• Aucun résultat trouvé

Floor heave due to biochemical weathering of shale

N/A
N/A
Protected

Academic year: 2021

Partager "Floor heave due to biochemical weathering of shale"

Copied!
12
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Floor heave due to biochemical weathering of shale

Penner, E.; Eden, W. J.; Gillott, J. E.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=be9eddaa-8b6d-479f-aac7-9856276448c0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=be9eddaa-8b6d-479f-aac7-9856276448c0

(2)
(3)
(4)

FLOOR HEAVE

DUE

TO BIOCHEMICAL WEATHERING OF SHALE

SOULEVEMENT DU PLANCHER CAUSE PAR LA DECOMPOSITION 810-CHIMIQUE DE SCHISTE nOA'bEHnOJABPE3YflbTATE6MOXMMM9ECKOrO BMBETPMBAHMRCJAHLlA

E. P E N N E R , W.J. E D E N ond J.E. G I L L O T T , Hotionol Research Council o f Conodo ond Univarsity of Colgory (Conodo)

SYNOPSIS. Heave of a basement f l o o r in a t h r e e - s t o r e y building in Ottawa w a s r e c e n t l y investigated. The building i s founded on black s h a l e of Ordovician a g e known a s t h e Billings f o r m a t i o n . Examination in the heaved zone r e v e a l e d that the s h a l e had been a l t e r e d physically and c h e m i c a l l y t o a depth of 0 . 7 t o 1 m . Below t h i s the u n a l t e r e d shale w a s sound but contained n u m e r o u s p y r i t e v e i n s and a l s o had a g e n e r a l p y r i t i c

s u l f u r content a s high a s 1 . 6 % . The m a i n a l t e r a t i o n p r o d u c t s that w e r e r e s p o n s i b l e f o r the heave, j a r o s i t e and gypsum, w e r e located between shale l a m i n a e and in f i s s u r e s in the a l t e r e d zone. Acidity m e a s u r e m e n t s ranged f r o m pH 2.8 t o 4 . 4 , pointing t o biochemical weathering by autotrophic b a c t e r i a belonging t o t h e

Thiobacillus-Ferrobacillus group. Heaving w a s a r r e s t e d by c r e a t i n g conditions unfavourable f o r b a c t e r i a l growth. T h i s involved neutralizing the heaved a r e a by flooding the shale with a b a s i c solution and keeping the w a t e r t a b l e high a r t i f i c i a l l y t o r e d u c e a i r e n t r y and acid build-up.

Heave of the basement f l o o r of a t h r e e - s t o r e y e x - t e n s i o n t o the B e l l Canada Building in Ottawa, founded on s h a l e , w a s r e c e n t l y investigated. T h e

study was initiated when the d i s p l a c e m e n t of the basement f l o o r i n t e r f e r e d s e r i o u s l y with the align

-

m e n t and operation of power and switching f a c i l i - t i e s located in t h i s a r e a . P r o b l e m s of a s i m i l a r n a t u r e have been d e s c r i b e d by R.M. Quigley and R. W. Vogan (1970) and M . Spanovich and R. B. F e w e l l (1969). A note on the heaving p r o b l e m by t h e a u t h o r s of t h i s p a p e r ( E . P e n n e r et a1 1970) d e s c r i b e s s o m e a s p e c t s of the p r e l i m i n a r y i n v e s t i - gation c a r r i e d out at the p r e s e n t s i t e .

The o r i g i n a l building was c o n s t r u c t e d in 1929 and although a s m a l l amount of heave h a s o c c u r r e d in the ensuing y e a r s i t has not i n t e r f e r e d with the a l i g n - m e n t of t h e equipment located on the b a s e m e n t f l o o r . An extension w a s added t o t h i s building in 1961 with a l l the corresponding f l o o r s located a t the s a m e elevation. Heaving of the b a s e m e n t f l o o r in the e x - tension was noticed about 4 y e a r s a f t e r t h e addition was completed. The affected a r e a i s about 2 2 5 m 2 , which r e p r e s e n t s about one - s i x t h of the total base

-

m e n t space. Heaving was thought t o have s t a r t e d

s o m e t i m e in 1964 o r 1965; the d i s p l a c e m e n t of t h e floor w a s sufficiently s e r i o u s by t h e end of 1966 t o initiate an investigation. T h e heaved a r e a a p p e a r e d a s two r o u n d e d d o m e s a s shown by t h e displacement contours in F i g . 1. The influence on equipment

alignment i s shown i n F i g . 2. T h e object of the i n - vestigation w a s t o e s t a b l i s h the c a u s e of heave and t o initiate r e m e d i a l m e a s u r e s f o r controlling the heave until the equipment could be relocated.

GEOLOGY

The B e l l Canada building i s founded on the Billings f o r m a t i o n , a black p y r i t i f e r o u s c a l c a r e o u s and f i s s i l e s h a l e ( A . E . Wilson 1946). The shale f o r m a - tion i s about 6 m thick a t t h i s location and l i e s c o n f o r - m a b l y on interbedded l i m e s t o n e s and s h a l e s of t h e E a s t v i e w formation. T h e s e d e p o s i t s belong t o t h e Ordovician s y s t e m and w e r e f o r m e d s o m e 450 million y e a r s ago. P a l a e o z o i c r o c k s of t h i s age a r e cut by two m a j o r s e t s of f a u l t s in t h e Ottawa a r e a (A. E. Wilson 1946). The B e l l C a n a d a building i s situated about 2.4 lun northwest of the G l o u c e s t e r fault, a m a j o r dislocation which t r e n d s NW-SE. A m i n o r fault which a p p e a r e d t o have a s t r i k e in t h e d i r e c t i o n of t h e heaved a r e a s w a s o b s e r v e d in a n e x - cavation i m m e d i a t e l y south of the B e l l building. T h i s fault was a l s o uncovered during t h e excavation of examination p i t s below t h e floor s l a b of the B e l l C a n a d a building. As will be r e f e r r e d t o l a t e r , the s h a t t e r e d n a t u r e of the s h a l e n e a r the fault

2,

thought t o have contributed t o the s e v e r i t y of the weathering and heaving p r o b l e m .

(5)

e S U R V E Y P O I N T S

o

P I T S F O R S H A L E S A M P L I N G A N D T R E A T M E N T

0 O B S E R V A T I O N W E L L S E! E L E C T . E Q U I P M E N T I COLUMNS I N S P E C T I O N T R E N C H

F I G U R E

I

L O C A T I O N OF I N S T A L L A T I O N S A N D CONTOURS OF M A X I M U M H E A V E , CM

FIG. 2 LEVELLING OF GENERATORS NECESSI- TATED BY FLOOR HEAVE

FLOOR CONSTRUCTION AND LNTERIOR COLUMN FOOTINGS

The 30-cm-thick r e i n f o r c e d c o n c r e t e f l o o r s l a b w a s placed on a 15-cm l a y e r of c r u s h e d l i m e s t o n e . T h i s levelling c o u r s e , which a l s o contained

an

underfloor d r a i n a g e t i l e s y s t e m , had been placed d i r e c t l y on the shale a t about 1. 5 m below the o r i g i n a l s h a l e level. The i n t e r i o r column footings w e r e 2.4 by 2 . 4 by 1 . 2 m thick and placed at about 2.7 m below the o r i g i n a l

shale l e v e l , i. e . 1 . 2 m below f l o o r l e v e l .

152

HEAVE AND HEAVING RATES

During t h e o b s e r v e d p e r i o d of heaving beginning i n A p r i l 1967

-

t h e m a x i m u m m e a s u r e d f l o o r d i s p l a c e - m e n t w a s 5 . 6 c m o v e r a p e r i o d of about 32 m o n t h s , a heave r a t e of a p p r o x i m a t e l y 0.18 c m p e r month. B a s e d on t h e e s t i m a t e d f l o o r elevation i m m e d i a t e l y a f t e r c o n s t r u c t i o n , the m a x i m u m t o t a l m o v e m e n t i s 10. 7 c m . A plot of t h e f l o o r movement at v a r i o u s locations i s given i n F i g . 3. The location of t h e points i s noted i n F i g . 1.

INVESTIGATION

C o r e r e c o v e r y by d r i l l i n g w a s p o o r in t h e heaved zones s o examination p i t s w e r e excavated a t t h r e e locations within the p r o b l e m a r e a ( F i g . 1 ) . The top 40 t o 50 c m of shale w e r e e x t r e m e l y soft and c r u m b l y and could be r e m o v e d with a hand shovel; below t h i s , excavation w a s c a r r i e d out with the aid of a jack h a m m e r . L a y e r i n g of the shale w a s i n the h o r i z o n t a l plane and the t h i c k n e s s of the l a m i n a e r a n g e d f r o m m i l l i m e t r e s a t the s u r f a c e t o s e v e r a l c e n t i m e t r e s n e a r t h e bottom of t h e 1 . 8 - m excavation. In g e n e r a l t h e s h a l e w a s cut by n e a r - v e r t i c a l joints throughout t h e section.

Joint s u r f a c e s and shale l a m i n a e in the a l t e r e d zone ( t o p 0. 5 t o 1 m ) w e r e c o v e r e d with a yellowish- brown coating and n u m e r o u s c o l o u r l e s s c r y s t a l s .

(6)

F I G U R E 3 B E L L B L D G F L O O R M O V E M E N T S

The a l t e r e d zone w a s found t o be a c i d i c and, based MINERALOGY on n u m e r o u s m e a s u r e m e n t s , the r a n g e in pH w a s

established a s 2.8 t o 4.4. Below about 1 m the The m i n e r a l o g i c a l investigation w a s d i r e c t e d a t s h a l e a p p e a r e d to be sound. F i g u r e 4 shows the d e t e r m i n i n g the r e a c t i o n p r o d u c t s of the a l t e r e d difference in the physical a p p e a r a n c e between t h ~ s h a l e . The m i n e r a l o g y of t h e unaltered components a l t e r e d and u n a l t e r e d shale. below t h e weathered c r u s t w a s a l s o studied.

Shale l a m i n a e - a l t e r e d zone (30 t o 60 c m ) .

-

The m o s t i n t e n s e lines i n the X - r a y d i f f r a c t o g r a m s w e r e a t t r i b y t e d t o q u a r t z and gypsum. P e a k s a t t r i b u t a b l e t o 10 A m i c a ( i l l i t e ) and kaolinite o r c h l o r i t e w e r e a l s o f a i r l y strong. J a r o s i t e and p y r i t e w e r e p r e - s e n t but not i n dominant a m o u n t s .

Soft m a t e r i a l between l a m i n a e

-

a l t e r e d zone (30 t o 60 c m depth).

-

Gypsum and j a r o s i t e w e r e p r e s e n t in dominant quantities. I l l i t e and kaolinite o r chlo- r i t e w e r e a l s o p r e s e n t a s well a s q u a r t z . F u r t h e r X - r a y s t u d i e s suggested t h e p r e s e n c e of some m i x e d - l a y e r swelling c l a y m i n e r a l s .

Unaltered s h a l e (120 t o 180 c m ; no visible p y r i t e ) . - D i f f r a c t o g r a m s of t h e s e s a m p l e s differed f r o m t h e a l t e r e d zone i n t h a t l i n e s attributable t o gypsum o r j a r o s i t e w e r e absent. P y r i t e , c a l c i t e , i l l i t e and FIG. 4 PHYSICAL DIFFERENCES

-

SHALE IN q u a r t z w e r e a l l p r e s e n t .

HAND DUG P I T BETWEEN ALTERED AND UNALTERED SHALE

(7)

Veins of p y r i t e

-

u n a l t e r e d zone (120 t o 180 c m ) .

-

The m a t e r i a l located in joints and p a r t i n g s t h a t w a s visually identified a s p y r i t e w a s v e r i f i e d by X - r a y a n a l y s i s ( F i g . 5). I t w a s u n c e r t a i n , however, whether o t h e r i r o n sulfides w e r e a l s o p r e s e n t . C o l o u r l e s s c r y s t a l s

-

a l t e r e d zone (30 t o 60 c m ) .

-

T h e m a j o r phase in t h e abundant c o l o u r l e s s c r y s t a l s visually identified a s gypsum was verified by X - r a y a n a l y s i s .

Yellowish-brown coating on s h a l e laminae

-

a l t e r e d zone (30 t o 60 c m ) .

-

The m a j o r p h a s e of the yellowish-brown deposit w a s identified a s j a r o s i t e , K F e 3 ( S 0 4 ) 2 (OH)6.

CHEMISTRY

Table I gives the c h e m i c a l a n a l y s i s of the s h a l e

o t h e r s h a l e s . A s would be expected, t h e unaltered s h a l e h a s e s s e n t i a l l y no sulfate sulfur a s might be expected ( s a m p l e s Nos. 2, 3 and 4).

BIOCHEMICAL CONSIDERATIONS

T h e existence of extensive p y r i t e i n t r u s i o n s and a g e n e r a l p y r i t i c content i n the u n a l t e r e d zone, the type of a l t e r a t i o n p r o d u c t s identified in the a l t e r e d

zone and t h e acid conditions in t h e a l t e r e d zone sug- g e s t e d that autotrophic b a c t e r i a w e r e probably i n - volved i n the weathering and heaving p r o c e s s . Auto- t r o p h i c b a c t e r i a l oxidation i s a common phenomenon i n m a n y coal m i n e s (S.I. Kuznetzov et a1 1963) and i s s o m e t i m e s u s e d i n e x t r a c t i n g m e t a l economically f r o m low g r a d e p y r i t i f e r o u s o r e s ( V . F . H a r r i s o n e t a1 1966). The e n e r g y f o r g r o w t h and p r o l i f e r a t i o n of autotrophes i s obtained by the oxidation of i n o r g a n i c compounds in the p r e s e n c e of a t m o s p h e r i c oxygen.

TABLE I. CHEMICAL ANALYSIS, P E R CENT BY WEIGHT

SAMPLE NO. 1 2 3 4 5 6 7 Composite Composite S a m p l e ,Al- Sample, t e r e d Zone, Non-heaved DESCRIP- 0-50 c m . a r e a , Un- TION No visible a l t e r e d , 0 - p y r i t e 15 cm. No visible py- r i t e Sulphate Sulfur P y r i t i c Sulfur Composite S a m p l e , Non-heaved a r e a , Un- a l t e r e d , 2 . 7 m . No visible p y - r i t e T r a c e

Composite Composite Composite Composite

S a m p l e S a m p l e , S a m p l e , Sample, Heaved A l t e r e d Heaved S u r f a c e of A r e a , Un- l a y e r , 0 - A r e a , Un- A l t e r e d a l t e r e d , 4 5 c m . a l t e r e d , Zone 1 . 3 7 m . 1 . 8 m . No visible p y r i t e . Not Not 64 D e t e r m i n e d D e t e r m i n e d Not 1 . 4 5 Not D e t e r m i n e d D e t e r m i n e d

C a r b o n a t e Not Not Not Not Not

( i n o r g a n i c De, D e t e r m i n - D e t e r m i n e d D e t e r m i n e d D e t e r m i n e d 6. 1 2.6 a s C 0 2 ) t e r m i n e d ed

S a m p l e s 1, 2, 3, 4, 6 and 7 analyzed by Division of C h e m i s t r y , National R e s e a r c h Council of Canada.

Sample 5 analyzed by M i n e s B r a n c h , D e p a r t m e n t of E n e r g y , M i n e s and R e s o u r c e s of Canada.

s a m p l e s f r o m both t h e a l t e r e d and u n a l t e r e d zone. P r o t e i n a c e o u s body m a t e r i a l i s produced f r o m a t - T h e s e r e s u l t s show t h a t s o m e p y r i t e s t i l l p e r s i s t e d m o s p h e r i c c a r b o n dioxide and o t h e r n u t r i e n t s s u c h a s in the a l t e r e d zone a s shown by s a m p l e No. 1. T h e nitrogen contained i n the shale.

u n a l t e r e d r o c k h a s a high content of c a r b o n a t e s

( s a m p l e No. 6); a l o w e r content of c a r b o n a t e s w a s T h e m a i n oxidation r e a c t i o n s a r e thought t o be a s found i n the a l t e r e d shale. I n g e n e r a l , t h e s h a l e follows ( H a r r i s o n e t a1 1966, Kuznetzov e t a1 1963): h a s a high o r g a n i c c a r b o n content c o m p a r e d with

(8)

p y r i t e f e r r o u s sulfate 2. 4FeSO t O2 t 2H2S04 -' 2 F e 2 ( S 0 ) t 2H20 4 4 3 f e r r i c sulfate 3. 7Fe (SO ) t F e S t 8H 0 -t 1 5 F e S 0 4 t 8H2S04 2 4 3 2 2 f e r r i c sulphate p y r i t e

Reaction No. 1 i s thought by s o m e t o be e n t i r e l y c h e m i c a l although o t h e r s believe the oxidation of sulfide t o be a s s i s t e d by autotrophic b a c t e r i a . R e a c - tion No. 2 i s thought t o be e n t i r e l y due t o the oxi- dation by b a c t e r i a of t h e Ferrobacillus-Thiobacillus

group s i n c e t h i s r e a c t i o n d o e s not p r o c e e d c h e m i - cally i n a n a c i d environment. Oxidation of p y r i t e can p r o c e e d a s given i n r e a c t i o n No. 3 by the r e a c - tion with f e r r i c sulfate, a s t r o n g oxidizing agent produced in No. 2. One of the r e a c t i o n p r o d u c t s i n No. 3 i s f e r r o u s sulfate which the autotrophes o x i - dize again a c c o r d i n g t o No. 2. The m e d i u m b e - c o m e s i n c r e a s i n g l y a c i d i c a s t h e oxidation r e a c t i o n s p r o c e e d s i n c e m o r e acid i s produced than i s utilized. A s t h e shale i s c a l c a r e o u s , t h e f o r m a t i o n of gypsum i s d e r i v e d f r o m t h e n e u t r a l i z a t i o n p r o c e s s between t h e e x c e s s s u l f u r i c acid and c a l c i t e . J a r o s i t e , KFe3(S04)Z(OH)6, a l s o a m a i n r e a c t i o n product in the a l t e r e d zone, f o r m s m o s t r e a d i l y under acid conditions a s found in the a l t e r e d zone. The p o t a s - s i u m content.of j a r o s i t e i s thought t o come f r o m t h e degradation of c l a y m i n e r a l s and/or by base exchange r e a c t i o n s i n the highly acid environment.

T h e s e r e a c t i o n s c a u s e heaving because the m o l a r volumes of the u n a l t e r e d components a r e l e s s t h a n the r e a c t i o n p r o d u c t s . The volume i n c r e a s e f r o m p y r i t e t o j a r o s i t e i s 11 5% and f r o m c a l c i t e t o gypsum

103%. It i s a l s o v e r y a p p a r e n t that the weathered p r o d u c t s f o r m between t h e s h a l e l a m i n a e although in the r o t t e d m a t e r i a l gypsum and j a r o s i t e w e r e found t o e x i s t i n s i d e t h e p o r e s of t h e l a m i n a e .

All f a c e t s of t h e weathering r e a c t i o n s a r e not u n d e r - stood n o r i s t h e exact disposition of the m i n e r a l known before and a f t e r oxidation and how t h i s a f f e c t s volume change. The r e a c t i v e components of the un- a l t e r e d shale, t h e r e a c t i o n p r o d u c t s identified i n the a l t e r e d s h a l e and the a c i d i c condition w e r e s t r o n g evidence, however, that t h e weathering p r o c e s s w a s a s s o c i a t e d with autotrophic b a c t e r i a l oxidation and that i t r e s u l t e d in the heave o b s e r v e d .

M i c r o - o r g a n i s m s of t h e Ferrobacillus-Thiobacillus

g r o u p w e r e i s o l a t e d f r o m the a l t e r e d shale m a t e r i a l s by the Soil R e s e a r c h Institute, Canada D e p a r t m e n t of A g r i c u l t u r e and w e r e subsequently photographed with a scanning e l e c t r o n m i c r o s c o p e ( F i g . 6). T h e s e b a c t e r i a w e r e shown t o have the ability t o oxidize f e r r o u s i r o n t o the f e r r i c f o r m in culture solutions. It was a l s o shown that t h e end product in a n i n o r g a n i c growth m e d i a w a s j a r o s i t e . T h e s e b a c t e r i a a r e known t o r e q u i r e a n acid environment, t h e optimum being around pH 2.2; above pH 4 . 5 d o r m a n c y i s induced.

A i r t o aid b a c t e r i a l growth i s believed t o have gained r e a d y a c c e s s t o the shale v i a t h e empty t i l e d r a i n s y s t e m which had been plaeed in the c r u s h e d l i m e - stone l a y e r below t h e floor. Ln the m i n o r fault zone encountered i n one of t h e examination p i t s , t h e open n a t u r e of t h e f r a c t u r e d s h a l e f u r t h e r facilitated a i r e n t r y and thus heaving and weathering w e r e e x t r e m e l y s e v e r e .

FIG. 5 UNALTERED SHALE WITH PYRITE VEINS IN JOINTS.

FIG. 6 BACTERIA O F THE FERROBACILLUS- THIOBACILLUS GROUP ISOLATED FROM ALTERED SHALE ZONE.

(9)

The groundwater table w a s 4 m below floor l e v e l and t h e s h a l e u n d e r t h e f l o o r w a s r e l a t i v e l y d r y . I t h a s been shown m o r e r e c e n t l y t h a t a r e l a t i v e l y d r y e n - vironment i s p r e f e r r e d by t h e s e b a c t e r i a f o r rapid p r o l i f e r a t i o n and t h e f o r m a t i o n of t h e r e a c t i o n p r o - ducts. The b a s e m e n t space w a s a l s o exceptionally w a r m (30°C) due t o the heat l o s s f r o m the power equipment and t h i s too would favour b a c t e r i a l activity.

REMEDIAL TREATMENT

Modifications in t h e power equipment had been m a d e t o allow realignment a s heaving p r o g r e s s e d ; by t h e

s u m m e r of 1969, however, a c r i t i c a l s t a g e had been reached. The choice w a s e i t h e r to m o v e t h e equip- m e n t located on the heaved a r e a o r a r r e s t t h e heaving. The b a s i s f o r the t r e a t m e n t s e l e c t e d w a s t o c r e a t e unfavourable conditions f o r t h e growth of the bactjeria and if t h i s could be achieved, heaving would be stopped.

The t r e a t m e n t technique w a s to n e u t r a l i z e with a b a s e t h e a c i d conditions in the a l t e r e d zone and t o reduce a i r e n t r y by s a t u r a t i o n with w a t e r . The d i - r e c t a i r supply t o t h e s h a l e w a s r e d u c e d by flooding t h e examination p i t s with w a t e r t h e r e b y r a i s i n g t h e w a t e r table into the a c t i v e zone. pH m e a s u r e m e n t s had shown that e x t r e m e l y acid conditions (pH 2.8) existed in r e l a t i v e l y localized pockets of activity. By keeping t h e s h a l e s a t u r a t e d i t w a s hoped t h a t t h e a c i d s in t h e s e pockets would diffuse out and be washed away.

Neutralization with sodium hydroxide w a s thought t o be u n d e s i r a b l e since the sodium ion m i g h t induce s o m e swelling in the c l a y s h a l e s and p o t a s s i u m hy- droxide w a s , t h e r e f o r e , c o n s i d e r e d p r e f e r a b l e . L a b o r a t o r y e x p e r i m e n t s w e r e undertaken t o a s c e r - t a i n if the neutralization p r o c e s s would induce any i m m e d i a t e and u n f o r e s e e n d i m e n s i o n a l changes i n t h e shale. Duplicate s a m p l e s of t h e s h a l e f r o m the a l t e r e d zone, a p p r o x i m a t e l y 0 . 6 c m thick and 20 cm2 in a r e a , w e r e i m m e r s e d in t h r e e concentrations of KOH solution, (0.01, 0.1 and 1 N) under a load of 0.28 kg/cm2. The solutions w e r e changed d a i l y during the e n t i r e period of t h e e x p e r i m e n t . The r e s u l t s a r e shown i n F i g . 7. The 0.01 and 0. 1N solutions induced s m a l l s e t t l e m e n t s of the o r d e r of 0. 1 and 0.2%. The 1 N KOH solutions in- d w e d a swelling of n e a r l y 6%. The d e c i s i o n w a s , t h e r e f o r e , t o keep t h e t r e a t m e n t concentration below 0.1 N KOH although t h e exact n a t u r e of t h e dirnen- sional changes resulting f r o m t r e a t m e n t w e r e not well understood..

X - r a y d i f f r a c t o g r a m s of t h e s e KOH-treated s a m p l e s showed t h e d i s a p p e a r a n c e of gypsum peaks. S e p a r a - t e l y p r e p a r e d s a m p l e s of gypsum and j a r o s i t e f r o m t h e a l t e r e d s h a l e

-

the two m a i n r e a c t i o n p r o d u c t s existing in the a l t e r e d zone

-

gave r e s u l t s i n t e r - p r e t e d according t o the following r e a c t i o n s :

C

6. F e ( O H ) 3 -t FeOOH t H 2 0

T h e s e r e a c t i o n s s u g g e s t t h a t if KOH w e r e added t o the a l t e r e d s h a l e s o m e of t h e soluble components produced would be washed away i n t h e flooding p r o - c e s s . The r e s u l t m i g h t be t h a t s o m e s e t t l e m e n t would be induced.

NEUTRALIZATION AND FLOODING

T h r e e 5 c m o b s e r v a t i o n w e l l s , 5 c m in d i a m t e r , w e r e d r i l l e d i n t h e heaved a r e a t o a depth of 2.4 m t o m o n i t o r t h e depth t o the w a t e r t a b l e a s t r e a t m e n t p r o c e e d e d ( F i g u r e 1 ) and t o p e r m i t sampling of t h e g r o u n d w a t e r f o r pH m e a s u r e m e n t s .

Examination pit No. 1 ( F i g . 1 ) w a s fitted with an a u t o m a t i c float t o k e e p the pit continuously full of w a t e r . T r e a t m e n t s t a r t e d on 21 J a n u a r y 1970. The p o t a s s i u m hydroxide solution w a s automatically d i s - pensed into t h e pit t o give a concentration l e s s t h a n 0.1 N based on w a t e r consumption. In e a r l y A p r i l 1970 the two o t h e r examination p i t s i n t h e heaved zone w e r e a l s o fitted with a n a u t o m a t i c float and brought into operation f o r t r e a t m e n t and flooding with w a t e r . The KOH solution w a s m a i n t a i n e d i n the s a m e way. During the period f r o m 21 J a n u a r y 1970 t o 13 M a y 1971 o v e r 12 t o n n e s of KOH w e r e d i s - pensed into t h e s h a l e of t h e heaved zone. During t h i s t i m e the pH of the groundwater and t h e depth of

FIGURE 7 DIMENSIONAL CHANGE OF ALTERED SHALE AT THREE CONCENTRATIONS OF KOH

(10)

the w a t e r table w a s m o n i t o r e d . T h e s e r e s u l t s a r e given in F i g s . 8 and 9 r e s p e c t i v e l y . The consump- tion of w a t e r w a s about 16000 l i t r e s p e r day. In June 1970, a f t e r about 3 m o n t h s of t r e a t m e n t , an examination t r e n c h w a s excavated between p i t s Nos. 2 and 3 t o m e a s u r e the pH in the s h a l e itself a t v a r i o u s depths. The r e s u l t s a r e shown in F i g s . 10a and l o b . The r e s u l t s w e r e encouraging since the acid conditions in the shale had been g r e a t l y reduced and the f i s s u r e s w e r e well i m p r e g n a t e d with KOH solution although low pH's s t i l l p e r s i s t e d n e a r the s u r f a c e . Observation wells Nos. 1 and 2 a l s o showed that acid conditions p e r s i s t e d and t r e a t m e n t w a s continued. During S e p t e m b e r , October and No- vember 1970 t h e r e w a s a g r e a t i m p r o v e m e n t in t h e pH in the observation w e l l s and the decision w a s m a d e to discontinue the KOH t r e a t m e n t but continue the w a t e r supply t o keep the w a t e r table a s high a s possible and c r e a t e wet conditions beneath t h e slab.

The pH h a s continued to i n c r e a s e and a t p r e s e n t ( D e c e m b e r 1971) i t r a n g e s f r o m pH 6 . 4 to 7 . 1 .

Elevation s u r v e y s have been continued throughout the investigation. A s shown in F i g . 3 f o r the period following the s t a r t of t r e a t m e n t , floor m o v e m e n t s have been controlled s a t i s f a c t o r i l y . Some s e t t l e m e n t h a s o c c u r r e d in the c e n t r e of the heaved zone but t h i s h a s not been sufficiently s e r i o u s t o i n t e r f e r e with the operation of the equipment in t h i s a r e a . The s e t t l e m e n t i s thought t o be the r e s u l t of washing t h e m o r e soluble components out of the heaved shale a s mentioned in r e l a t i o n t o r e a c t i o n s 4 and 5.

Although heaving h a s been a r r e s t e d , i t i s expected that in t i m e the o w n e r s m a y w i s h t o r e p l a c e the heaved floor portion with a s t r u c t u r a l f l o o r . Flood- ing m a y have to be continued t o l i m i t a i r e n t r y and p r e v e n t acid conditions f r o m being r e - e s t a b l i s h e d .

1 9 7 0

1

1 9 7 1

FIGURE 8 THE p H IN THE OBSERVATION WELLS

-

FLOODING WITH WATER ONLY

-

Y

, , l l , , , , , l , : , ,

JAN. FEE. MARCH APRIL MAY JUNE JULY AUG SEPT. OCT NOV DEC

/

JAN F E E MARCH APRIL MAY JUNE JULY AUG SEPT OCT NOV, DEC

1970

1

1971

FIGURE 9 DEPTH TO WATER TABLE AT VARIOUS LOCATIONS IN THE HEAVED ZONE

(11)

D I S T A N C E , M STA 0 I 2

CONCRETE FOOTING 2: FIGURE IOo pH MEASUREMENTS O F SHALE I N I N S P E C T I O N TRENCH

>

CONCRETE

F O O T I N G

I S A M P L I N G L O C A T I O N 5

FIGURE l o b

PLAN VIEW O F P O S I T I O N O F I N S P E C T I O N TRENCH, PITS N O . 2 A N D 3 A N D CONCRETE F O O T I N G (SEE FIGURE I FOR L O C A T I O N O F TRENCH1

T h e a u t h o r s have been a b l e t o d e m o n s t r a t e t h e p r e - f e r e n c e f o r d r y conditions by the a u t o t r o p h e s f o r r a p i d d e t e r i o r a t i o n of p y r i t i c s h a l e . F i g u r e 11 shows a photograph of a s h a l e s a m p l e of low p y r i t e content (0. 170) t h a t w a s t a k e n a m o n t h a f t e r i t w a s innoculated with t h e s e b a c t e r i a . The s a m p l e w a s k e p t a t 30 "C i n a c o n t a i n e r a b o v e , but not i n c o n t a c t with, w a t e r . T h e light a r e a s i n F i g . 11 a r e a y e l l o w i s h - brown m i n e r a l identified a s j a r o s i t e . S a m p l e s of u n a l t e r e d p y r i t i c s h a l e have been i n f e c t e d in t h i s way f r o m s e v e r a l s h a l e f o r m a t i o n s i n t h e Ottawa r e g i o n and a l l have been shown t o s u p p o r t b a c t e r i a l g r o w t h u n d e r the e n v i r o n m e n t a l conditions d e s c r i b e d .

CONCLUDLNG REMARKS

1. T h e biogenic a l t e r a t i o n of p y r i t e i n s h a l e c a u s e s a n expansion within the a l t e r e d zone and r e s u l t s i n heave of s t r u c t u r e s founded on i t .

2. T h e p r e f e r r e d e n v i r o n m e n t f o r t h e p r o c e s s s e e m s t o be w a r m , r e l a t i v e l y d r y and with a plentiful supply of a i r .

3. T h e p r o c e s s c a n be a r r e s t e d by changing the e n - v i r o n m e n t by s a t u r a t i o n with w a t e r . T h e w a t e r i s believed t o r e s t r i c t t h e supply of a i r and t o p r e v e n t p o c k e t s of high a c i d i t y f r o m developing. 4. L a b o r a t o r y e x p e r i m e n t s i n d i c a t e t h a t v e r y s m a l l q u a n t i t i e s of p y r i t e c a n s u p p o r t t h i s p r o c e s s . ACKNOWLEDGEMENTS T h e a u t h o r s w i s h t o acknowledge t h e c o - o p e r a t i o n of the staff of B e l l C a n a d a f o r t h e i r a s s i s t a n c e w i t h t h e s e s t u d i e s . D r . K. C . I v a r s o n of Soil R e s e a r c h I n s t i t u t e , C a n a d a D e p a r t m e n t of A g r i c u l t u r e , a s s i s t e d

FIG. 11 DEVELOPMENT O F ALTERATION ZONES CONTAINING JAROSITE ON LOW P Y R I T E CONTENT SHALE (0.1qo) ONE MONTH A F T E R INNOCULATION WITH SHALE I N F E C T E D WITH F E R R O - BACILLUS-THIOBACILLUS BACTERLA. with t e s t s and g e n e r o u s a d v i c e c o n c e r n i n g t h e m i c r o - biological a s p e c t s . M r . V . F. H a r r i s o n , M i n e s B r a n c h , D e p a r t m e n t of E n e r g y , M i n e s a n d R e s o u r c e s , and M r . D.S. R u s s e l l , Division of C h e m i s t r y , National R e s e a r c h Council of C a n a d a , a s s i s t e d w i t h c h e m i c a l a n a l y s e s . R E F E R E N C E S Quigley, R.M. a n d R. W. Vogan ( 1 9 7 0 ) , ~ l a c k ' s h a l e heaving a t Ottawa, Canada. C a n . G e o t e c h . J . , 7;

106-112.

Spanovich, M . and R , B . F e w e l l (1969), T h e s u b j e c t i s p y r i t e . C h a r e t t e , P e n n . J . A r c h . , 4 9 , 1 , 15-16. P e n n e r , E .

,

J. E . Gillott and W. J . Eden ( 1970). I n - v e s t i g a t i o n of heave i n B i l l i n g s s h a l e by m i n e r a l o g i - c a l and b i o - c h e m i c a l m e t h o d s . Can. Geotech. J . , 7, 333-338.

Wilson, A. E . (1946). Geology of the Ottawa-St. L a w r e n c e lowland. O n t a r i o and Quebec G e o l o g i c a l S u r v e y M e m o i r 241, No. 2474. C a n a d a Dept. of M i n e s and R e s o u r c e s , 6 5 p.

Kuznetzov, S. I.

,

M . V. Ivanov and N.N. Lyalikova (1963). Introduction t o g e o l o g i c a l m i c r o b i o l o g y ( T r a n s l a t o r P . T . B r o n e e r ) ( E d .

,

E n g l i s h edition, C . H . O p p e n h e i m e r ) M c G r a w - H i l l Book Co. I n c . , N. Y. 1963, 252 p. H a r r i s o n , V . F . , W . A . Gow and K . C . I v a r s o n (1966). L e a c h i n g of u r a n i u m f r o m E l l i o t Lake o r e i n the p r e s e n c e of b a c t e r i a . Can. Mining J . , 8 7 , 5, 64-67.

(12)

Figure

FIG.  2  LEVELLING  OF  GENERATORS  NECESSI-  TATED  BY  FLOOR  HEAVE
Table  I  gives  the  c h e m i c a l  a n a l y s i s   of  the  s h a l e
FIG.  6  BACTERIA  O F   THE  FERROBACILLUS-  THIOBACILLUS  GROUP  ISOLATED  FROM  ALTERED  SHALE  ZONE
FIGURE  7  DIMENSIONAL  CHANGE  OF  ALTERED  SHALE  AT  THREE  CONCENTRATIONS  OF  KOH
+3

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers