• Aucun résultat trouvé

f Distributions with bounded potentials and absolutely convergent Fourier series

N/A
N/A
Protected

Academic year: 2022

Partager "f Distributions with bounded potentials and absolutely convergent Fourier series"

Copied!
9
0
0

Texte intégral

(1)

Distributions with bounded potentials and absolutely convergent Fourier series

TOI~B;16]aN ~EDBERG

Institu~ Mittag-Leffler, Djursholm, Sweden

1. Introduction

In the first part of this paper w e s h o w that the capacity of a c o m p a c t subset of the n-dimensional Euclidean space can he characterized b y means of distributions (in the sense of L. Schwartz) which are carried b y the set and which have hounded potentiMs.

I n the second part we consider compact subsets of the real line with the property t h a t no non-trivial function can locally be in the class of Fourier transforms of Ll-functions a n d y e t be constant on the intervals of the complement of the set.

Using the result from the first p a r t we shall show t h a t a sufficient condition for a set to have this property is t h a t it has logarithmic capacity zero. This improves a result b y K a h a n e and Katznelson [4, p. 21] concerning Cantor sets.

I t will Mso he shown t h a t a necessary condition is t h a t the set has capacity zero with respect to all kernels (log+ 1/]x[) 2+~, d > 0.

The author is v e r y grateful to prof. L. Carleson for his m a n y valuable suggestions.

2. Notations and definitions

We denote the n-dimensional Euclidean space b y R =, its points b y x

2~1/2

@ l , . - - , x - ) and we write IxI = ( x ~ + . . . + x n ) .

B y A 1~ we mean the space of all functions

f

on R ~ ~dth the property t h a t for each x E R n there exists a neighbourhood V of x and a function g, whose

~o~rier transform is an integrable function, so t h a t f = g in V.

The Fourier transform of a function, measure or tempered distribution S is denoted by S.

(2)

5 0 T O R B J O R N H E D B E R G

B y a kernel we m e a n , in t h e case w h e n n > 2, a n i n t e g r a b l e f u n c t i o n on R n, with c o m p a c t s u p p o r t , of t h e f o r m K ( x ) = H(cf(x)), w h e r e H is a n o n - n e g a t i v e , c o n t i n u o u s , increasing a n d c o n v e x f u n c t i o n o n R a n d w h e r e ~0 is a f u n d a m e n t a l solution of L a p l a e e ' s e q u a t i o n , i.e.

1

log - - , n = 2

~(x) = Ixl

[xl 2 . n , n __ > 3

W h e n n = 1 we m e a n b y a k e r n e l a n even, i n t e g r a b l e a n d positive f u n c t i o n

~vith c o m p a c t s u p p o r t on I t w h i c h is c o n v e x on (0, oo).

W e shall t h r o u g h o u t this p a p e r let K~ be a k e r n e l w h i c h in a n e i g h b o u r h o o d o f t h e origin equals Ix] -~ w h e n ~ > 0 or log l/ix [ w h e n ~ = 0 a n d w h i c h m o r e - o v e r is i n f i n i t e l y differentiable for x :~ 0.

W e d e f i n e as u s u a l t h e c a p a c i t y Cx~(E) o f a c o m p a c t set E with r e s p e c t t o a k e r n e l K b y

(CK(E)) -~ = i n f ( s u p U~'(x))

t~ I t n

w h e r e t h e i n f i m u m is t a k e n o v e r all positive m e a s u r e s on E o f mass 1. F o r t h e o t h e r basic c o n c e p t s o f classical p o t e n t i a l t h e o r y we r e f e r t h e r e a d e r t o [2].

3 . D i s t r i b u t i o n s w i t h b o u n d e d p o t e n t i a l s

L e t S be a d i s t r i b u t i o n (in t h e sense o f L. S c h w a r t z ) on R". W e d e f i n e t h e p o t e n t i a l o f S w i t h r e s p e c t t o t h e k e r n e l K as t h e c o n v o l u t i o n of S a n d K a n d d e n o t e it b y U s = - - S * K .

D e n y [3] has in g r e a t detail s t u d i e d p o t e n t i a l s o f d i s t r i b u t i o n s w i t h f i n i t e e n e r g y a n d has e.g. s h o w n t h a t a set of c a p a c i t y zero w i t h r e s p e c t t o some k e r n e l c a n n o t c a r r y a n o n - z e r o d i s t r i b u t i o n w i t h f i n i t e e n e r g y w i t h r e s p e c t t o t h e same kernel.

I n t h e special case w h e n n = 1 a n d for kernels K~ this was also p r o v e d for ~ ---- 0 in a n l J p p s a l a l e c t u r e b y B e u r l i n g in 1940 a n d l a t e r b y ]3roman [1] for 0 < ~ < 1.

Our aim is t o s t u d y distributions whose p o t e n t i a l s are b o u n d e d f u n c t i o n s a n d we shall o b t a i n some analogous results.

T H n O I ~ 1. Let E be a compact subset of 1t" and let S be a distribution with support on E. I f the potential of S with respect to a lcernel K is a function U s and i f furthermore S ( 1 ) = 1 then

ess sup ]US(x)] > (C~(S))-I

x E l l n

(3)

D I S T R I B U T I O N S W I T H B O U N D E D P O T E N T I A L S A N D A B S O L U T E L Y CONVEI:~GE~-NTT F O U l : t I E R S E R I E S 5 1

Proof. L e t s > 0 be given a n d let % be t h e equilibrium measure of t h e set~

E~ --- {x E R"; diet (x, E) < s}. L e t f u r t h e r m o r e k E C~ be a positive f u n c t i o n w i t h s u p p o r t in t h e n-dimensional u n i t bull a n d assume f kdx = 1. W r i t e k~(x) =

8 - n k ( X l / F ~ , . . . , X n / , 9 ) a n d let S = S 9 k~.

W e n o w easily o b t a i n t h e following inequalities b y using wellknown p r o p e r t i e s o f t h e equilibrium measure.

IUSl

> s u p ([USl * k J > s u p I U s * k,I = s u p

IU s~] > .f IUS~Id~ >

e s s s u p

B u t CK(E~)--+CK(E) as s - - > 0 a n d f r o m S ( 1 ) ~ - 1 it follows t h a t

f S f l x = 1

which proves the theorem.

W e are latex" on going to use this t h e o r e m in t h e classical cases of l o g a r i t h m i c c a p a c i t y a n d a-capacity, i.e. c a p a c i t y w i t h respect to t h e kernels K a. F o r t h e s e kernels we can prove t h e following corollary.

COROLLARY. A compact set E C R ~ has positive ~x-capacity ( i f ~ ~ 0: logarithmic capacity) for m a x (0, n -- 2) < cr < n i f and only i f it carries a non-zero distribution whose potential with respect to Ka is a bounded function.

Proof. Assume t h a t S # 0 is carried b y t h e set E a n d t h a t S * K~ is a b o u n d e d function.

It is b y the t h e o r e m sufficient to find a distribution S O w h i c h satisfies t h e s a m e a s s u m p t i o n s as S a n d w h i c h in addition has the p r o p e r t y that S0(1 ) ~: O_

If S is n o n - v a n i s h i n g there m u s t exist Y0 C R ~ s u c h that S(e I('' Y~ r O. W e shall p r o v e that the distribution S o ~ e~("Y~ has the required properties. T h i s follows h n m e d i a t e l y if we can show t h a t S(y)(K~(y -- Yo) -- Kc~(Y)) is the F o u r i e r t r a n s f o r m of a b o u n d e d function.

W e claim t h a t we can write

K~(Y -- Yo) -- K~(Y) = K~(y)(P(y) + Q(y) + R(y)) (1) where P , Q e LI(Rn), R e L2(Rn).

Since / ~ ( y ) = C[yl ~-n +

O(Iyl -N)

for a n y N as [Yl--> ~ we have t h a t

K~(y -- Yo) -- K~(y) ~- K~(y) IY -- Y01 ~-~ -- 1 + 0(lyl -N)

--/(~(Y)(

~ Pk(Y)ly1-2~ + 0( ly[- [-~] -~

-

))

1

where p~ are certain polynomials of degree k.

(4)

~ 2 T O R B J O R N H E D B E R G

W e can w i t h o u t loss o f g e n e r a l i t y assume t h a t Y0 ~ (1, 0 . . . 0) a n d w r i t e Ks(Y -- Yo) -- I~c~(Y) = Ka(Y)( ~ ~ ~xtkY~IY1-2k ~- O(IYl -[-~] -1))

k = l 120

W e claim t h a t we can f i n d a n L l - f u n c t i o n such t h a t t h e b e h a v i o u r of its F o u r i e r t r a n s f o r m a t i n f i n i t y is close t o t h e b e h a v i o u r o f t h e s u m in t h e last m e m b e r a b o v e . Consider t h e r e f o r e one t e r m , y~ly] -:k a n d let P l k e C ~ ( R ~ { 0 } ) be some f u n c t i o n w i t h c o m p a c t s u p p o r t w h i c h in a n e i g h b o u r h o o d o f t h e origin equals (-- i O/~xl)~Ix[ 2~-'~ w h e n n # 2k or ( - - i a/axl)tlog 1/]x] w h e n n ~ 2k. T h e n ))lk(y) -~ Clyt-Sky~ -}- O([yl -N) for all N as l y ] - + oo a n d Pll, e L l ( R " ) .

B y a d d i n g c o n s t a n t multiples o f such f u n c t i o n s P,~ we f i n a l l y o b t a i n a f u n c t i o n P eLI(R ~) which satisfies ~5(y) _

~p~(y)tyi-2~ _= O(lyl-~)

for all N as lyl--~ oo a n d it is easily seen t h a t Q a n d /~ can be chosen so t h a t (1) holds.

Since S~/~ a n d S , K s are b o u n d e d f u n c t i o n s a n d since S * K~ e L2(R ") it n o w follows t h a t N * K s 9 ( P ~- Q ~ / ~ ) is a b o u n d e d f u n c t i o n w h i c h p r o v e s t h e s u f f i c i e n c y p a r t of t h e corollary. T h e n e c e s s i t y follows d i r e c t l y f r o m t h e d e f i n i t i o n of c a p a c i t y .

I t seems p r o b a b l e t h a t t h e c o r o l l a r y also holds for general kernels K a l t h o u g h we h a v e n o t b e e n able t o p r o v e this.

L e t us n o w e n d this section b y showing h o w t h e corollary could be used to p r o v e t h e classical r e s u l t (see e.g. [1, ch. VII]) t h a t a set is >>removable>> for b o u n d e d h a r m o n i c functions i f it has c a p a c i t y zero w i t h r e s p e c t to / ~ - 2 .

L e t t h e r e f o r e D c 1t =, n > 2, be a b o u n d e d region whose b o u n d a r y /7 is a s m o o t h surface a n d let E C D be a closed set s t r i c t l y c o n t a i n e d inside /'. Assume t h a t E has c a p a c i t y zero w i t h r e s p e c t to K~_2 a n d let u be a b o u n d e d a n d h a r m o n i c f u n c t i o n on D ~ E . W e claim t h a t u can be e x t e n d e d to t h e whole of D.

Choose a f u n c t i o n v w i t h c o m p a c t s u p p o r t w h i c h coincides w i t h u on some n e i g h b o u r h o o d o f E a n d w h i c h is i n f i n i t e l y differentiable o u t s i d e E .

T h e n A v - ~ S Jr ~, w h e r e S is a d i s t r i b u t i o n c a r r i e d b y E a n d w h e r e ~ E C~.

B u t t h e p o t e n t i a l o f S w i t h r e s p e c t t o K ~ _ 2 is

S * K n _ 2 - - m - ZIv *K,~_ 2 - - ~ *K,,_2-=- v * A K , , _ 2 - ~ * K , _ 2 ~- v -~ v ,~v - - ~ *K,,_2 where ~ C C~.

W e t h u s h a v e t h a t U s ---- S * K . _ 2 is a b o u n d e d f u n c t i o n w h i c h b y t h e c o r o l l a r y implies t h a t S = 0 a n d h e n c e t h a t u can be e x t e n d e d as claimed.

4. A class of thin sets

L e t E be a c o m p a c t subset o f t h e real line a n d assume t h a t f E A 1~ is eonstan~

on e a c h i n t e r v a l o f t h e c o m p l e m e n t o f E .

(5)

D I S T R I B U T I O N S W I T H B O U 2 ~ D E D 1 ) O T E 2 q T I A L S A ~ I ) A I 3 S O L U T E L Y C O N V E R G E 2 q T F O U I C l E R S E R I E S 5 3

Our aim is to t r y to characterize the sets E for which no nontrivial function f can have the properties just stated.

K a h a n e and :Katznelson [4, p. 21] have given an example of a Cantor set with the above property. The following theorem contains their result.

T ~ o n E ~ 2. Let E c R be a compact set of logarithmic capacity zero. I f f E A ~~176 is constant on each interval of the complement of E then

f

equals a constant.

Proof. Let f be an arbitrary function t h a t fulfills the hypothesis. Then there exists a function g which satisfies:

(i) ~ ~ L~(R).

(ii) g---f on some interval I ~ E .

(iii) g ~ 0 outside some neighbourhood of i . (iv) g is infinitely differentiable outside I.

L e t S be t h e derivative of f in the sense of distributions and let U s be the logarithmic potential of S.

Then S = dg/dx ~- ? where ~ C C ~ and U s = U g" + U ~.

B u t ( U g ' ) ~ ( x ) ~ iz~(x)l~o(x ) e L~(R) since ~0(z)---- 1~Ix ] ~-O([xl -N) for a n y N as x -+ ~ and hence U g' is a bounded function. This is also true for U ~ a n d S is thus a distribution on E with bounded logarithmic potential.

B y the corollary this leads to a contradiction unless S--~ 0 and hence the theorem follows.

Our next theorem shows t h a t this result is the best possible in the sense t h a t logarithmic capacity cannot be replaced b y capacity with respect to a n y larger kernel.

Before we state the theorem we give the following lemma.

LEMMA

and {m~}~ are some given sequences. Write l, = ~n+lm~rr c~

(m n ~ 1 ) l ~ < l l n _ l for n = 1 , 2 . . .

Then E has capacity zero with respect to a kernel K i f

]-T (m, +

1)-iK(l ) =

n : l 1

f:

1 K(t) dt < CK(x), x :/: 0 then the condition is also necessary.

I f x

co r

2 . . L e t E : { x e R ; x : ~ l ~ir" s ~ : O, 1 . . . m,} where {r,} 1 and assume that

Proof. The proof of the lemma is, apart from minor modifications, identical to the proof given in e.g. [2] of the corresponding theorem concerning the ordinary Cantor set (i.e. the case when m i --- 1, i = 1, 2 . . . . ) and is therefore omitted here.

The last condition in the lemma is clearly satisfied for all kernels Ks, 0 < ~ < 1.

(6)

~ 4 T O R B J O R N H E D B E R G

TH~OlCE~ 3. Let K be a kernel such that lim~+0K(x)(log 1 / I x ] ) - 1 = ~ . T h e n lhere exists a compact subset of R with capacity zero with respect to K and a non- zero measure carried by the set whose primitive function is in A ~~162

Proof. L e t E be a set of t h e form {x = ~ eirl, es = O, 1 . . . . , mi} a n d a s s u m e t h a t E has positive logarithmic c a p a c i t y a n d choose a measure /x on E w i t h f i n i t e e n e r g y w i t h respect to t h e logarithmic kernel. L e t v = # 9 # a n d let J(x) =--./idv. The s u p p o r t of v is obviously a subset of

I V = E - ~ E = { ~ u , r ,, U i = 0 , 1 . . . 2 m i } .

1

T h a t t h e energy of /x is finite implies t h a t

f

I;(y) I < +

Iyl->

B u t f(y) = ~(y)/iy = (~(y))2/iy a n d hence f E A ~~162

W e n o w claim t h a t we can choose {r~} a n d {m~) in such a w a y t h a t

n

(]'-[ (m i ~- 1)) -1 log I/t. < oO (2)

1 1

(]"[ (2m i + 1)) -1 K(2/,) = ~ (3)

1 1

where

In

~ n + l m i r i .

B o t h these relations are satisfied if we e.g. choose {r~) a n d {ml) so t h a t (i) l o g l / 1 , = n - 2 ] - [ ~ ( m , ~ - 1), n ~ - 1, Z , . . .

(ii) K(2/n) >__a n l o g l / I n , n - ~ 1 , 2 . . . . (iii) mi -+ ~ , i -+

(iv) (2mnA- 1)ln < l n _ l / 2 , n = 1 , 2 . . . .

Since ln+ ~ = In - - mn+lrn+~ it is clear t h a t this choice can be done.

Using L e m m a s 2 a n d 3 it n o w follows from (2) a n d (3) t h a t E (and t h u s F ) h a s positive logarithmic c a p a c i t y a n d t h a t F has c a p a c i t y zero w i t h respect to K which proves our theorem.

The n e x t t h e o r e m gives a necessary condition in t e r m s of c a p a c i t y for a set t o be in our class of t h i n sets.

THEOREM 4. Let E C R be a compact set of positive capacity with respect to the kernel (log + 1/]xD 2+~ for some ~ > o. Then E carries a (positive) measure # whose p r i m i t i v e function is in A 1~162

(7)

DISTRIBUTIONS W I T H B O U N D E D POTENTIALS AND ABSOLUTELY CONVERGENT F O U R I E R SERIES 55

Proof. P u t K(x) = (log + 1/Ix[) 2+~ a n d let # be a measure on E w i t h finite energy w i t h respect to K .

I t is easy to show that (log ]y])l+~Iy[-l(I~(y))-i t e n d s to a c o n s t a n t as [y[ - ~ oo a n d it therefore follows t h a t

f [~(Y)[~

Iyl-> 1 lYI

- - (log [y])I+~dy < oo

[ *

B y Schwarz's i n e q u a l i t y this implies t h a t ] ]~(y) l[yI-ldy < oo a n d hence g~y I>_i

f:

t h a t f ( x ) = d/~ E A 1~ which proves t h e theorem.

I t is possible t h a t a n y set E of positive logarithmic c a p a c i t y carries a non-zero distribution w i t h a primitive f u n c t i o n in A l~ The following result shows t h a t such a distribution could n o t always be chosen as a positive measure a n d t h e necessary construction would therefore p r o b a b l y h a v e to be complicated.

THEOREM 5. There exists a (~ ~ 0 and a compact set E~ c R of positive capacity with respect to the kernel K(x) -= (log + 1/Ixl) 1+~ such that if f E A l~176 is non-decreasing and constant on each interval of the complement of E~ then

f

equals a constant.

Proof. L e t E~ be t h e Cantor set {x E R; x - = ~'1 e~r~, e~ ~ 0 or 1} where oo

~ n + l r~ ~ exp (-- 2"/(I+~)), n = 1, 2 , . . . a n d where ~ ~ 0 is a n u m b e r to be f i x e d later. E~ has positive c a p a c i t y with respect to a kernel (log + 1/tx[) I+' if a n d o n l y if 0 < t < 6 .

Assume t h a t f is a f u n c t i o n t h a t fulfills t h e hypothesis. I t s derivative in t h e sense of distributions is a positive measure # w i t h s u p p o r t in E~. Consider t h e convolution v = # 9 # which is a measure on F~ ~ E~ ~- E~ a n d suppose we k n o w t h a t ~ has b o u n d e d energy w i t h respect t o t h e kernel (log + l/lxl) 1+3~" for some n u m b e r ~' > ~.

This a s s u m p t i o n is e q u i v a l e n t t o

f l;(y)1

lyl >_ l ]Yl

- - ( l o g ]y])3~" d y < o~

f 0 ~

and, since d# E __A ~~176 we also k n o w t h a t

f lg(y) l

- ~ d y < ~ .

lyl >_ l

(8)

56 TORBaO~N ~EDBE~G

l~rom these two inequalities it follows b y means of I-I61der's i n e q u a l i t y t h a t lY] (log [yl) a' dy < oo

]y] e l

i.e. t h a t # has finite energy with respect to t h e kernel (log + 1/[XI) 1+~' where ~' > ~.

B n t this is impossible unless # = 0 a n d hence t h e t h e o r e m follows as soon as we h a v e p r o v e d t h e following lemma.

L ] ~ M A 3. Let E~ be a Cantor set as above and let _F~= E,~ ~ E~. Let # be a positive measure on Ez with bounded logarithmic potential. Then, i f ~ > 0 is suffi- ciently small, there exists d' > (~ such that the measure r = /t * tt has finite energy with respect to the kernel (log + l/Ix[) l+a~'.

Proof. B y m e a n s of a simple estimate we see t h a t /~(I) ~ C(log 1/1I[)-1 for all intervMs I of length ]I[ less t h a n 1.

W e also observe t h a t ~a = n ~ ~ Fn where each set ~n is the union o f 3" intervals

c o

I (n) of length In = ~ , + ~ 2rr a n d w i t h left endpoints x(~ "), k = 1 , . . . , 3 ~.

oo t !

E a c h p o i n t x @ can be wTitten x(k ") = ~ (e~+e,)r~, w i t h ~, ~ = 0 or 1, in N ~ ) different ways. L e t q be t h e n u m b e r of indices i for which W = s~ -~ s'~ = 1. I t t h e n follows t h a t x~) can be o b t a i n e d in N ~ ) = 2 q different w a y s as a s u m of two points in Ea. ~ o r a f i x e d q there are (~)2 "-q such points x(~ ") in Fa. W e f i n d t h a t ~ k (N(k"))2 = ~q=0 (~)2"-q" 22q = 6~" n

L e t ~(") be t h e measure whose restriction to a n y interval I(k ") is u n i f o r m l y d i s t r i b u t e d a n d whose mass on a n y interval I (") equals v(I@). I t is easy to see t h a t v(n) converges w e a k l y to v as n--> oo a n d it is therefore sufficient to prove t h a t t h e energy of v(") is b o u n d e d u n i f o r m l y in n.

The energy of v(~) w i t h respect to t h e kernel (log+ 1/Jxl) l+aa" is b y definition

ff(,o + 1

k., Ix -- y I/ dv(n)(x)dv(")(Y) " (4)

,i o)• n)

L e t us define

f f (

Dn ~ ~ log+ - dv(n)(x)&@(y)

Ix yl/

We claim t h a t

E(~ <n)) < C ~ D=.

n 0

(5)

(9)

D I S T R I B U T I O N S W I T H B O U N D E D 1 ) O T E N T I A L S A N D A : B S O : L U T E L Y C O N V E I ~ G E N T F O U R I E R S E R I E S 5 7

To prove this, le$ Q=, 1 _~ m < n, denote the sum of all terms in the right hand member of (4) that correspond to pairs of intervals with a mutual distance less than I~_~ and greater than 89 l~_~.

In other words, Q= is the sum over the set T= consisting of all indices (k, l) such that @ ) - ~ ~!') for 0 < i < ~n -- I and ~2) :/: ~ (where x(p ~) = ~ :

~!V)r,).

Then

1 ~I+3a"

- - / ~" r176 <

Q~ < C log 1~_1/ ~

< C(Iog 1 )1+3a'~

I t is obvious t h a t we get all terms in (4) b y summing over m and adding D . and hence (5) follows.

]~ut since ~(")(Ip)) < CNp)(log 1/1.) -2 and since

1 n lrt

1 ~1 +3,V

t _ U

z~ > - y i/ dx~y < c

0 0

we have t h a t

D,, < C log T.] Z (NP)) z = C log T./ 6" < C7"

k

where y = 6 9 2 -(3-3a')/(l+a) (since l= = 2 exp (-- 2"/(1+a))).

Choose now ( ~ > 0 so t h a t 3 ( 1 - - 8)/(1 -4- 8) > 2 1 o g 6 (i.e. 5 < 0 . 0 7 4 . . . ) and choose 3 ' > ~ so t h a t y < 1. Since E(v ( n ) ) _ ~ C ~ 0 y ~ the lemma follows. n

Relerenees

1. BROMA~, A., On two classes of trigonometric series. Thesis, Uppsala, 1947.

2. CA~Lasso~, L., Selected problems on exceptional sets. Van Nostrand, Princeton, 1967 (Mimeo- graphed, Uppsala, 1961).

3. ]DENY, J., Sur les distributions d'energie finie. Acta Math. 82 (1950).

4. •AKANE, J-.-:P., Sdries d~ _Fourier absolument convergentes. Springer-Verlag, ]3er]in, 1970.

Received J u n e 7, 1971 TorbjSrn IYedberg

H6gskolenheten Fack

S-951 O0 Luleg Sweden

Références

Documents relatifs

Fourier transform.

Analytic Versus Real Wavelets Like a windowed Fourier transform, a wavelet transform can mea- sure the time evolution of frequency transients.. This requires using a complex

(See the properties of the Fourier transform, e.g., in Heyer [7, Chapter I].) In case of a locally compact Abelian group, an explicit formula is available for the Fourier transform

(*) The authors are deeply indebted to the anonymous referees for their very complete reading of the manuscript. Their long list of remarks and constructive suggestions

RIESZ, Sur l’équivalence de certaines méthodes de sommation [Pro- ceedings of the

The short-time Fourier transform (STFT) and continuous wavelet transform (CWT) are intensively used to analyze and process multicomponent signals, ie superpositions of mod-

This result, already known in the complex case, is thus the p-adic analogous of the comparison theorem 2.4.1 of Katz-Laumon for the Fourier transform of l-adic sheaves ([KL85])..

TRIPATHY, On the absolute Hausdorff summability of some series associated with Fourier series and its allied series,