s e of t h e i n t e r a c t i o n s t r u c t u r e will b e l a r g e r o r a t m o s t e q u a l to that of t h e S. D. F. s y s t e m . A n o t h e r way of i n t e r p r e t i n g t h e s e r e s u l t s i s by way of the damping r a t i o . A s y s t e m with a l a r g e r r e s o - n a n c e p e a k h a s a s m a l l e r d a m p i n g r a t i o , and c o n s e q u e n t l y a l a r g e r r e s p o n s e

(15)

u n d e r r a n d o m type or s t e a d y - s t a t e input

(LII).

It m a y t h e r e f o r e b e deduced f r o m F i g s . 7 , 8, 10 a n d 11 that f o r s o m e s t r u c t u r e s with foundation i n t e r - a c t i o n and a height exceeding the b a s e d i a m e t e r t h e o v e r t u r n i n g m o m e n t under e a r t h q u a k e m o t i o n s will be l a r g e r than f o r a r i g i d l y b a s e d S. D. F. s t r u c t u r e with the s a m e n a t u r a l f r e q u e n c y and i n t e r s t o r e y damping.

F r o m r e s u l t s p r e s e n t e d and t h e underlying d e r i v a t i o n of t h e equiv- a l e n t S. D. F. m o d e l , s o m e s i g n i f i c a n t p a r a m e t e r s c a n b e identified. T h e s e a r e : ( 1 ) t h e f r e q u e n c y r e d u c t i o n f r o m

w o

t o wl

,

( 2 ) t h e n o n - d i m e n s i o n a l f r e - quency a. = wor/Vs, and ( 3 ) t h e height and top m a s s of t h e s t r u c t u r e . T h e s e t h r e e g r o u p s of p a r a m e t e r s a r e not independent, but they p r o v i d e a conve- i e n t s e t f o r the p r e s e n t a t i o n a n d i n t e r p r e t a t i o n of r e s u l t s , a s w e l l a s f o r t h e i r s u b s e q u e n t u s e i n t h e r e s p o n s e c a l c u l a t i o n s using the equivalent S. D. F. s y s - t e m . F r o m F i g s . 9 and 10 i t m a y b e s e e n t h a t the a m p l i t u d e of r e s o n a n c e p e a k s a s w e l l a s the f r e q u e n c y r e d u c t i o n s a r e a l m o s t independent of t h e m a g n i t u d e of t h e b a s e m a s s . The f r e q u e n c y r e d u c t i o n of a l l i n t e r a c t i o n s y s t e m s i n v e s t i g a t e d i s p r i m a r i l y dependent on t h e r a t i o of rocking f r e q u e n c y t o t h e f i x e d - b a s e d n a t u r a l f r e q u e n c y of t h e s t r u c t u r e , w+/wo, a s m a y be s e e n f r o m F i g s . 6 and9. But t h e rocking f r e q u e n c y i n t u r n i s d i r e c t l y p r o p o r t i o n a l t o t h e s h e a r wave v e l o c i t y of t h e ground, Vs

.

F r o m t h i s o b s e r v a t i o n and the r e s u l t s of t h e p a r a m e t e r study i n F i g s . 7, 8, 10 and 11, i t m a y be concluded t h a t f o r r e a s o n - a b l y t a l l s t r u c t u r e s t h e s a m e amplification of o v e r t u r n i n g m o m e n t s f o r a s t r u c t u r e - f o u n d a t i o n s y s t e m i s obtained a s long a s U J , / V ~ i s c o n s t a n t . Be- c a u s e of t h i s p r o p e r t y , r e s u l t s p r e s e n t e d a r e valid beyond t h e r a n g e of s p e - cific v a l u e s of

w 0

and Vs used, provided wo/Vs d o e s not exceed i t s r a n g e c o n s i d e r e d h e r e .

SUMMARY AND CONCLUSIONS

The m e t h o d of a n a l y s i s of the equivalent S. D. F. m o d e l h a s b e e n a p p l i e d to a n i n v e s t i g a t i o n of o v e r t u r n i n g m o m e n t s i n s i n g l e - s t o r e y s t r u c t u r e - ground i n t e r a c t i o n s y s t e m s . The equivalent

s.

D. F. m o d e l i s obtained by m a t c h i n g t h e f r e q u e n c y r e s p o n s e c u r v e f o r o v e r t u r n i n g m o m e n t s with t h a t of a n S. D. F. s y s t e m and r e q u i r e s t h e d e t e r m i n a t i o n of t h e r e s o n a n c e f r e - quency, a m u l t i p l i c a t i o n f a c t o r a n d a n equivalent damping r a t i o . This method p e r m i t s a n e x t e n s i v e p a r a m e t e r study and t h e i s o l a t i o n of the signif- i c a n t p a r a m e t e r s f o r s i n g l e - s t o r e y s t r u c t u r e s with foundation c o m p l i a n c e . F r o m the r e s u l t s p r e s e n t e d , m a x i m u m o v e r t u r n i n g m o m e n t s under a r b i

-

t r a r y b a s e m o t i o n s c a n then b e found by n u m e r i c a l i n t e g r a t i o n o r r e s p o n s e s p e c t r u m t e c h n i q u e s .

LU.

I t should b e noted t h a t t h i s g e n e r a l i z a t i o n i s n o t valid f o r the c o m p a r i - s o n of r e s o n a n c e p e a k s f o r r e l a t i v e d i s p l a c e m e n t , s i n c e t h e o r d i n a t e s of t h e f r e q u e n c y r e s p o n s e c u r v e s of t h e i n t e r a c t i o n s y s t e m and the S. D. F. away f r o m r e s o n a n c e a r e not of c o m p a r a b l e m a g n i t u d e s .

(16)

F r o m a p a r a m e t e r s t u d y i t i s found t h a t o v e r t u r n i n g m o m e n t s i n s i n g l e - s t o r e y s t r u c t u r e s with g r o u n d c o m p l i a n c e a n d w i t h a h e i g h t g r e a t e r t h a n b a s e d i a m e t e r g e n e r a l l y e x c e e d t h e c o r r e s p o n d i n g v a l u e f o r a f i x e d - b a s e d S. D. F. s y s t e m with t h e s a m e n a t u r a l f r e q u e n c y a n d i n t e r - s t o r e y d a m p i n g . T h i s a m p l i f i c a t i o n e f f e c t i s g r e a t e r w i t h l a r g e r h e i g h t t o b a s e - width r a t i o s . T h e p a r a m e t e r s t u d y a n d t h e m e t h o d of p r e s e n t a t i o n of t h e r e s u l t s h a v e i n d i c a t e d t h a t t h e r a t i o of s h e a r wave v e l o c i t y t o t h e n a t u r a l f r e q u e n c y of t h e f i x e d - b a s e d s t r u c t u r e i s o n e of t h e i m p o r t a n t p a r a m e t e r s i n t h e s t r u c t u r e - g r o u n d i n t e r a c t i o n p h e n o m e n o n . Although t h e r e s u l t s p r e s e n t e d a r e l i m i t e d t o a c e r t a i n c l a s s of r e l a t i v e l y s i m p l e s t r u c t u r e s , t h e y i n d i c a t e t h a t o v e r t u r n i n g m o m e n t s s h o u l d b e g i v e n c a r e f u l c o n s i d e r a t i o n i n s l e n d e r s t r u c t u r e s founded on e l a s t i c b a s e s . R E F E R E N C E S M e r r i t t , R. G. a n d H o u s n e r , G. W . , " E f f e c t of F o u n d a t i o n C o m p l i a n c e on E a r t h q u a k e S t r e s s e s i n M u l t i s t o r y Buildings, I t B u l l e t i n of S e i s . S o c .

A m . , Vol. 44, No.4, Oct. 1954, pp. 551-570.

P a r m e l e e , P . A . , P e r e l m a n , D . S . , a n d L e e , S . L . , " S e i s m i c R e s p o n s e of M u l t i p l e - s t o r y S t r u c t u r e s o n F l e x i b l e F o u n d a t i o n s , 'I B u l l e t i n of S e i s . S o c . A m . , Vol. 59, No.3, J u n e 1969, p p . 1061-1070.

P a r m e l e e , R . A.

,

"Building - F o u n d a t i o n I n t e r a c t i o n E f f e c t s ,

"

J o u r n a l of t h e E n g i n e e r i n g M e c h a n i c s Division, ASCE, Vol. 93, No. E M 2,

A p r i l 1967, pp. 1 3 1 - 1 5 2 .

P a r m e l e e , R . A . , e t a l . " S e i s m i c R e s p o n s e of S t r u c t u r e - F o u n d a t i o n S y s t e m s , I t J o u r n a l of E n g i n e e r i n g M e c h a n i c s Division, ASCE, Vol. 94,

No. E M 6, D e c . 1968, pp. 1295-1315.

P e r e l m a n , D . S . , P a r m e l e e , R . A . , a n d L e e , S. L . , " S e i s m i c R e s p o n s e of S i n g l e S t o r e y I n t e r a c t i o n S y s t e m s , I' J o u r n a l of S t r u c t u r a l D i v i s i o n , ASCE, V01.94, No. ST11, Nov. 1968, pp. 2597-2608.

C a s t e l l a n i , A . , "Fou.ndation C o m p l i a n c e E f f e c t s on E a r t h q u a k e S p e c t r a t : J o u r n a l of t h e Soil M e c h . a n d F o u n d a t i o n s D i v . , ASCE, Vol. 96, No. SM4, J u l y 1973, pp. 1335-1355. H a n s e n , R . D. a n d Degenkolb, H. J . , " T h e V e n e z u e l a E a r t h q u a k e J u l y 29, 1 9 6 7 , " A . I . b . I . , New Y o r k , 1969. Kawasurni, H . , " G e n e r a l R e p o r t on t h e N i i g a t a E a r t h q u a k e of 1964, I t Tokyo E l e c t r i c a l E n g i n e e r i n g C o l l e g e P r e s s , Tokyo, 1968. R a i n e r ,

J.

H . , "Method of A n a l y s i s f o r S t r u c t u r e - G r o u n d I n t e r a c t i o n i n E a r t h q u a k e s , T e c h n i c a l P a p e r No. 340

,

D i v i s i o n of Building R e - s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a . K o b o r i , T . , M i n a i , R . , a n d K u s a k a b e , K . , l l D y n a m i c a l G r o u n d

(17)

Complianc e of R e c t a n g u l a r Foundation, P r o c e e d i n g s 16th J a p a n Na- tional C o n g r e s s of Applied M e c h a n i c s , 1966, pp. 301 -306.

11. Bycroft, G. N . , " F o r c e d Vibrations of a Rigid C i r c u l a r P l a t e on a S e m i - i n f i n i t e E l a s t i c S p a c e and on a n E l a s t i c S t r a t u m , " P h i l o s o p h i c a l T r a n s . ,

Royal Society, London, S e r i e s A, Vol. 248, No.948, Jan. 1965, pp.323- 3 68.

12. R a i n e r , J . H . , "Dynamic R e s p o n s e by F a s t F o u r i e r T r a n s f o r m , DBR C o m p u t e r P r o g r a m , No. 29, Division of Building R e s e a r c h , National R e s e a r c h Council of Canada, Ottawa, May 1970.

(18)

P A R A M E T E R S F O R S A M P L E C A L C U L A T I O N S P a r a m c t c r U n i t S t r u c t u r e No. 1 S t r u c t u r e No. 2 ( a ) S t r u c t u r a l P a r a m c t e r s ( b ) E q u i v a l e n t S. D. F . M o d e l f o r O v e r t u r n i n g M o m e n t T A B L E 2 RANGES O F P A R A M E T E R S V a r i a b l e w '=% m 0 h r A s P a r a m e t e r S e t A 5 t o 2 0 r a d / s e c 1000 t o 4 0 0 0 l b s e c a / i n . 1000 l b s e c 2 / i n . 2 0 t o 8 0 f t 15 a n d 2 0 f t 2 p e r c e n t 300, 500 a n d 800 f . p. 8. P a r a m e t e r S e t B 5 t o 20 r a d / s e c 100 000 a n d 4 0 0 0 0 0 l b s e c 2 / i n . 100 000 t o 4 0 0 0 0 0 l b s e c 2 / i n . 4 0 t o 160 f t 60 f t 2 p e r c e n t 500, 800 a n d 1 6 0 0 f . p. s.

(19)

H O R I Z O N T A L T R A N S L A T I O K

I

F l r a d

-

F I G U R E I I N T E R A C T I O N S Y S T E M 0 0 0.5 1.0 1.5 a R O T A T I O N A B O U T H O R I Z O N T A L A X 1 S

-

F R O M B Y C R O F T C U R V E S , U

-

0 C O N S T A N T A P P R O X I M A T I O N S 5 . D.F. F O U N D A T I O N P A R A M E T E R S u

-

I N T E R A C T I O N STRUCTURE #I . . . ," 4 0 5. D.F.. 0 . 1.59 R A D I S E C . A . 2% 0 Z 4 6 8 10 1 2 14 16 I 8 FREQUENCY. R A D I S E C F I G U R E l l a l f R E P U E N C Y RESPONSE C U R V E S FOR O V E R T U R N I N G M O M 1 - O V E R T U R N I N G MOMENT,TM "Q ---5. D. F. R C L A I I V E D I S P L A C E M E N T R E S P O N S E . T U ~

nz

F R E P U i N C Y . R A D I S E C F I G U R E 3 I b l FREOUENCY RESPONSE C U R V E S . . 4 0 0 -INTERACTION. STRUCTURE * I - W ----.-. S.D.F.,

a

.

7 - 6 0 RAD/SEC,

1.

2 % z (L 4nn 0

-

INTERACTION. STRUCTURE *2 TIME. SEC FIGURE 4

TIME HISTORY OF OVERTURNING MOMENTS. BASE MOTION: E L CENTRO 1940, N - S COMPONENT

(20)
(21)

F I G U R E 9 R E D U C T I O N I N R E S O N A N C E F R E Q U E N C Y F O R I N T E R A C T ! , ? ~ , ~ Y S T E h l S . P A R A M E T E R S E T B m 1 4011 0 0 0 1 8 S I C ~ ~ I N r 60' \ . 2% - -- m a t o o n o 0 L B S ~ C ~ I I N . - m l 4 0 0 OOfl 1 8 S ~ C ~ I I H l l G U R C I 0 W A G N l l I l O L S 0 1 R I S O N A N C I P E A K S I O U O V F R T U R N I H G h l O h l E N 1 S . m o I o n o o n A N O n o o o o n m l 4 0 0 o o o 1 8 S C C ~ I I N . L ,zr. m I 1 0 0 0 0 0 L B S L C ~ I I N - r 6 0 ' 1011 0 0 0 1 8 S I C ~ I I N -- mO 7 0 0 nnn ~n S I C ~ I I N I $ G U R t 1 1 M A G N I T U D E S O f R t S O N A N C t P E A K S f O R O V t R I U R N l N G M O M E N T S , m l 1 0 0 0 0 0 . m, 1 0 0 o n 0 A N D 2 0 0 0 0 0 L B 5 F C 2 1 L N \ . 2%

(22)

DISCUSSION OF PAPER NO. 1 0

SEISMIC OVERTURNING MOMENTS I N SINGLE STOREY STRUCTURES WITH GROUND COMPLIANCE

J . H. R a i n e r D i s c u s s i o n by: M. Novak The a u t h o r p r e s e n t s a way i n w h i c h R e i s s n e r ' s ( B y c r o f t ' s ) f r e q u e n c y f u n c t i o n s f z , f2 c a n b e i n t r o d u c e d i n t o t h e a n a l y s i s o f s i n g l e s t o r e y s t r u c t u r e s t o e x p r e s s t h e e l a s t i c and damping p r o p e r t i e s o f t h e h a l f - s p a c e ( s o i l ) . T h i s i s a good a p p r o a c h b e c a u s e t h e h a l f - s p a c e i s t a k e n i n t o a c c o u n t w i t h o u t i n - c r e a s i n g t h e number o f d e g r e e s of f r e e d o m .

The same p r o c e d u r e c a n b e a p p l i e d t o s y s t e m s w i t h many d e g r e e s o f f r e e d o m , e . g . Korenev, Baranov, 1964 a n d t h e e f f e c t o f embedment c a n b e a l s o c o n s i d e r e d

( p a p e r n o . 7 ) . As f o r q u a n t i t a t i v e a p p l i c a t i o n s t o s o i l s , t h e damping d e r i v e d f r o m t h e h a l f - s p a c e s h o u l d b e c o n s i d e r e d w i t h c e r t a i n c a r e . E x p e r i m e n t s i n d i c a t e t h a t t h e t h e o r y t e n d s t o o v e r e s t i m a t e t h e damping i n v e r t i c a l d i r e c t i o n and u n d e r - e s t i m a t e i t w i t h r o c k i n g i f i n t e r n a l f r i c t i o n i s n e g l e c t e d ; l a y e r i n g c a n con- s i d e r a b l y r e d u c e t h e g e o m e t r i c damping. F i n a l l y , t h e t h e o r y was d e v e l o p e d f o r s t e a d y - s t a t e h a r m o n i c v i b r a t i o n n o t f o r n o n s t a t i o n a r y random m o t i o n a s e a r t h - q u a k e s a r e . Reply by: J. H. R a i n e r

The b a s i c s t r u c t u r a l model employed i n t h i s s t u d y h a s been u s e d p r e v i o u s l y by P a r m e l l e and K o b o r i , among o t h e r s . The u s e o f a n e q u i v a l e n t s i n g l e - d e g r e e - o f - f r e e d o m model f o r o v e r t u r n i n g moment i s t h o u g h t t o b e n o v e l , however. By d e t e r m i n i n g t h e r e s o n a n c e f r e q u e n c y of t h e i n t e r a c t i o n s y s t e m and a n e q u i v a l e n t damping r a t i o f r o m t h e m a g n i t u d e s o f r e s o n a n c e p e a k s , t h e r e s p o n s e t o n o n - s t a t i o n a r y random m o t i o n s s u c h a s a n e a r t h q u a k e c a n t h e n b e f o u n d d i r e c t l y f r o m a r e s p o n s e s p e c t r u m . The t e c h n i q u e p r e s e n t e d , t h e r e f o r e , b r i d g e s t h e gap b e t w e e n t h e r e s p o n s e f o r p u r e l y s i n u s o i d a l e x c i t a t i o n s and t h o s e f o r n o n - s t a t i o n a r y m o t i o n s s u c h a s e a r t h q u a k e s . Numerous s t u d i e s o f m u l t i - d e g r e e - o f - f r e e d o m s t r u c t u r e s h a v e b e e n p r e s e n t e d t h a t i n c o r p o r a t e t h e e f f e c t s o f f l e x i b l e f o u n d a t i o n s . T h e s e h a v e e i t h e r b e e n f o r s i n u s o i d a l e x c i t a t i o n s o r n u m e r i c a l r e s p o n s e c a l c u l a t i o n s u n d e r random- t y p e l o a d s . As f a r a s t h e a u t h o r i s a w a r e , t h e a b i l i t y t o draw g e n e r a l con- c l u s i o n s f r o m r e s u l t s o b t a i n e d f o r s i n u s o i d a l d i s t u r b a n c e s w h i c h would b e ap- p l i c a b l e t o random-type i n p u t s h a s n o t y e t b e e n a c h i e v e d . . I t i s i n d e e d p o s s i b l e t o i n t r o d u c e t h e a p p r o p r i a t e f r e q u e n c y f u n c t i o n s f l and f 2 f o r any t y p e of f o u n d a t i o n b e h a v i o u r , i n c l u d i n g t h e o n e s p r e s e n t e d b y t h e d i s c u s s e r i n p a p e r n o . 7. One c o u l d a l s o add a d d i t i o n a l amounts o f

(23)

damping t o t h e e l a s t i c h a l f - s p a c e r e s u l t s t o a c c o u n t f o r s m a l l h y s t e r e t i c e n e r g y l o s s i n t h e s o i l . T h i s i s a c h i e v e d by a p p r o p r i a t e m o d i f i c a t i o n s of t h e C c u r v e s s u c h a s t h o s e p r e s e n t e d i n F i g u r e 2 . A l i m i t e d s t u d y of t h i s n a t u r e h a s been p r e s e n t e d i n R e f e r e n c e 9.

Q u e s t i o n by: E . Varoglu

Could you comment on t h e r e a s o n f o r c h o o s i n g a model w i t h c i r c u l a r f o u n d a t i o n ?

I n ground c o m p l i a n c e a n a l y s i s , t h e r e l a t i o n between t h e t o t a l f o r c e and t h e d i s p l a c e m e n t depends upon t h e a s s u m p t i o n a b o u t t h e s t r e s s d i s t r i b u t i o n o v e r t h e f o u n d a t i o n a r e a . To u s e a u n i f o r m s t r e s s d i s t r i b u t i o n f o r a r i g i d f o u n d a t i o n may n o t b e a d e q u a t e i n o b t a i n i n g t o t a l f o r c e , d i s p l a c e m e n t r e l a t i o n f o r a r i g i d f o u n d a t i o n .

Reply by: J . H . R a i n e r

The c i r c u l a r f o u n d a t i o n was chosen a s m e r e l y o n e example of a f r e q u e n c y d e p e n d e n t f o u n d a t i o n . One c o u l d e q u a l l y w e l l c h o o s e a r e c t a n g u l a r , s q u a r e o r o t h e r g e o m e t r i c s h a p e a s l o n g a s t h e e x p e r i m e n t a l o r t h e o r e t i c a l complex s t i f f n e s s c h a r a c t e r i s t i c s a r e a v a i l a b l e . I t s h o u l d b e p o i n t e d o u t t h a t t h e r e s u l t s p r e s e n t e d a r e v a l i d f o r o t h e r f o u n d a t i o n s h a p e s p r o v i d e d t h e i r f r e q u e n c y - d e p e n d e n t c h a r a c t e r i s t i c s r e s e m b l e t h o s e g i v e n i n F i g u r e 2 . T h i s i s t h e c a s e f o r t h e s q u a r e and r e c t a n g u l a r f o u n d a t i o n s t r e a t e d i n R e f e r e n c e 1 0 . The w r i t e r a g r e e s w i t h t h e d i s c u s s e r t h a t t h e s t r e s s d i s t r i b u t i o n under t h e f o o t i n g a f f e c t s t h e s t i f f n e s s c h a r a c t e r i s t i c s . The work p r e s e n t e d h e r e , however, d o e s n o t c o n c e r n i t s e l f d i r e c t l y w i t h t h i s a s p e c t . R a t h e r , a s t a t e - ment of t h e problem t r e a t e d might b e a s f o l l o w s : g i v e n a p p r o p r i a t e f l e x i b l e f o u n d a t i o n p r o p e r t i e s , what i s t h e s t r u c t u r a l r e s p o n s e of t h e i n t e r a c t i o n s y s t e m u n d e r e a r t h q u a k e - t y p e l o a d i n g s ? The s u i t a b i l i t y and a p p l i c a b i l i t y of a t h e o r e t i c a l model t o r e p r e s e n t a p a r t i c u l a r f o u n d a t i o n and i t s a s s o c i a t e d s o i l must t h e n b e c o n s i d e r e d f o r any s p e c i f i c a p p l i c a t i o n . I n view of t h e r e s u l t s p r e s e n t e d i n F i g s . 6 and 9 , s m a l l v a r i a t i o n s i n f o u n d a t i o n s t i f f n e s s s h o u l d n o t g r e a t l y a f f e c t t h e f r e q u e n c y r a t i o wl/wo a n d , a s a consequence, t h e s t r u c t u r a l r e s p o n s e of t h e i n t e r a c t i o n s y s t e m .

(24)

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers