• Aucun résultat trouvé

Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco

N/A
N/A
Protected

Academic year: 2022

Partager "Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco"

Copied!
4
0
0

Texte intégral

(1)

JournalofPlantPhysiology170 (2013) 874–877

ContentslistsavailableatSciVerseScienceDirect

Journal of Plant Physiology

j o u r n al hom ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p l p h

Short communication

Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in

transgenic tobacco

Aurélie Charrier

a,b,c

, Eric Lelièvre

d

, Anis M. Limami

a,b,c

, Elisabeth Planchet

a,b,c,∗

aUniversityofAngers,InstitutdeRechercheenHorticultureetSemencesUMR1345,SFR4207QUASAV,2BdLavoisier,F-49045Angers,France

bINRA,InstitutdeRechercheenHorticultureetSemencesUMR1345,42rueGeorgesMorel,F-49071Beaucouzé,France

cAgroCampus-Ouest,InstitutdeRechercheenHorticultureetSemencesUMR1345,2rueAndréLeNotre,F-49045Angers,France

dUniversityofAngers,UMRCNRS6214INSERM1083,2rueHautedeReculée,F-49045Angerscedex,France

a r t i c l e i n f o

Articlehistory:

Received24October2012

Receivedinrevisedform11January2013 Accepted12January2013

Available online 9 February 2013

Keywords:

Abioticstress Medicagotruncatula Proline

Seedling

Stressassociatedprotein

a b s t r a c t

Stressassociatedproteins(SAP)havebeenalreadyreportedtoplayaroleintoleranceacquisitionofsome abioticstresses.Inthepresentstudy,theroleofMtSAP1(Medicagotruncatula)intolerancetotemperature, osmoticandsaltstresseshasbeenstudiedintobaccotransgenicseedlings.Comparedtowildtype,MtSAP1 overexpressorswerelessaffectedintheirgrowthanddevelopmentunderalltestedstressconditions.

TheseresultsconfirmthatMtSAP1isinvolvedintheresponseprocessestovariousabioticconstraints.

Inparallel,wehaveperformedstudiesonaneventuallinkbetweenMtSAP1overexpressionandproline, amajorplayerinstressresponse.Inaninterestingway,theresultsforthetransgeniclinesdidnot showanyincreaseofprolinecontentunderosmoticandsaltstress,contrarytotheWTwhichusually accumulatedprolineinresponsetostress.ThesedatastronglysuggestthatMtSAP1isnotinvolvedin signalingpathwayresponsiblefortheprolineaccumulationinstressconditions.Thiscouldbedueto thefactthattheoverexpressionofMtSAP1providessufficienttolerancetoseedlingstocopewithstress withoutrequiringthefreeprolineaction.Beyondthat,theprocessesbywhichtheMtSAP1overexpression leadtothesuppressionofprolineaccumulationwillbediscussedinrelationwithdatafromourprevious studyinvolvingnitricoxide.

© 2013 Elsevier GmbH. All rights reserved.

Introduction

Plantsarefrequentlysubjectedtoenvironmentalchangeswhich leadtoimportantconsequencesforthedevelopmentandthesur- vival.Tocopewiththeseconstraints,plantshavedevelopedsome adaptive responsesand complexcellularmechanisms involving manyactors,someofwhicharestillunknown(Zhu,2002;Vinocur andAltman,2005;Huangetal.,2012).

Inarecentpast,anewstressassociatedprotein(SAP)family hasbeendescribedtobeinvolvedinthestressresponseinplants (Mukhopadhyayetal.,2004;KannegantiandGupta,2008;BenSaad etal.,2010;DixitandDhankher,2011).SAParecharacterizedby thepresenceofA20/AN1zincfingerdomains.TheA20zinc-finger

Abbreviations:MS,MurashigeandSkoog;NO,nitricoxide;ROS,reactiveoxygen species;SAP,stressassociatedprotein;WT,wildtype.

Correspondingauthorat:UniversityofAngers,InstitutdeRechercheenHor- ticultureetSemencesUMR1345(INRA,Agrocampus-Ouest,UniversityofAngers), SFR4207QUASAV,2BdLavoisier,F-49045Angers,France.Tel.:+33241735383;

fax:+33241735456.

E-mailaddress:elisabeth.planchet@univ-angers.fr(E.Planchet).

(ZnF)domainischaracterizedbymultipleCys2/Cys2fingermotifs whereastheAN1-typeZnFdomaincontainssixconservedcysteines andtwohistidineswhichpotentiallycoordinatetwozincatoms (Linnenetal.,1993).Inanimals,theroleofA20/AN1proteinsin theregulationoftheimmuneresponsehasbeenwellestablished (Huangetal.,2004;Diatchenkoetal.,2005).However,inplants, although severalstudieshaveshowed theirinvolvement in the abioticstresstoleranceacquisition,theirprecisefunctionremains unknown.

Recently,wehaveidentifiedthefirstSAP(MtSAP1)intheplant modellegumeMedicagotruncatula(Gimeno-Gillesetal.,2011).The impactofMtSAP1overexpressionintransgenictobaccoseedlings hasbeenshowntoallowabettergrowthdevelopmentinnormal cultureconditions,butalsotoinducesaltandosmoticstresstol- erance(Charrieretal.,2012).It wasalsonotedinthis previous studythattolerancecouldbelinkedtohighlevelsofnitricoxide (NO)observedinthetransgeniclinesundernormalandstresscon- ditions.IthasbeensuggestedthatMtSAP1overexpressioncould beassociatedwiththishigherNOproductionthatwouldenable seedlingstoreachahighprotectionleveltopreparethemtocope withabioticstresses.

0176-1617/$seefrontmatter© 2013 Elsevier GmbH. All rights reserved.

http://dx.doi.org/10.1016/j.jplph.2013.01.008

(2)

A.Charrieretal./JournalofPlantPhysiology170 (2013) 874–877 875

Oneofthecommonresponsesofmanyplantspeciesexposedto differentabioticstressesistheaccumulationofcompatibleorganic solutessuchasproline(VerbruggenandHermans,2008;Szabados andSavoure,2010).Freeproline accumulationhasbeenshown tobeinvolved in various protectionprocesses suchasosmotic adjustment,protectionagainstreactiveoxygenspecies(ROS)and stabilizationofprotein andmembrane structures(Handaet al., 1986;Kishoretal.,2005;AshrafandFoolad,2007).Theprotec- tingrolesofprolinehavebeennotablydescribedinhigherplants subjectedtosaltandosmoticstresses(Yoshibaetal.,1995;Khedr etal.,2003).

InordertodemonstratethatMtSAP1overexpressionconferred tolerancetoalargevarietyofenvironmentalstresses,extremetem- peratures(coldandheat)butalsosaltandosmoticstressesatvery drasticconcentrationshavebeentested.Followingthis,apossible linkbetweenMtSAP1overexpressionandfreeprolinecontentshas beeninvestigatedwiththeintentiontoaddresswhetherMtSAP1 couldbeinvolvedinsignalingpathwayinducingtheprolineaccu- mulation.

Materialsandmethods

Plantmaterialandgrowthconditions

Experimentationswerecarried out onNicotianatabacumcv.

Xanthi(obtainedfromUMR PMS,Universityof Angers,France).

TransgenictobaccoplantsoverexpressingMtSAP1wereobtained asdescribedinCharrieretal.(2012).Followingsterilization,wild type(WT)andtransgenictobaccoseedsweresownonsolidhalf- strengthMurashigeandSkoogmedium(MS0.5×)withoutsucrose andatpH5.7(MurashigeandSkoog,1962).Afterstratificationon MS0.5×mediumduringtwodaysat4C,seedswereplacedunder controlledandoptimalgrowthconditionsduring21days(Charrier etal.,2012).Physiologicalgrowthparameterssuchasbiomass,pri- maryrootlengthandleafnumberweremeasured(i)underdrastic osmotic(d-mannitol;400mM)andsaltstress(NaCl;250mM)dur- ing21daysinasolidMS0.5×mediumand(ii)underheat(42C) andcold(4C)treatmentsfor7daysontobaccoseedlingsgrown previouslyonMS0.5×mediumduring21days.

Prolinecontent

Totalprolinecontentwasmeasured(withslightmodifications) fromthemethodofBatesetal.(1973).Toperformexperiments onseedlings enoughdeveloped, mannitol and NaCl concentra- tionswerelowered in order to obtaina more moderate stress (d-mannitol, 300mM; NaCl,200mM).Seedlings werehomoge- nizedwith2.5mLofsulfosalycilicacid(5%) ina mortar witha pestle.Aftercontinuousgrinding,thesuspensionwascentrifuged (10,000×g,12min,4C).Afterthiscentrifugation,onemLofthe extractwasaddedto1mLofacidninhydrinand2mLofglacial aceticacidinatesttubeforonehourat100C.Thereactionwas stoppedbyplacingthetubeonicefor5min.Followingcentrifuga- tion(10,000×g,5min,4C),prolinecontentfromthesupernatant wasdeterminedcolorimetricallybymeasuringtheabsorbanceat 515nm.

Statisticalanalysisofdata

Alldataarepresentedasmean±SEofvaluesfromatleastthree independentexperiments.Aone-wayANOVA(analysisofvariance) testwasalsoperformed.Differentlettersareusedtoindicatemeans thatdiffersignificantly(P<0.05).

Resultsanddiscussion

AbioticstresstoleranceacquisitionbyoverexpressionofMtSAP1

In order toobserve whetherMtSAP1overexpression confers toleranceto various abiotic stresses,transgenic seedlings were subjectedtocold(4C),heat(42C)andverydrasticosmotic(d- mannitol;400mM)andsalt(NaCl;250mM)stress.Ina general way,WTlinesshowedastrongreduction intheirdevelopment under all the treatments mentioned above whereas transgenic seedlings seemed to beless affected by thesestresses (Fig.1).

Indeed,whileleavesfromtransgeniclineseedlingswerealready well developed after 21 days under drastic osmotic and salt stress, WT seedlings did not grow further than the cotyledon stage(Fig.1D).In concordancewiththeseobservations,pheno- typicparameters suchas thebiomass, theprimary rootlength and theleaf number decreased more strongly in WT seedlings underthesetreatmentscomparedtoMtSAP1overexpressinglines (Fig.1A–C).Withregardtothetemperaturestresses(coldandheat), thebiomassofMtSAP1overexpressinglineswerenotreducedby lowandhightemperaturescomparedtonormalgrowthconditions, whereasinWTseedlings,thebiomasswasstronglyreducedunder thesestresses(Fig.1A).Inaddition,primaryrootlengthandleaf numberweremoredevelopedintransgeniclinescomparedtoWT seedlingsundercoldandheatstress(Fig.1BandC).Moreprecisely underhightemperature,astrongwiltingofleaveswasobserved inWTseedlingswhereasMtSAP1overexpressorsappearedtobe less affected by this stress. Our resultsare in agreement with previousstudiesonSAPinotherspecies(KannegantiandGupta, 2008;Ströheretal.,2009;DixitandDhankher,2011;Hozainetal., 2012).Inparticular,theoverexpressionofOsiSAP8(Orizasativa) inNicotianatabacumandriceconferredtolerancetocoldbutalso tosaltanddroughtstress(KannegantiandGupta,2008).More- over,DixitandDhankher(2011)havedemonstratedthatAtSAP10 (Arabidopsisthaliana)wasinvolvedinheavymetalandheatstress responses.Therefore,SAP,whatevertheplantspecies,seemtobe involvedintheadaptiveresponsestoamajorityofabioticstresses.

Recently,ithasbeendemonstratedthatplanttoleranceofadverse environmentalconditionswasmediatedbyproteinubiquitination (LyzengaandStone,2012).Thisisstronglysupportedbythefact thatAtSAP5,whichencodesaproteinwithbothA20/AN1zincfinger domains,actsthroughitsE3ubiquitinligaseactivityasapositive regulatorofstressresponsesinArabidopsis(Kangetal.,2011).

ImpactofMtSAP1overexpressiononprolineaccumulation

In order toknow whether MtSAP1induces changes in pro- linemetabolismtoprepareseedlingstocopewithenvironmental constraints, we have measured the final product (proline con- tent) in transgenic lines overexpressing MtSAP1under optimal and stress conditions. Indeed, it has been demonstrated that proline is an osmoprotectant recognized tobe accumulated in responsetovariousstresses(AshrafandFoolad,2007;Szabados andSavoure,2010).Thefirstobservationsundernormalconditions haveprovided aslightincrease ofprolinecontentintransgenic lines(2.13mgg1FW)comparedtoWT(1.39mgg1FW)(Fig.2).

Interestingly,this higherproline contentcouldbecorrelatedto a strongerproduction of NOobserved in ourpreviousstudyin MtSAP1overexpressorsundernon-stressfullconditions(Charrier etal.,2012).However,otherhypothesescouldbealsoconsidered, includingthefactthattheprolineincreaseintransgeniclinesmay beduetoachangeintotalaminoacidcontent.Indeed,MtSAP1over- expressionseemstohavemultipleeffects,especiallytheactionsof SAPingeneralarenotfullyknowntodate.

Afterwards,theimpactoftheoverexpressionofMtSAP1onthe prolinecontenthasbeeninvestigatedunderd-mannitolandNaCl

(3)

876 A.Charrieretal./JournalofPlantPhysiology170 (2013) 874–877

Fig.1.EffectsofMtSAP1overexpressiononplantphenotypeoftransgenictobaccolinesunderabioticstressconditions.Biomass(mgseedling−1),primaryrootlength (cmseedling−1)andleafnumber(perseedling)weretakenfromWTandthreetransgeniclineseedlingsunderoptimalconditions(MS0.5×)andunderosmotic(d-mannitol;

400mM),salt(NaCl;250mM),cold(4C)orheat(42C)stress.Treatmentsandgrowthconditionshavebeenappliedasdescribedinmaterialsandmethods(n=3±SE).The photographisarepresentativedatumofWTandtobaccotransgenicseedlings.Differentlettersareusedtoindicatemeansthatdiffersignificantly(P<0.05)accordingtoa one-wayANOVAtest.Forstatisticaltest,transgeniclineswereonlycomparedtowildtype.

moderatetreatments.Asexpected,WTseedlingsrevealedapro- lineaccumulationaroundthreetimeshigher(4.3mgg1FWand 3.9mgg−1FW,respectively)thanundernormalconditions(Fig.2), showingthattobaccoplantsestablishedsomeadaptiveresponses toosmoticandsaltstresses.Contrarytowhatwassuspected,trans- geniclineseedlingsrevealedalowerfreeprolinecontentcompared toWTunderosmoticandsaltstress(2.6mgg−1FWand1.8mgg−1 FW,respectively).Fromtheseresults,itappearsthatMtSAP1isnot involvedinthesignalingpathwayresponsiblefortheaccumula- tionofprolineunderstressconditions.Thiscouldbeduetothefact thattheoverexpressionofMtSAP1providessufficienttoleranceto seedlingstocopewithstresswithoutrequiringthefreeproline action.Toourknowledge,itisthefirsttimethat arelationship betweenprolinecontentandSAPoverexpressionhasbeeninvesti- gated,andrevealedinterestingresults.Inaddition,inaninteresting way,theobservationshaveshownthattheprolinecontentintrans- geniclinesremainedconstantwhatevertheconditions(normaland stressconditions)(Fig.2).Theseresultshighlightedasuppression ofprolineaccumulationwhichisnormallyobservedinresponse tostress.ThissuppressionwouldbedirectlyrelatedtotheMtSAP1 overexpression.

In apreviousstudy, wehave alreadydemonstrated that the overexpressorsofMtSAP1producedhighlevelsofNOunderstress conditionsandthatthisallowedthemtoacquireosmoticandsalt stresstolerance(Charrieretal.,2012).Therefore,itisconceivable thattheNOproductionisresponsibleforthesuppressionofproline accumulationintransgenictobaccoseedlings.Severalexplanations couldbeenvisaged tosupportthishypothesis. Indeed,previous reportshaveshownthatNOprovidesaprotectiveactionagainst abioticstressesduetoitscapacitytoscavengetheROS(Beligniand Lamattina,2002;WangandYang,2005).Therefore,NOappearsas anantioxidantagenttodetoxifyfreeradicalsandprotectplantcells fromROSdamage.Inourcase,NO-signalingpathwayinducedby MtSAP1overexpressionwouldbesufficienttoinducestresstoler- anceanddoesnotengagetheinvolvementofproline.

Ontheotherhand,analternativeexplanationwouldbethat prolineproductioncouldbedependentofintracellularNOgener- ation.Fewreports havedemonstratedthatexogenousNOcould suppressprolineaccumulation(Leietal.,2007;Lopez-Carrionetal., 2008).NOmightbeinvolvedintheregulationofosmoticstress inaconcentration-dependentmanner.Inourstudy,itseemsthat the concentration of endogenous NO is sufficient to cause the

(4)

A.Charrieretal./JournalofPlantPhysiology170 (2013) 874–877 877

MS D-mannitol NaCl

0 1 2 3 4 5

Proline content (mg.g-1 FW)

WT Line 1 Line 2 Line 3

a

b b b

c

b b d

c

ab ab

ab

Fig.2.ProlineaccumulationintobaccotransgeniclinesoverexpressingMtSAP1 underoptimalconditionsandabioticstressconditions.Prolinecontentdetermina- tionwasmeasuredinWTandtransgeniclinesgrowingonMS0.5×mediumduring 21daysundernon-stressfullconditions(MS0.5×)andunderosmotic(d-mannitol;

300mM)orsalt(NaCl;200mM)stress.Eachvaluerepresentsthemean±SEofthree independentexperiments.Differentlettersareusedtoindicatemeansthatdiffer significantly(P<0.05)accordingtoaone-wayANOVAtest.

suppressionofprolineaccumulation.Todate,thelinkbetweenNO andprolineremainsverycontroversial(Zhangetal.,2008;Xiong etal.,2012)andrequiresfurtherinvestigations.

GiventheobviousrelationshipbetweenMtSAP1andNO,and thefactthatthissignalmoleculehasbeenalsodescribedasbeing involvedinbioticstressresponse(Delledonneetal.,1998;Planchet etal.,2006),itwouldbeveryinterestingtoinvestigatethebehav- iorofMtSAP1transgeniclinesinplantdiseaseresistance(fungal and/orincompatiblebacterialpathogen).Thisstudywouldbepar- ticularlyinnovativebecauseuntilnownoworkhasbeenmadein thisdirection.

Acknowledgments

TheauthorsaregratefultoMrMichaelJonesforEnglishlan- guagecorrection.Fundingwas providedby QUALISEM contract

withRegionPaysdelaLoire,France.Thepostdoctoralfellowship ofAurélieCharrierwassupportedbyagrantfromUniversityof Angers.

References

AshrafM,FooladMR.EnvironExpBot2007;59:206–16.

BatesLS,WaldrenIP,TeareID.PlantSoil1973;39:205–7.

BeligniMV,LamattinaL.PlantCellEnviron2002;25:737–48.

BenSaadR,ZouariN,BenRamdhanW,AzazaJ,MeynardD,GuiderdoniE,etal.Plant MolBiol2010;72:171–90.

CharrierA,PlanchetE,CerveauD,Gimeno-GillesC,VerduI,LimamiAM,etal.Planta 2012;236:567–77.

DelledonneM,XiaY,DixonRA,LambC.Nature1998;394:585–8.

DiatchenkoL,RomanovS,MalininaI,ClarkeJ,TchivilevI,LiX,etal.JLeukocBiol 2005;78:1366–77.

DixitAR,DhankherOP.PLoSOne2011;6:e20921.

Gimeno-GillesC,GervaisML,PlanchetE,SatourP,LimamiAM,LelièvreE.Plant PhysiolBiochem2011;49:303–10.

Handa S, Handa AK, Hasegawa PM, Bressan RA. Plant Physiol 1986;80:

938–45.

HozainM,AbdelmageedH,LeeJ,KangM,MohamedFokarM,AllenRD,etal.JPlant Physiol2012;169:1261–70.

HuangGT,MaSL,BaiLP,ZhangL, MaH,JiaP,etal. MolBiolRep 2012;39:

969–87.

HuangJ,TengL,LiL,LiuT,LiL,ChenD,etal.JBiolChem2004;279:16847–53.

KangM,FokarM,AbdelmageedH,AllenRD.PlantMolBiol2011;75:451–66.

KannegantiV,GuptaAK.PlantMolBiol2008;66:445–62.

Khedr AHA, AbbesMA, Wahid AAA, Quick WP, Abogadallah GM. J Exp Bot 2003;54:2553–62.

KishorPBK,SangamS,AmruthaRN,LaxmiPS,NaiduKR,RaoKS,etal.CurrSci 2005;88:424–38.

LeiY,YinC,RenJ,LiC.BiolPlant2007;51:386–90.

LinnenJM,BaileyCP,WeeksDL.Gene1993;128:181–8.

Lopez-Carrion AI, Castellano R, Rosales MA, Ruiz JM, Romero L. Biol Plant 2008;52:587–91.

LyzengaWJ,StoneSL.JExpBot2012;63:599–616.

MukhopadhyayA,VijS,TyagiAK.ProcNatlAcadSciUSA2004;101:6309–14.

MurashigeT,SkoogF.PhysiolPlant1962;15:473–97.

PlanchetE,SonodaM,ZeierJ,KaiserWM.PlantCellEnviron2006;29:59–69.

Ströher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ. Mol Plant 2009;2:357–67.

SzabadosL,SavoureA.TrendsPlantSci2010;15:89–97.

VerbruggenN,HermansC.AminoAcids2008;35:753–9.

VinocurB,AltmanA.CurrOpinBiotechnol2005;16:123–32.

WangYS,YangZM.PlantCellPhysiol2005;46:1915–23.

XiongJ,ZhangL,FuG,YangY,ZhuC,TaoL.JPlantRes2012;125:155–64.

YoshibaY,KiyosueT,KatagiriT,UedaH,MizoguchiT,Yamaguchi-ShinozakiK,etal.

PlantJ1995;7:751–60.

ZhangLP,MehtaSK,LiuZP,YangZM.PlantCellPhysiol2008;49:411–9.

ZhuJK.AnnuRevPlantBiol2002;53:247–73.

Références

Documents relatifs

Similarly, the expression of WDREB2 from wheat was shown to be responsive to exogenous ABA treatment [17,21,23], whereas transgenic tobacco plants overexpressing this gene

Ohne ihr gleichmäßiges, sicheres, wenn auch etwas hartes Tick&gt;Tack, das die Stille zum Leben klangvoll überbrückte, war der Aufenthalt in der (je. räuschlosen Einsamkeit nicht

The growth of truncated seedlings (with one flush of leaves) and episodic seedlings (with two flushes) was decreased as O 3 increased, especially the growth of the second flush

Gibbs sampling algorithm for hierarchical bayesian association rule modeling for sequential event prediction (HARM).... are not available in closed form, we need to iterate

To further investigate the molecular mechanisms of enhanced abiotic stress tolerance afforded by the AlTMP1 expression, real-time qRT-PCR analysis was performed on eight

Expression profiles of the HbMIR398a, HbMIR398b and HbMIR398c genes and their chloroplastic HbCuZnSOD target by real time-PCR in leaves, bark and roots of one-year-old

To further confirm our observations, a protein blot analysis was performed using the total protein extracted from green leaves and from isolated chloroplast fractions of WT plants and

37 رثكأ تامولعم ىلع لوصحلل اندمتعا نابتسلإا ىلع ىلإ اهميسقت مت ثيح ةقلغملا تا :ءازجأ ةثلاث : لولاا ءزجلا نايبلا يهو ةيصخشلا تانايبلا هيف انلوانت