• Aucun résultat trouvé

Use of the deep penetration test in sensitive clays/ Utilisation de l'essai de penetration en profondeur dans les argiles sensibles

N/A
N/A
Protected

Academic year: 2021

Partager "Use of the deep penetration test in sensitive clays/ Utilisation de l'essai de penetration en profondeur dans les argiles sensibles"

Copied!
10
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Use of the deep penetration test in sensitive clays/ Utilisation de l'essai

de penetration en profondeur dans les argiles sensibles

Ladanyi, B.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=bb4f8d06-9b80-48df-a86a-877e0bb05f8f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=bb4f8d06-9b80-48df-a86a-877e0bb05f8f

(2)
(3)
(4)

$;I: <-

U S E

OF

T H E D E E P P E N E T R A T I O N J E S T

IN

S E N S I T I V E C L A Y S

4 3

U T I L I S A T I O N

D E

L'ESSAI

D E

PENTETRATION EN PROFONDEUR ~;

:

D A N S LES ARGILES SENSIBLES

B . LADANYI, Ph.D., D e p t . o f M i n i n g E n g i n e e r i n g Ecole p o l y t e c h n i q u e , M o n t r e o l W . J . EDEN, Soil M e c h a n i c s S e c t i o n , Division o f B u i l d i n g R e s e a r c h

N o t i o n o I R e s e a r c h C o u n c i l o f C o n o d o , O t t o w o

SYNOPSIS T h e deep penetration t e s t w a s subjected t o t r i a l s i n both t h e field and laboratory a s a possible method o f &ermining t h e undrained shear strength. I t i s shown that i n s e n s i t i v e c b y s the bearing capacity f a c t o r Nc i s c o n s i d e r a b l y l e s s than 9. T h e t r i a l s showed that the deep penetration test i s a promising method o f m e a s u r i n g undrained strengthias it i s not a f f e c t e d b y disturbance and yields a continuous record o f undrain- ed s t r e n g t h s .

INTRODUCTION

O f t h e s e v e r a l d i f f e r e n t m e t h o d s proposed f o r d e t e r - m i n i n g t h e undrained s t r e n g t h o f saturated c l a y s i n situ

,

t h e vane t e s t h a s probably b e e n t h e one m o s t c o m m o n l y u s e d . T h e vane t e s t m e a s u r e s d i r e c t l y t h e u l t i m a t e undrained shear strength o f c l a y on p r e d e t e r m i n e d f a i l u r e planes under conditions s i m i l a r t o t h o s e i n a d i r e c t shear t e s t . Its m a i n advantage i s i t s s i m p l i c i t y i n both p e r f o r m a n c e and i n t e r p r e t a t i o n . T h e vane t e s t i s considered t o f u r n i s h r e l i a b l e r e s u l t s i n s o f t c l a y s , provided t h e actual m o d e o f f a i l u r e c o r r e s p o n d s t o that a s s u m e d in i t s interpretation.

A disadvantage o f t h e vane t e s t i s that it can give only a discontinuous picture o f undrained shear s t r e n g t h v a r i a t i o n in a v e r t i c a l soil profile. Another disadvantage i s that t h e t e s t r e q u i r e s introduction o f t h e vane apparatus i n t o t h e soil b e f o r e t h e shear t e s t i s p e r f o r m e d . Although t h i s m a y b e o f l i t t l e consequence in m o s t t y p e s o f c l a y s , it i s thought t o produce a c e r t a i n amount o f disturbance i n s e n s i t i v e c l a y s , particularly i n t h o s e o f a b r i t t l e t y p e ( C r a w f o r d and Eden, 1965; Eden, 1966). Another t y p e o f t e s t that can b e used f o r t h e s a m e purpose i s t h e q u a s i - s t a t i c deep penetration t e s t . I f t h e t e s t i s p e r f o r m e d b y a s e l f -recording, f i x e d - point t y p e o f p e n e t r o m e t e r , a s was done in t h i s study, continuous i n f o r m a t i o n on undrained strength o f c l a y i s obtained, and n o objection can be r a i s e d concerning t h e e f f e c t o f c l a y disturbance prior t o t h e t e s t . T h e t e s t cannot f u r n i s h d i r e c t l y , h o w e v e r , t h e value o f t h e undrained shear strength (6,) o f t h e c l a y , but t h e l a t t e r h a s t o b e calculated f r o m t h e m e a s u r e d t i p r e s i s t a n c e ( q p ) using t h e bearing capac i t y f o r m u l a

w h e r e po i s t h e total overburden pressure at t h e l e v e l o f t h e point and Nc i s t h e bearing capacity factor. It i s obvious, t h e r e f o r e , that a correct evaluation o f penetrometer t e s t r e s u l t s i n saturated clays will depend on h o w i n g t h e numerical value o f t h e factor Nc.

On t h e b a s i s o f t h e o r y and model studies, t h e value Nc = 9 h a s been proposed ( M e y e r h o f , 1951;

Skempton, 1951) and v e r i f i e d in the field (Meyerhof and Murdock, 1953). Nc values a s low a s 5 and a s high a s 25 have also b e e n reported in the literature ( S o w e r s , 1961; W a r d , Marsland and S a m u e l s , 19651 It can b e s e e n that t h e value o f t h e bearing capacity factor & f o r deep penetration o f saturated clays i s far f r o m being a constant. I t appears t o b e i n f l u - enced b y a number o f f a c t o r s such as: ( 1 ) Over-all s t r e s s - s t r a i n behaviour o f t h e clay i n undrained shear; ( 2 ) r a t e o f penetration; and ( 3 ) shape o f pene- t r o m e t e r point. No s y s t e m a t i c investigation o f t h e Nc value h a s b e e n m a d e t o date, however, that would cover all t h e s e e f f e c t s and include d i f f e r e n t t y p e s o f natural undisturbed clays.

In

particular, t h e r e i s v e r y l i t t l e i n f o r m a t i o n available on t h e value o f Nc t o b e used i n evaluating deep penetra- t i o n t e s t s i n sensitive c l a y s such a s t h o s e encou- tered i n E a s t e r n Canada and Scandinavia. A recent theoretical study (Ladanyi, 1967) shows that i n such c l a y s Nc values as low a s 5 can b e expected. T h e m a i n purpose o f t h e present i q v e s t i - gation was t o d e t e r m i n e experimentally the values o f t h e factor Nc i n typical sensitive clays, a s found

-

in t h e Ottawa a r e a , and t o compare t h e s e values

with theoretical predictions.

qp = P o

+

e U N c

...

( 1 ) For t h i s purpose, t w o s e r i e s o f penetration t e s t s w e r e carried out:

(5)

L A D A N Y I on

d

EDEN a ) omall-scale l a b o r a t o r y t e n t s c a r r i e d out

with a specially deaigned s e l f - r e c o r d i n g penetrom

-

e t e r of 1. 55 c m d i a m e t e r ;

b) field t e s t s with a c o m m e r c i a l s e l f - r e c o r d i n g cone penetrometer of 3. 57 c m diameter.

Laboratory penetration t e s t s w e r e p e r f o r m e d on undisturbed specimens of sensitive clays f r o m two different locations. Field penetration t e s t s w e r e c a r r i e d out at the s a m e two locations in the Ottawa a r e a .

LABORATORY PENETRATION TESTS Apparatus and P r o c e d u r e

A s m a l l cylindrical probe with a f l a t p r e s s u r e - s e n - sitive t r a n s d u c e r installed in t h e b a s e waa used ( F i g u r e 1)

.

F o r c e t r a n s d u c e r R o l l e r b e a r i n g s E 0 CI 0 Fig. 1 Experimental A r r a n g e m e n t F o r L a b o r a t o r y P e n e t r a t i o n T e s t s . When mounted in a t r i a x i a l p r e s s , t h e a s s e m b l y permitted s e p a r a t e m e a s u r e m e n t and continuous r e - cording of both the p r e s s u r e a t t h e b a s e of the probe and the t o t a l force during penetration.

Undinturbed specimens of clay, obtained in a 5 -in. Onterberg piston aampler, w e r e placed in a 26-cm- long split s t e e l cylinder. Liquid wax was poured into the remaining space between t h e specimen and cylinder t o provide uniform l a t e r a l support.

The r a t e of penetration was 0. 356 cm/min in a l l t h e tents. Another s e r i e s of t e s t s was conducted to otudy t h e effect of r a t e of penetration with the s a m e p r o b e mounted in a u n i v e r s a l t e s t i n g machine where penetration r a t e s up t o 12.7 cm/min could be attained.

T e a t Resulta

C l a y s p e c i m e n s f r o m two different locations, a t t h e National R e s e a r c h L a b o r a t o r i e a and C l o u c e a t e r Naval Station ( C r a w f o r d and Eden, 1965), w e r e u s e d F i g u r e s 2 and 3 show t y p i c a l r e s u l t s of p e n e t r a t i o n t e s t s f r o m e a c h site. T h e c l a y a t the NRC s i t e had a s e n s i t i v i t y ranging f r o m 10 t o 35, w a t e r c o n t e n t s f r o m 72 t o 8 4 p e r cent and a field vane ength f r o m 0. 5 t o 0 . 7 kg/sq c m , i n c r e a s i n g n i t h depth. T h e G l o u c e s t e r c l a y had a s2nsitivity oi about 30 t o a 5 m depth, a water content f r o m 50 t u 70 and a field vane s t r e n g t h of 0. 25 kg/sq c m . Depth 1 0 . 8 0 ~ - 0 2 4 6 =E u 8 z 0 ; 10 4 a I- Y

5

12 CL 1 4 1 6 18 S K I N F R I C T I O N L. KG Fig. 2 L a b o r a t o r y P e n e t r a t i o n T e s t : NRC C l a y

In F i g u r e s 2 and 3 the variations with depth of penetration of the following two q ~ a n t i t i e s h a v e been plotted: (1) point r e s i s t a n c e a s r e c o r d e d by t h e p r e s s u r e t r a n s d u c e r a t t h e b a s e of t h e p r o b e , and (2) skin friction which i s equal to t h e d i f f e r e n c e

w h e r e

L

i s the s k i friction in kg, Qtot denotea the t o t a l penetration f o r c e r e c o r d e d by t h e f o r c e t r a n s

-

d u c e r , and A = L885 s q c m i s the b a s e a r e a of the

probe. P

Analysis of T e s t R e s u l t s

Experimental evidence shows that f o r a f r i c t i o n l e e s p l a s t i c m a t e r i a l the punch h a s t o p e n e t r a t e t o a

(6)

D E E P P E N E T R A T I O N TEST

depth of a t l e a s t 4 d i a d e t e r s b e f o r e t h e effect of t h e f r e e s u r f a c e disappearb and a t r u e deep f a i l u r e phenomenon i s attained (Meyerhof, 1951). F o r t h i s r e a s o n , only t h e portion of t h e r e s u l t s below t h e depth m a r k e d by 4d in F i g u r e s 2 and 3 h a s been used in t h e following a n a l y s i s and comparison. T h e e f f e d of t h e bottom s u r f a c e of t h e s p e c i m e n was m a d e negligible by stopping p e n e t r a t i o n a t a distance of m o r e than 3 p r o b e d i a m e t e r s f r o m t h e bottom s u r - face.

S K I N F R I C T I O N L, K G

Fig. 3 L a b o r a t o r y P e n e t r a t i o n T e s t , Gloucester Clay.

The a v e r a g e r e s u l t f r o m a number of field vane t e s t s p e r f o r m e d c l o s e t o t h e s a m e location was used for comparison. In F i g u r e s 2 and 3 .the a v e r a g e s U line h a s been plotted and c o m p a r e d with t h e p a r a l l e l a v e r a g e qp-line f r o m l a b o r a t o r y p e n e t r a t i o n t e s t s , which i s shown a s a dashed line. A s t h e overburden p r e s s u r e was ~ r a c t i c a l l y z e r o in t h e laboratory testa, the e x p e r i m e n t a l a v e r a g e Nc values could be deter

-

mined f r o m t h e formula:

Nc = %/aU

. .

.

. .

. .

. . .

.

. .

.

.

.

.

.

( 3 ) T h e Nc v a l u e s s o obtained in a l l t h e t e s t s p e r f o r m e d on t h e NRC c l a y w e r e found t o v a r y f r o m 5.71 to 8.00, with a n over -all a v e r a g e f r o m t h e s i x t e s t s of Nc = 7. 23. On t h e other hand, Nc values obtained from t h r e e t e s t s on t h e Gloucester clay, a l l f r o m t h e s a m e level, did not differ much f r o m t h e value Nc = 6.85 shown in F i g u r e 3.

Some additional specimens from the s a m e level w e r e used f o r investigating t h e effect of the r a t e of pene- t r a t i o n on t h e m e a s u r e d point resistance. The teete w e r e p e r f o r m e d in a universal testing machine p e r

-

mitting controlled penetration r a t e s of up to 12.7 c m / min to be attained. It was found that for t h i s clay a tenfold i n c r e a s e i n penetration r a t e resulted in an i n c r e a s e of abbut 7. 5 p e r cent in tip resistance. FIELD PENETRATION TESTS

Apparatus and P r o c e d u r e

T h e B o r r o s penetrometer used 'in the field t e s t s i s a s e l f - r e c o r d i n g cone penetrometer with a loading potential up t o 4 tons a t t h e point. The varying load during penetration i s sensed by e l e c t r i c a l r e s i s t a n c e s t r a i n gauges mounted in a sealed piece behind t h e point, and t h i s i s continuously r e c o r d e d on a con-

stant speed chart. T o t a l r e s i s t a n c e a t t h e top of t h e r o d s i s not r e c o r d e d ty t h i s penetrometer. Figure

I

I

Location of

-+-I-

, s t r a l n gauges

:ri

w

Fig. 4a The Point of " B o r r o s l ' P e n e t r o m e t e r . Although a hand-operated jack i s provided for push- ing t h e penetrometer into t h e soil, t h e t e s t s were c a r r i e d out using a hydraulic d r i l l rig. T h i s allowed t h e drilling of a borehole through t h e d r i e d upper c r u s t and t h e pushing of the penetrometer into the s o i l a t a reasonably constant r a t e by m e a n s of the hydraulically-operated drillhead. Average r a t e of penetration was about 20 cm/min, with a variation of about f 5 cmlrnin. During the t e s t s , a constant r a t e of penetratlon was maintained for t h e full s t r o k e of the d r i l l head ( n e a r l y 2 cm).

T e s t R e s u l t s

The r e s u l t s of field penetration t e s t s a r e shown in F i g u r e s 4b and 4c. In t h e s e , Qtot, plotted against depth, r e p r e s e n t s t h e a v e r a g e load m kilograms r e g i s t e r e d by the s t r a i n gauges a t the point within s u c c e s s i v e 20 -c m intervals. As the r e s u l t s obtained

(7)

L A D A N Y I

o n d

E D E N

f o r e a c h location w e r e f a i r l y c o n s i s t e n t , only t h e A = 5 . 6 sq c m ; A' = 50 s q c m ;

a =

0.45;

B

= 0.10; a v e r a g e of Q v a l u e s m e a s u r e d a t a given l e v e l in a& 1.015 5 p 5 1.

oh.

F r o m t h e s e ,

a

a n d B v a l u e s

ot

a l l t e s t s p e r f o r m e d a t a p a r t i c u l a r location w e r e correspond t o t h e d a t a f r o m l a b o r a t o r y p e n e t r a t i o n u s e d in t h e following evaluation of t h e r e s u l t s . t e s t s and p h a s been evaluated by a n a p p r o x i m a t e

a n a l y s i s taking i n t o account a v e r a g e s h e a r s t r a i n s Q T O T A L ~ K C

100 125 produced i n t h e p l a s t i c region s u r r o u n d i n g t h e point

0 25 50 7 5 d u r i n g p e n e t r a t i o n . Q T O T A L . K C 0 O 25 5 0 7 5 1 0 0

I

I

-

T e s t C - 4 2

-

---

T e s t G-5 4

-

6

-

I

z

8 - - C 4 LT I-

2

1 0 - 0 Y 0

E

1 2 - 0 Y 0 14

-

Fig. 4b T o t a l P o i n t R e s i s t a n c e , Q R e c o r d e d i n T h r e e F i e l d P e n e t r a t i o n a t NRG Site. 16

-

Evaluation of T e s t R e s u l t s 18

-

Owing t o t h e p a r t i c u l a r s h a p e of t h e point of the

B o r r o s p e n e t r o m e t e r and b e c a u s e t h e s t r a i n gauges

a r e located a t a c e r t a i n d i s t a n c e above t h e cone, i t 20

1

I

i s c o n s i d e r e d t h a t t h e r e c o r d e d value of Q c o n - 125

-

9

-

-

-

-

-

-

-

tot

t a i n s not only t h e point r e s i s t a n c e but a l s o s o m e Fig. 4c T o t a l P o i n t R e s i s t a n c e , Q R e c o r d e d i n r e s i s t a n c e due t o l a t e r a l s h e a r along the p a r t of t h e Two F i e l d P e n e t r a t i o n T e k ? ~ ' A t ~ l o u c e s t e r point between t h e cone and t h e s t r a i n gauges. T h e Site.

corresponding value of undrained s h e a r s t r e n g t h w a s

t h e r e f o r e , calculated f r o m the e x p r e s s i o n : Substituting t h e above v a l u e s i n Eq. 4, dividing by 5 o t

-

Ap Po

...

A p = 10 s q c m , a n d e x p r e s s i n g s u , Qtot a n d p i n

s u = ( 4) t s q m yields:

(A N~ t A L a t A L B ) ~

P %ot

-

Po

...

i n which A , A and A; ( F i g u r e 4(a)) a r e the a r e a s 8 = (5)

of t h e b a s z o f t k e cone, t h e c o l l a r , and t h e s u r f a c e u (Nc t 0. 7 5 2 ) ~ between t h e c o l l a r and t h e location of s t r a i n gauges,

r e s p e c t i v e l y ;

a

and

B

a r e reduction coefficients for T h e o r e t i c a l P r e d i c t i o n of Nc value

s u taking into account the remoulding and imperfect By extending t h e t h e o r y of expansion of a s p h e r i c a l contact, and P i s a s t r a i n r a t e f a c t o r t o enable c o r n - c a v i t y i n a n infinite m e d i u m t o a n e l a s t i c - p l a s t i c

-

p a r i s o n of 8 values obtained in t h e p e n e t r a t i o n t e s t s

u f r i c t i o n l e s s m a t e r i a l c h a r a c t e r i z e d by a d r o p of with t h o s e m e a s u r e d in s o m e other types of t e s t s s t r e n g t h a f t e r f a i l u r e , Ladanyi (1967) h a s s h o w n p e r f o r m e d a t a different s t r a i n r a t e . t h a t , f o r a t y p i c a l s e n s i t i v e clay, a n a p p r o x i m a t e

Nc value can b e calculated f r o m t h e e x p r e s s i o n F o r the p u r p o s e of evaluating t h e p r e s e n t t e s t r e - following Eq. (6). T h e v a l u e s of sU, s n E s a n d E, a u l t ~ . t h e n u m e r i c a l values of v a r i o u s m a g n i t u d e s i n i n t h i s equation c o r r e s p o n d t o a s i m p l i f i e d s t r e s s -

4.

4 have been taken a s follows: A = 10 sq ,-,,;

(8)

D E E P P E N E T R A T I O N T E S T

undrained cOmPresSion t e s t ( F i g u r e 5). T h e value of r a t i o

E

/sU would probably be nearer to the i n t h e r e m o u l d e d adhesion between t h e cone s u r -

f a c e and t h e clay. &own above, Eq. 8 h a s been chosen f o r t h e of

6 v a l u e s shown

in

Figures 6a and 6b.

In

f i g u r e s h e s values w e r e obtained by a 110

'a 4 'r 55 m m f i e l d vane? T h e r a n g e of s e n s i t i v i t y a t

NC

=-

8 +-3

-

8 d i f f e r e n t depths is a l s o indicated in the f i g u r e s . T h e

u u v a l u e s shown h a v e b e e n obtained by using a v e r a g e

qot

values f r o m t h e penetration t e s t s shown in F i g - u r e a 4b and 4c, respectively. 5,. K G I C M ~ 2 S u 4 E s '

-

el^

E,

25,

b^

Slrnpllfled

$

A v g 5, from 3 fleld

...

-zC

penetration tests 0 CIP E l r & I Fig. 5 S i m p l i f i e d S t r e s s - S t r a i n Behaviour of A S e n s i t i v e C l a y in Undrained C o m p r e s s i o n T e s t A s s u m e d in Nc Calculation.

It h a s been shown (Ladanyi, 1967) t h a t f o r a t y p i c a l Leda c l a y f r o m t h e NRC s i t e with a s e n s i t i v i t y of about 16 t h e following n u m e r i c a l v a l u e s could b e t a k e n f o r d i f f e r e n t r a t i o s i n Equation 6:

250 s ( E /s ) r 5 0 0 ; (E / s r ) = 16; ( 8 / S ) = 0.45,

(sa/sU)

='o.

35. ~ c c o r J m ~ t o ~ ~ u a t i z n 6: f o r t h e a b o v e r a n g e of E /sU r a t i o t h e value of Nc should then b e s i t u a t e d b z t w e e n 5 . 8 5 S N c s 6.73.

F o r c o m p a r i s o n , it should b e n o t e d that f o r t h e s a m e r a n g e of E /s r a t i o , t h e s a m e a n a l y s i s would give, f o r an inse%si#ve clay,

8. 22 r Nc 9.15. Fig. 6a C o m p a r i s o n of s Values F r o m Field Vane

And ~ e n e t r o m e t 2 r T e s t s At NRC Site. It i s evident, t h e r e f o r e , t h a t Nc value depends con-

s i d e r a b l y o n t h e p o s t - p e a k behaviour of t h e clay. F i g u r e 6a shows t h a t a t t h e NRC s i t e su values f r o m A r e c e n t i n v e s t i g a t i o n ( L a d a n y i e t al, 1968) shows t e s t s follow approximately t h e s a m e t h a t t h e d r o p in s t r e n g t h i m m e d i a t e l y a f t e r t h e p e a k t r e n d a s t h o s e f r o m field vane t e s t s . T h e y a r e gen- i e m u c h m o r e p r o n o u n c e d in s e n s i t i v e c l a y s t h a n i n e r a l l y lower than t h e a v e r a g e f r o m field vane t e s t s o r d i n a r y c l a y s . It follows, t h e r e f o r e , t h a t Nc value i n absolute value. It i s probable that, owing t o t h e should g e n e r a l l y b e e x p e c t e d t o d e c r e a s e with i n - b r i t t l e and jointed c h a r a c t e r of t h e p a r t i c u l a r clay, c r e a s i n g s e n s i t i v i t y of clay. t h e a c t u a l Nc value is lower than that u s e d in t h e

evaluation. It was found that with Nc = 5. 50 t h e

R e s u l t s of Evaluation a g r e e m e n t would b e m o r e s a t i s f a c t o r y , e s p e c i a l l y T a k i n g 5.85 s N 5 6 . 7 3 , and 1.015 s p s 1.040, Eq. below t h e 12 m l e v e l w h e r e a highly s e n s i t i v e c l a y

5 yields: i s found.

f o r

Es/su = 250:

.

(Q

-

86

.

. . .

.

. .

.

.

.

.

(7) c o m p a r i s o n of s v a l u e s obtained a t theG10uceater u tot site, ( F i g u r e 6b), shows a s i m i l a r i n c r e a s e in sU u

f o r with depth f o r t h e two types of test.

Es/sU = 500: 6 = (Qtot - p o )/7.60

. . .

. .

.

.

.

.

( 8 ) 6 values calculated f r o m Nc = 6 - 7 3 s e e m to b e a

u

liFtle t o o high. A b e t t e r a g r e e m e n t could h a v e been B e c a u s e it w a s thought t h a t f o r t h e c l a y in s i t u t h e

(9)

L A D A N Y I a n d E D E N obtained if N h a d been t a k e n t o e q u a l about 7. 50.

Fig. 6b C o m p a r i s o n of s V a l u e s F r o m F i e l d Vane And ~ e n e t r o m e t g r T e s t s a t G l o u c e s t e r Site. CONCLUSIONS On t h e b a s i s of t h i s investigation, t h e following conclusions a r e suggested: 1. F o r t h e p e n e t r a t i o n r a t e s u s e d in t h e t e s t s , s e n s i t i v e c l a y s behave d u r i n g deep punching a s o r d i - n a r y clays: f a i l u r e o c c u r s without any s i g n of even- t u a l liquefaction owing t o high l o c a l remoulding. 2. B e a r i n g c a p a c i t y v a l u e s t h a t a r e valid for d e e p p e n e t r a t i o n i n undrained s h e a r a r e lower in s e n s i - t i v e c l a y s t h a n i n o r d i n a r y c l a y s . Instead of a value Nc 4 9 commonly found i n o r d i n a r y c l a y s , t h e Nc

f o r s e n s i t i v e c l a y s v a r i e s f r o m about 5. 50 t o 8. 00, with the lower v a l u e s o c c u r r i n g a t high s e n s i t i v i t i e s . Actual Nc v a l u e s found in t h i s s t u d y by using, f o r c o m p a r i s o n , t h e b e s t f i e l d vane r e s u l t s a r e 5.70 < Nc < 8.00 in l a b o r a t o r y penetration t e s t s and 5. 50 < Nc < 7. 50 i n field penetration t e s t s . The t h e o r y gives Nc = 6.73 f o r St ~ 1 6 . A s Nc is found t o v a r y with c l a y s e n s i t i v i t y , m o r e r e c o r d s f r o m field and l a b o r a t o r y p e n e t r a t i o n t e s t s will b e needed t o r e l a t e i t s value m o r e c l o s e l y with s e n s i t i v i t y . 3. R e s i s t a n c e t o p e n e t r a t i o n i n c r e a s e s w i t h in- c r e a s i n g r a t e of p e n e t r a t i o n . T h e i n c r e a s e i n point r e s i s t a n c e found i n l a b o r a t o r y s m a l l - s c a l e t e s t s w a s 7. 5 p e r c e n t f o r a tenfold i n c r e a s e in p e n e t r a t i o n r a t e ; t h i s follows t h e t r e n d n o r m a l l y found in t h e u n d r a i n e d c o m p r e s s i o n t e s t . It i s c o n c l u d e d t h a t t h e effect of t h e r a t e of p e n e t r a t i o n s h o u l d b e t a k e n i n t o .

.

account when c o m p a r i n g r e s u l t s of d e e p p e n e t r a t i o n t e s t s with r e s u l t s of o t h e r t y p e s of f i e l d a n d l a b o r a - t o r y t e s t s f o r u n d r a i n e d s t r e n g t h d e t e r m i n a t i o n s . ACKNOWLEDGEMENTS T h e a u t h o r s w i s h t o e x p r e s s t h e i r g r a t i t u d e t o t h e i r c o l l e a g u e s a t t h e S o i l M e c h a n i c s S e c t i o n who h a v e f a c i l i t a t e d t h e f i e l d a n d l a b o r a t o r y i n v e s t i g a t i o n s d e s c r i b e d i n t h i s p a p e r which is p u b l i s h e d with t h e a p p r o v a l of t h e D i r e c t o r of t h e D i v i s i o n of Building R e s e a r c h , National R e s e a r c h C o u n c i l of Canada. R E F E R E N C E S C r a w f o r d , C. B. and W. J. Eden, 1965, A c o m p a r i - s o n of l a b o r a t o r y r e s u l t s with i n - s i t u p r o p e r

-

t i e s of L e d a c l a y , P r o c . , 6th I n t e r n a t . Conf. Soil M e c h s . a n d Found. E n g . , M o n t r e a l . Vol. 1, p. 31-35. Eden, W. J . , 1966, An e v a l u a t i o n of t h e f i e l d v a n e t e s t i n s e n s i t i v e c l a y , A m e r . Soc. T e s t i n g M a t s . , S T P No. 399, p. 8-17.

Ladanyi, B.

,

1967, Deep punching of s e n s i t i v e c l a y s , P r o c . , 3 r d P a n a m . Conf. S o i l M e c h s . Found. Eng., C a r a c a s , Vol. 1 , p. 533-546. Ladanyi, B. et a l , 1968, P o s t - p e a k b e h a v i o u r of

s e n s i t i v e c l a y s i n u n d r a i n e d s h e a r , Can. Geotech. J . , Vol. V, No. 2, p. 59-68.

Meyerhof, G. G. , 1951, T h e u l t i m a t e b e a r i n g c a p a c

-

i t y of foundations, Ggotechnique, Vol. 2, p. 301-332. M e y e r h o f , G. G. a n d L. J. M u r d o c h . 1953, An i n v e s t i g a t i o n of t h e b e a r i n g c a p a c i t y of s o m e b o r e d a n d d r i v e n p i l e s i n London c l a y , GBotechnique, Vol. 3, p. 267-282. Skempton, A. W .

,

1951, T h e b e a r i n g c a p a c i t y of c l a y s , P r o c . , Build. R e s . C o n g . , London, p. 180-189. S o w e r s , G. F. , 1961, D i s c u s s i o n , S e s s i o n 3B, P r o c . , 5th Internat. Conf. S o i l M e c h s . Found. Eng., P a r i s , Vol. 111, p. 261 -263.

Ward, W. H., e t a l , 1965, P r o p e r t i e s of London c l a y a t A s h f o r d C o m m o n s h a f t , GCotechnique, Vol. 15, p. 321-344.

(10)

Figure

Fig.  4a  The Point  of  &#34; B o r r o s l '  P e n e t r o m e t e r .   w
Fig.  6b  C o m p a r i s o n  of  s  V a l u e s   F r o m  F i e l d  Vane  And  ~ e n e t r o m e t g r   T e s t s  a t  G l o u c e s t e r   Site

Références

Documents relatifs

Dans l'État de Paraná, la réaction des pouvoirs publics pour garantir la pureté non transgénique dans la production de semences de soja conventionnel est d’ailleurs

We first present new analytic solutions of the GS equation for the pressure and current profiles known as Solov’ev profiles [2], simple profiles which still retain most of the

3 Universit` a di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy 4 Institute of High Energy Physics, Beijing 100039, China.. 5 University of Bergen, Institute of

Plus fondamentalement, Francesco Spandri montre que l’intérêt de Balzac pour l’étranger découle d’un parti- pris épistémologique issu des Lumières, où la

TABLE VII: Results of the fits for the ten signal decay modes: the number of events for fitted signal N sig , the peaking back- ground P , and the crossfeed C, the branching

With the aim of reducing the health risk for pregnant women and restricting their movements during lockdown, at the same time as the workload of healthcare professionals, while

Concernant le devenir du bois, l'hypothèse retenue est un stoc- kage durable du bois (bois d'œuvre) pour l'agroforesterie, et un stockage nul pour la

Each sample contains a number of decays sampled from a Poisson distribution with mean corresponding to the signal yield in the analysis where the model was determined, and