• Aucun résultat trouvé

Bond strength development between latex-modified cement paste and steel

N/A
N/A
Protected

Academic year: 2021

Partager "Bond strength development between latex-modified cement paste and steel"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Cement and Concrete Research, 17, July 4, pp. 562-572, 1987-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=82672f15-dfda-4182-aa2a-d483b6c2565d

https://publications-cnrc.canada.ca/fra/voir/objet/?id=82672f15-dfda-4182-aa2a-d483b6c2565d

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(87)90129-3

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Bond strength development between latex-modified cement paste and

steel

(2)

-- - - - - 7

S e r

TH 1

National Research

Conseil national

N21d

i

council Canada

de recherches Canada

no.

1474

c.

2

Institute for

lnstitut de

BLDG

Research in

recherche en

-- - 1

Construction

construction

Bond Strength Development

between Latex-Modified

Cement Paste and Steel

by M. Nakayama and J.J. Beaudoin

Canad3

774/

702

Reprinted from

Cement and Concrete Research

Vol. 17, No. 4, 1987

p. 562

-

572

(IRC Paper No. 1476)

L I B R A R Y

Price $3.00

NRCC 28321

DEC

4 1367

BIBLIOTHSQUE

I R C

(3)

I

RSSUMB

Les auteurs ont dgterming le processus de formation de

l'adhsrence de l'acier

3 la pate de ciment modifise au latex

1

grace

2 une nouvelle technique, soit la msthode de la poutre en

porte-&faux.

11s ont $tudi& six types de latex.

En gsngral,

l'ajout de latex amEliore 11adh5rence, qui dfipend des facteurs

suivants

:

la teneur en eau non Gvaporable, la chaleur

d'hydratation et la teneur en CH.

11s ont ggalement 6valug le

r81e que joue la zone d'interface sur 11adh6rence.

- -

-

(4)

CEMENT and CONCRETE

RESEARCH.

Vol. 17, pp. 562-572, 1987. Printed in the USA. 0008-8846187 $3.00+00. Copyright ( c ) 1987 Pergamon Journals, Ltd.

BOND STRENGTH DEVELOPMENT BETWEEN LATEX-MODIFIED CEMENT PASTE AND STEEL

M.

Nakayamal and J. J. Beaudoin Institute for Research in Construction

National Research Council of Canada Ottawa, Canada, K1A OR6

(communicated by

M.

Daimon) (Received Feb. 19, 1987)

ABSTRACT

Bond strength development between latex-modified cement paste and steel was determined using a new technique, the overhanging beam method. Six latexes were studied. In general bond strength is improved with latex addition. Factors affecting bond strength include non-evaporable water content, heat of hydration, and CH content. The role of the interface zone on bond strength has been evaluated.

Introduction

Active interest in cement systems containing water dispersible polymers on latexes began more than 50 years ago (1). The most commonly used polymer latexes include: styrene-butadiene rubber, poly(acry1ic ester),

poly(viny1idene chloride-vinyl chloride), poly(ethy1ene-vinyl acetate) and poly(viny1 acetate). Latex-modified portland cement mortar and concrete have increased tensile strength, reduced drying shrinkage, increased

, durability, and improved adhesion or bond strength over conventional mortar and concrete (1).

There is a substantial amount of published data on the bond strength of latex-modified cements applied to mortar and concrete substrates. Howe~rer, only a limited amount of data is avsilable on the bond strength between polymer-modified cements and steel surfaces. Increased bond strength

I between cementitious materials and steel is of practical importance in the

application of repair materials to damaged surfaces, and in the design and

I

use of steel fiber-reinforced cement composites and grouts for structural

i

purposes.

I

This paper discusses the development of bond strength between

i

lpresent address: Kajima Institute of Construction Technology, Kajima Corporation, Tokyo-182, Japan.

(5)

Vol. 1 7 , No. 4 563

BOND STRENGTH, LATEX, CEMENT PASTE, STEEL

l a t e x - m o d i f i e d cement p a s t e and s t e e l employing a new p r o c e d u r e (overhanging beam method) developed by t h e a u t h o r s ( 2 ) . The t e c h n i q u e p e r m i t s e s t i m a t e s of b o t h i n t e r n a l s t r e s s (due t o h y d r a t i o n of cement) and bond s t r e n g t h a t e a r l y ages. It i s a p p l i c a b l e t o t h i n c o a t i n g s e n c o u n t e r e d i n r e p a i r s i t u a t i o n s , does n o t i n v o l v e a p p l i c a t i o n of e x t e r n a l l o a d , and i s e a s i l y a d a p t a b l e . t o t e s t i n g i n v a r i o u s c o n t r o l l e d environments. R e s u l t s o b t a i n e d w i t h t h i s method a r e p r e s e n t e d f o r cement p a s t e modified w i t h s i x d i f f e r e n t

l a t e x e s . F a c t o r s a f f e c t i n g t h e development of bond s t r e n g t h a r e d i s c u s s e d u s i n g SEM and EDX a n a l y s e s of s e l e c t e d debonded s u r f a c e s .

Experimental

M a t e r i a l s

The P o r t l a n d cement used had t h e f o l l o w i n g composition: SiO (20.78%); A120 (6.20%); Fe O 3 (2.23%); CaO (64.83%); MgO (1.84%); SO3 (3.13%); Na20

(0.0!?%); K20 (0.42). B l a i n e f i n e n e s s was 300 m2/kg.

The f o l l o w i n g s i x l a t e x e s were used: two poly(ethy1ene-vinyl a c e t a t e ) copolymers {EVA(I) and EVA(II)}; s t y r e n e b u t a d i e n e r u b b e r (SBR); p o l y ( v i n y 1 a c e t a t e ) (PVA); p o l y ( a c r y 1 i c - v i n y l a c e t a t e ) copolymer (AVA); and

poly ( v i n y l i d e n e c h l o r i d e

-

v i n y l c h l o r i d e ) copolymer (V-V)

.

Some p r o p e r t i e s of t h e s e l a t e x e s a r e g i v e n i n Table 1. A defoaming a g e n t was added t o t h e

AVA b e f o r e i t s u s e w i t h cement p a s t e .

The s t e e l s u b s t r a t e c o n s i s t e d of s t a n d a r d s t e e l f e e l e r gauge p i e c e s of dimensions 12.70 mm x 304.80 mm x 0.25 mm.

Cement P a s t e Mixes

L a t e x - m o d i f i e d cement p a s t e s were produced w i t h e a c h of t h e s i x l a t e x e s . The p a s t e s were made a t t h r e e waterlcement r a t i o s : w/c = 0.25, 0.30, and 0.35. Three l a t e x / c e m e n t r a t i o s , R/c = 0.04, 0.08, and 0.15 were used a t e a c h w/c r a t i o . Water-cement r a t i o = 0.40 was adopted f o r V-V modified cement p a s t e because of t h e p a s t e ' s low w o r k a b i l i t y a t w/c = 0.25. Cement p a s t e s c o n t a i n i n g no l a t e x were a l s o made.

Specimen P r e p a r a t i o n

Composite beam specimens f o r u s e w i t h t h e overhanging beam method were made by a p p l y i n g latex-modified cement p a s t e t o t h e s u r f a c e of s t e e l f e e l e r gauge w i t h a s p a t u l a between g u i d e s s e t a d j a c e n t t o t h e f e e l e r gauge. Four t e s t specimens were made f o r e a c h t e s t c o n d i t i o n . The t h i c k n e s s of t h e p a s t e (approximately 0.75 mm) was c o n t r o l l e d by t h e t h i c k n e s s of t h e g u i d e s . The s u r f a c e of t h e f e e l e r gauge was c l e a n e d w i t h a c e t o n e p r i o r t o t h e a p p l i c a t i o n of t h e p a s t e . ~ lspecimens were p r e p a r e d a t a t e m p e r a t u r e of l 20f 2Oc.

Some specimens were a l s o p r e p a r e d f o r a d i r e c t - t e n s i o n bond t e s t . Two procedures were used. I n t h e f i r s t , p a s t e s were c a s t a g a i n s t a 25 mm s q u a r e s t e e l f e e l e r - g a u g e s u r f a c e epoxied t o a b r a s s t e s t block. A f t e r a

predetermined c u r i n g p e r i o d a t 100% r e l a t i v e humidity (RH) a n o t h e r b l o c k was epoxied t o t h e f r e e cement p a s t e s u r f a c e . I n t h e second, p a s t e was c a s t between t h e two b r a s s blocks. Some specimens were allowed t o d r y a t 0% and 55%

RH

b e f o r e t e s t i n g .

(6)

Vol. 1 7 , No. 4

M. Nakayama and J.J. Beaudoin

TABLE 1

P r o p e r t i e s of L a t e x e s L a t e x

- --

P r o p e r t i e s EVA ( I ) EVA (11) SBR PVA AVA V-V N o n - v o l a t i l e s ( % ) * 55.5 46.0 48.4 55.1 55.4 56.2 PH 4.5 6.0k1.0 4.0k0.5 5.3k0.7 8.3 V i s c o s i t y ( c p s ) B r o o k f i e l d LVT 6 0 rpm 1700 100Ok500 RVT 20 rpm 2300 RVT 25 rpm 1050k150 S p e c i f i c g r a v i t y 1.07 1.06 1.10k0.01 1.07f0.01 1.26 P a r t i c l e s i z e - range (pm) 2.5k1.5 0.35k0.15

P a r t i c l e Charge Non-ionic A n i o n i c Anionic, *measured by a u t h o r s ; o t h e r v a l u e s of p r o p e r t i e s were p r o v i d e d by

m a n u f a c t u r e r s .

Bond S t r e n g t h D e t e r m i n a t i o n

A n o v e l t e c h n i q u e employing a n overhanging beam method (OBM) was u s e d t o e s t i m a t e t h e bond s t r e n g t h between t h e l a t e x - m o d i f i e d cement p a s t e and s t e e l . The method h a s been d e s c r i b e d i n d e t a i l i n p r e v i o u s p a p e r s (2-4). The p r o c e d u r e i s b r i e f l y a s f o l l o w s . Specimens a r e p r e p a r e d by a p p l y i n g a

cement c o a t i n g t o a s t e e l s u b s t r a t e . The geometry of t h e beam (overhang = 0.46 x midspan) i s chosen t o n u l l o u t t h e e f f e c t of any u n i f o r m l y d i s t r i b u t e d w e i g h t changes i n t h e cement c o a t i n g . S t r e s s e s developed i n t h e cement p a s t e c o a t i n g c a n t h e n be c a l c u l a t e d from measurements of midspan d e f l e c t i o n (2). Measurements a r e t a k e n i n two s t a g e s . I n t h e f i r s t s t a g e specimens a r e p l a c e d i n a chamber c o n d i t i o n e d a t

100% RH. D e f l e c t i o n s of t h e overhanging beam due t o h y d r a t i o n of cement p a s t e a r e c o n t i n u o u s l y monitored. I n t h e second s t a g e t h e specimens a r e removed from t h e 100% RH environment and p l a c e d i n a chamber a t 0% RH. S h r i n k a g e s t r e s s e s i n t h e cement p a s t e due t o d r y i n g r e s u l t i n a d d i t i o n a l d e f l e c t i o n of t h e beam. The bond s t r e n g t h a t a p a r t i c u l a r t i m e i s t h e r e s u l t a n t of t h e i n t e r n a l s t r e s s due t o h y d r a t i o n a t 100% RH and t h e a d d i t i o n a l s h r i n k a g e s t r e s s r e q u i r e d t o debond t h e sample a t OX RH. Bond s t r e n g t h s were d e t e r m i n e d f o r p e r i o d s up t o 168 h.

Bond specimens were a l s o t e s t e d w i t h a d i r e c t t e n s i o n method u s i n g a

T i n i u s Olsen t e s t i n g machine. The l o a d i n g r a t e was 0.50 mm/min. Non-evaporable Water-content D e t e r m i n a t i o n

Non-evaporable w a t e r c o n t e n t was determined f o r cement p a s t e and l a t e x - m o d i f i e d p a s t e specimens a t w/c = 0.30 and R/c = 0.08. The p a s t e samples were removed from t h e s t e e l s u b s t r a t e a t v a r i o u s times, and h y d r a t i o n was s t o p p e d by pumping specimens i n a vacuum d e s i c c a t o r u n t i l ready f o r t e s t i n g . Non-evaporable w a t e r c o n t e n t s were d e t e r m i n e d by TGA i n a n i t r o g e n atmosphere u s i n g a 1090 Dupont Thermal Analyzer w i t h a 951 TGA a c c e s s o r y . The h e a t i n g r a t e was 20°c/min, and t h e maximum t e m p e r a t u r e was 1000°C. Non-evaporable w a t e r c a l c u l a t i o n s i n c l u d e d a c o r r e c t i o n f o r w e i g h t

(7)

Vol. 1 7 , No. 4 565

BOND STRENGTH, LATEX, CEMENT PASTE, STEEL

l o s s due t o decomposition of t h e l a t e x . It i s assumed t h a t no c h e m i c a l l y bound w a t e r i s a s s o c i a t e d w i t h t h e f o r m a t i o n of new complexes due t o any latex-cement m i n e r a l i n t e r a c t i o n . No such complexes have been i d e n t i f i e d . Conduction C a l o r i m e t r y

The r a t e and amount of h e a t development i n h y d r a t i n g cement and l a t e x - m o d i f i e d cement systems were measured u s i n g a conduction c a l o r i m e t e r . Only specimens p r e p a r e d a t w/c = 0.30 and R/c = 0.08 were i n v e s t i g a t e d . For d a t a a c q u i s i t i o n and p r o c e s s i n g , t h e c a l o r i m e t e r was i n t e r f a c e d w i t h a n Apple I I e microcomputer u s i n g a Taurus One 12-bit a n a l o g - t o - d i g i t a l c o n v e r t o r and a n Apple s u p e r - s e r i a l i n t e r f a c e card.

SEM and EDX A n a l y s i s

A Cambridge S t e r e o s c a n 250 w i t h a TN-5500 X-Ray Analyzer was used f o r examination of debonded s u r f a c e s of s e l e c t e d specimens h y d r a t e d f o r 24 and 72 h. Latex-modified cement specimens made a t w/c = 0.30 and R/c = 0.08 were examined. Specimens were o b t a i n e d by c u t t i n g a t e s t p i e c e from t h e

overhanging beam.

R e s u l t s and d i s c u s s i o n H y d r a t i o n Parameters

Hydration p a r a m e t e r s such a s non-evaporable water c o n t e n t , r a t e of h e a t development, and CH c o n t e n t a r e u s e f u l i n f o l l o w i n g t h e m i c r o s t r u c t u r a l development of cement systems.

Non-evaporable w a t e r c o n t e n t (wn) d e t e r m i n a t i o n s f o r t h e l a t e x - m o d i f i e d cement p a s t e systems (w/c = 0.30, R/c = 0.08) a r e p l o t t e d i n F i g . 1. I n t h e f i r s t 7 h , wn v a l u e s f o r t h e AVA, PVA, V-V, and EVA(1) systems a r e

I s i g n i f i c a n t l y g r e a t e r t h a n t h o s e f o r t h e c o n t r o l , SBR and EVA(I1). A t 24 h , PVA and EVA(II), have lower w v a l u e s t h a n t h e c o n t r o l , and V-V h a s t h e

i

h i g h e s t wn value. A t 168 h t E e wn v a l u e s a r e s i m i l a r f o r a l l systems e x c e p t

1

f o r V-V and PVA, which have h i g h e r and lower v a l u e s r e s p e c t i v e l y .

I n g e n e r a l t h e s e f i n d i n g s a r e i n agreement w i t h t h o s e of o t h e r workers. L a t e x e s a r e known t o a c c e l e r a t e o r r e t a r d h y d r a t i o n of cement depending on l a t e x type. Those l a t e x e s known t o a c c e l e r a t e t h e h y d r a t i o n of cement, a t

least i n i t i a l l y , i n c l u d e V-V and a c r y l i c s (5). PVA h a s been r e p o r t e d t o r e t a r d h y d r a t i o n (6). It i s s u b j e c t t o h y d r o l y s i s and i n t e r a c t s w i t h CH. High w v a l u e s f o r V-V, AVA, and PVA a t 3 h may i n v o l v e a c c e l e r a t e d

h y d r a d o n of t h e a l u m i n a t e p h a s e s a s a s i g n i f i c a n t amount of C3S h y d r a t i o n h a s n o t occurred. D e h y d r o c h l o r i n a t i o n of V-V i s known t o o c c u r i n a h i g h l y a l k a l i n e cement s y s t e m ( 5 ) . P r e s e n c e of c h l o r i d e i o n i s known t o a c c e l e r a t e h y d r a t i o n of cement. Release of c h l o r i d e i o n i n t h e V-V s y s t e m may

c o n t r i b u t e t o i n c r e a s e d wn v a l u e s a t l a t e r ages.

Rate of h e a t development v e r s u s time c u r v e s were o b t a i n e d f o r t h e s e systems u s i n g c o n d u c t i o n c a l o r i m e t r y (Fig. 2). The h e a t developed i n t h e f i r s t 2 h and 3.5 h i s g r e a t e r f o r AVA and PVA r e s p e c t i v e l y compared t o t h a t w i t h t h e c o n t r o l . T h i s i s i n c o n c e r t w i t h t h e h i g h e r wn v a l u e s observed d u r i n g t h i s period. The i n i t i a l r a t e of h e a t development f o r V-V was much lower t h a n expected. A f t e r t h e f i r s t few h o u r s t h e t o t a l h e a t developed i s

lower t h a n t h e c o n t r o l f o r a l l latex-cement systems. The r a n k i n g of t h e s e systems f o r t o t a l h e a t developed i s a s f o l l o w s : cement p a s t e > EVA(1) > EVA(I1) > SBR > V-V > AVA > PVA.

(8)

Vol. 1 7 , No. 4

M. Nakayama and J . J . Beaudoin

0 3 7 16 24 48 72 168 H Y D R A T I O N T I M E , h v-- ---* 0 C E M E N T FIG. 1

Non-evaporable w a t e r c o n t e n t v e r s u s h y d r a t i o n time f o r l a t e x - m o d i f i e d cement p a s t e s

CH e s t i m a t i o n was c a r r i e d o u t by t h e r m o g r a v i m e t r i c a n a l y s i s (TGA) and t h e Franke Method ( 7 ) . R e s u l t s a r e n o t r e p o r t e d because of p o s s i b l e i n t e r f e r e n c e e f f e c t s due t o t h e p r e s e n c e of t h e l a t e x .

Bond S t r e n g t h

E s t i m a t e s of peak bond s t r e s s (bond s t r e n g t h ) between l a t e x - m o d i f i e d cement p a s t e and s t e e l were made a t v a r i o u s h y d r a t i o n t i m e s from

e x p e r i m e n t a l r e s u l t s of i n t e r n a l s t r e s s development w i t h time. Maximum v a l u e s of peak bond s t r e s s and peak bond s t r e s s v a l u e s a t 5 h h y d r a t i o n f o r a l l mixes a r e p r e s e n t e d i n Table 2. The maximum v a l u e s f o r t h e s e systems i n c r e a s e i n t h e f o l l o w i n g o r d e r : V-V < AVA < c o n t r o l < PVA < EVA(1) < SBR < EVA(I1). The i n c r e a s e i n maximum peak bond s t r e s s compared t o t h e c o n t r o l v a r i e s from 15.7% f o r PVA t o 73.2% f o r EVA(I1). Values of bond-strength i n c r e a s e f o r PVA-modified mortar and s t e e l may v a r y , and up t o 59% f o r 20% PVA h a s been r e p o r t e d ( 8 , 9 ) . There i s a p a u c i t y of d a t a a v a i l a b l e f o r o t h e r l a t e x e s .

I n a l l c a s e s b u t one t h e maximum v a l u e s of peak s t r e s s o c c u r r e d a t R/c = 0.08. For EVA(II), w/c = 0.30 t h e maximum v a l u e i s t h e same a t R/c = 0.08 ( 2 4 h) and R/c = 0.15 ( 7 2 h ) . L a t e x cements a r e n o t normally cured a t 100% RH f o r p e r i o d s l o n g e r t h a n 24 h t o f a c i l i t a t e f i l m formation. Prolonged moist c u r i n g u s u a l l y i s d e l e t e r i o u s . The s t a b l e v a l u e of bond s t r e n g t h f o r most l a t e x cements would a p p e a r t o be t h e 24 h value. A t 72 h t h e bond s t r e n g t h f o r R/c = 0.15 i s s t i l l i n c r e a s i n g . EVA(I1) a p p e a r s t o have s u p e r i o r p r o p e r t i e s w a r r a n t i n g f u r t h e r i n v e s t i g a t i o n . The w/c r a t i o a t which t h e maximum peak s t r e s s o c c u r s was dependent on l a t e x type. Except

f o r t h e SBR system t h e w/c r a t i o v a l u e s f o r which t h e l a r g e s t v a l u e of maxirtium peak s t r e s s was o b t a i n e d a r e l e s s t h a n f o r t h e unmodified cement

(9)

Vol. 1 7 , No. 4 567

BOND STRENGTH, LATEX, CEMENT PASTE, STEEL

0

0 8 16 2 4 32 40 48

TIME, h

FIG. 2

Conduction c a l o r i m e t r i c c u r v e s f o r latex-modified cement p a s t e s

p a s t e , i . e . , w/c = 0.35. It was found t h a t t h e non-evaporable w a t e r v e r s u s time c u r v e f o r t h e SBR system i s i n c l o s e proximity t o t h e c o n t r o l p a s t e .

The 5 h peak bond s t r e s s v a l u e s i n c r e a s e i n t h e f o l l o w i n g o r d e r : AVA < SBR < c o n t r o l < V-V < EVA(I1) < EVA(1) < PVA. The o r d e r v a r i e s from t h a t of t h e maximum peak s t r e s s v a l u e s . S t r e s s v a l u e s f o r EVA(1) and (11) and PVA remain s i g n i f i c a n t l y g r e a t e r t h a n t h e c o n t r o l . Most of t h e maxirrmm

5 h peak bond s t r e s s v a l u e s occur a t t h e lowest w/c r a t i o and R/c r a t i o .

P o s s i b l y t h e l a t e x c o n t i g u i t y has n o t occurred.

An example of bond s t r e n g t h development i s g i v e n by t h e c u r v e s f o r p a s t e modified w i t h EVA(I1) i n Fig. 3. Each d a t a p o i n t i s t h e average o f f o u r t e s t r e s u l t s . V a r i a t i o n i n r e s u l t s i s dependent on h y d r a t i o n time and w/c r a t i o . V a r i a t i o n from t h e mean ranges from a b o u t 4% a t e a r l y a g e s t o

18% a t l a t e r ages. The bond s t r e n g t h f o r t h e EVA(I1) system i s

s i g n i f i c a n t l y improved a f t e r 15 h f o r a l l l a t e x c o n t e n t s . A t R/c = 0.08 t h e

maximum bond s t r e n g t h i s reached i n 24 h. S t r e n g t h r e t r o g r e s s i o n of l a t e x cement w i t h prolonged moist c u r i n g i s w e l l known! The r e t r o g r e s s i o n f o r EVA(I1) (R/c = 0.04 and 0.08 a t 24 h ) i s , however, much l e s s t h a n f o r t h e

o t h e r l a t e x systems. The PVA-cement systems f o r example l o s e a l l s t r e n g t h a t 72 h. S t r e n g t h r e t r o g r e s s i o n f o r unmodified cement p a s t e h a s been a t t r i b u t e d t o

CH

c r y s t a l growth i n a w e l l d e f i n e d t r a n s i t i o n zone a t t h e cement p a s t e - s t e e l i n t e r f a c e (2,lO). T h i s mechanism may a l s o c o n t r i b u t e t o s t r e n g t h r e t r o g r e s s i o n i n t h e l a t e x - m o d i f i e d cement systems.

(10)

Vol. 1 7 , No. 4 M. Nakayama and J.J. Beaudoin

I

TABLE 2

Maximum and 5h Bond S t r e n g t h Values f o r Latex Modified Cement P a s t e

Maximum Bond S t r e n g t h 5h Bond S t r e n g t h (MPa)

(MPa) R/c A/ c Latex w/c 0.04 0.08 0.15 0.04 0.08 0.15 0.25 2.20 0.91 0.52 0.45 0.24 0.58 AVA 0.30 1.36 2.29 0.78 0.58 0.58 0.58 0.35 1.33 1.87

-

0.69 0.45

-

0.25 1.29 3.04 1.52 0.86 0.17 0.52 SBR 0.30 1.20 1.94 1.45 0.14 0.14 0.14 0.35 1.13 4.43

-

0.79 0.34

-

0.25 1.91 2.42 2.81 1.91 2.42 2.81 PVA 0.30 3.23 3.24 3.07 1.55 2.03 2.20 0.35 1.91 3.23

-

1.58 2.30

-

0.30 1.58 1.84

-

1.17 0.21

-

V-V 0.35 1.84 1.29 0.97 0.48 0.38 0.34 0.40 1.26 1.45 1.33 0.38 0.27 0.38 0.25 1.24 CONTROL 0.30 2.06 (no l a t e x ) 0.35 2.88 0.40 1.82 Bond s t r e n g t h v a l u e s f o r t h e l a t e x - m o d i f i e d p a s t e s (w/c = 0 . 3 0 )

determined by d i r e c t t e n s i o n t e s t s were dependent on t h e t e s t p r o c e d u r e used. The maximum v a l u e s o b t a i n e d i n t h e t e s t where t h e p a s t e was c a s t between t h e two end b l o c k s v a r i e d from 0.96 t o 3.02 MPa a t 7 2 h f o r PVa and SBR r e s p e c t i v e l y (R/c = 0.08). The c o r r e s p o n d i n g bond s t r e n g t h of

unmodified cement p a s t e was 2.74 MPa. SBR was t h e o n l y l a t e x f o r which t h e bond s t r e n g t h exceeded t h e c o n t r o l p a s t e v a l u e . Optimum d r y i n g c o n d i t i o n s f o r l a t e x f i l m f o r m a t i o n were n o t provided i n t h i s t y p e of t e s t . It i s n o t known why SBR l a t e x performed b e t t e r t h a n o t h e r l a t e x e s i n t h i s t e s t .

Drying specimens a t 0% and 55% RH f o r v a r i o u s times d i d n o t improve t h e bond s t r e n g t h , a s m o i s t u r e l o s s due t o d r y i n g and subsequent f i l m f o r m a t i o n was g r e a t l y h i n d e r e d by specimen geometry.

The maximum bond s t r e n g t h v a l u e s i n t h e a l t e r n a t e t y p e of d i r e c t t e n s i o n t e s t , where t h e l a t e l r c e m e n t s u r f a c e was allowed t o d r y a t 55% RH b e f o r e a t t a c h i n g t h e b r a s s end b l o c k , were o b t a i n e d f o r t h e EVA(I1) system. These v a l u e s i n c r e a s e d from 1.03 t o 1.71 MPa a s d r y i n g time i n c r e a s e d t o

(11)

Vol. 1 7 , No. 4 569 BOND STRENGTH, LATEX, CEMENT PASTE, STEEL

0

0 5 16 2 4 7 2

H Y D R A T I O N TIME, h

FIG. 3

Bond s t r e n g t h v e r s u s time f o r poly(ethylene-viny1acetate) copolymer (EVA(I1)). Specimens c u r e d a t 100% RH u n t i l t e s t e d by overhanging beam method

16 h. No a p p r e c i a b l e bond s t r e n g t h was r e c o r d e d f o r unmodified cement p a s t e t e s t e d i n t h i s manner. I n t e r n a l s t r e s s developed d u r i n g d r y i n g was

s u f f i c i e n t t o weaken t h e bond i n t h e s e specimens. Bond S t r e n g t h and Hydration Parameters

There i s no s i n g l e r e l a t i o n s h i p between bond s t r e n g t h and wn f o r a l l t h e systems. I f complexes form due t o latex-cement m i n e r a l i n t e r a c t i o n t h e s i g n i f i c a n c e of w v a l u e s may be q u e s t i o n e d . The g e n e r a l tendency i s , however, t h a t bona s t r e n g t h i n c r e a s e s w i t h wn f o r e a c h system.

There i s a l s o no unique r e l a t i o n s h i p between t h e amount of h e a t developed a t a g i v e n h y d r a t i o n time and bond s t r e n g t h f o r a l l t h e systems. The s i g n i f i c a n c e of t h e t o t a l h e a t v a l u e s would a l s o depend on t h e

p o s s i b i l i t y of complex f o r m a t i o n due t o latex-cement m i n e r a l i n t e r a c t i o n . Cement P a s t e - S t e e l I n t e r f a c e

A unique zone

-

approximately 50 pm t h i c k

-

a t t h e i n t e r f a c e between cement p a s t e and v a r i o u s s u b s t r a t e m a t e r i a l s h a s been i d e n t i f i e d by s e v e r a l workers (11). The zone i s porous and r i c h i n CH. A d e t a i l e d d e s c r i p t i o n of I t h i s i n t e r f a c e r e g i o n i s g i v e n e l s e w h e r e ( 1 0 , l Z ) . It i s g e n e r a l l y f e l t t h a t

t h e p r o p e r t i e s of t h i s zone i n f l u e n c e t h e behaviour of cement composites. S t e e l and cement p a s t e s u r f a c e s were examined i n t h e SEM a f t e r t h e cement p a s t e c o a t i n g had r e l e a s e d from t h e cement s u r f a c e . F a i l u r e o c c u r r e d w i t h i n 5-10 pm of t h e s t e e l s u r f a c e i n a l l c a s e s , i . e . , i n t h e i n t e r f a c e zone. The s o l i d s a d h e r i n g t o t h e s t e e l s u r f a c e a t 24 h h y d r a t i o n appeared

(12)

Vol. 1 7 , No. 4

M. Nakayama and J . J . Beaudoin

very f i n e , w i t h n e e d l e - l i k e c r y s t a l l i n e m a t e r i a l c o n s i s t i n g p r i n c i p a l l y of C-S-H and CH. Photomicrographs of t h e SBR-cement system, (Fig. 4 a ) r e v e a l needle-shaped c r y s t a l s a d h e r i n g t o t h e s t e e l s u r f a c e . A small amount of e t t r i n g i t e was d e t e c t e d i n some of t h e specimens. L a t e x f i l m was found a d h e r i n g t o b o t h t h e s t e e l s u r f a c e and h y d r a t i o n p r o d u c t s a t t a c h e d t o t h e s t e e l i n EVA(1) and (111, SBR, and PVA systems.

L a t e x - m o d i f i e d cement s u r f a c e s were g e n e r a l l y covered by a t h i n l a y e r of CH. T h i s i s shown i n Fig. 4b f o r t h e EVA(1)-cement system. Large a r e a s of f i n e m a t e r i a l have been i d e n t i f i e d a s CH. EDX a n a l y s i s of t h e s e a r e a s g i v e s v e r y h i g h Ca/Si r a t i o s . C l u s t e r s of n e e d l e - l i k e C-S-H p a r t i c l e s were observed i n t h o s e a r e a s where t h e CH l a y e r was removed. These a r e a s appear a s a network of m i c r o c a v i t i e s between l a r g e CH masses. L a t e x f i l m was found around t h e C-S-H c r y s t a l s , e s p e c i a l l y i n EVA(1) and AVA-cements.

The s o l i d s a d h e r i n g t o t h e s t e e l s u r f a c e a f t e r 72 h h y d r a t i o n were g e n e r a l l y C-S-H and CH, s i m i l a r t o t h e p r o d u c t s p r e s e n t a t 24 h. Large CH c r y s t a l s (15-20 pm) were found i n t h e PVA system (Fig. 4c).

Latex f i l m was a l s o found on t h e s t e e l s u r f a c e and around t h e s o l i d s a t t a c h e d t o t h e s t e e l i n t h e EVA(I1)-cement system (Fig. 4d). T h i s may account f o r t h e r e l a t i v e l y h i g h bond s t r e n g t h i n t h i s system. It seems t h e l a t e x f i l m may a c t b o t h a s a n a d h e s i v e and r e i n f o r c e m e n t of t h e porous i n t e r f a c e l a y e r .

Latex-cement s u r f a c e s were a l s o covered by a l a y e r c o n t a i n i n g CH and C-S-H. Numerous l a r g e CH c r y s t a l s (5-10 ym) and p l a t e - l i k e CH c r y s t a l s

(10-100 pm) were found on PVA and AVA-cement s u r f a c e s r e s p e c t i v e l y . Photomicrographs of t h e AVA-cement system (Fig. 4e and 4f ), d e p i c t t h e growth of l a r g e CH c r y s t a l s i n t h e i n t e r f a c e zone. CH c r y s t a l growth may be r e s p o n s i b l e f o r lower bond s t r e n g t h a t 72 h.

D i f f e r e n c e s were observed i n t h e morphology of t h e i n t e r f a c e between unmodified cement p a s t e and l a t e x - m o d i f i e d cement p a s t e . A l a r g e number of n e e d l e - l i k e c r y s t a l s (C-S-H and a small amount of e t t r i n g i t e ) were observed i n t h e i n t e r f a c e zone i n unmodified cement p a s t e s a t b o t h 24 and 72 h. Needle-like c r y s t a l s were s p a r s e and i n d i s t i n c t a t 24 h i n t h e

l a t e x - m o d i f i e d systems (EVA(1) and ( 1 1 ) , PVA, and AVA). Needle-like c r y s t a l s (C-S-H and a small amount of e t t r i n g i t e ) were abundant i n t h e EVA(1) and ( 1 1 ) systems a t 72 h (Fig. 4g) and n o t a p p a r e n t i n t h e PVA and

AVA cement system. Needle-like morphology may be a s s o c i a t e d w i t h h i g h e r bond s t r e n g t h of EVA(1) and (11). These c r y s t a l s were a l s o observed i n t h e SBR and V-V modified systems a t 24 h. The morphology changed, however, a t 72 h.

Conclusions

1. A new t e c h n i q u e

-

t h e overhanging beam method

-

f o r d e t e r m i n i n g t h e development of bond s t r e n g t h a t e a r l y a g e s between latex-modified cement and s t e e l h a s been developed. The method a c c o u n t s f o r t h e development o f i n t e r n a l s t r e s s due t o h y d r a t i o n of cement.

2. Latex a d d i t i o n g e n e r a l l y i n c r e a s e s t h e bond s t r e n g t h of cement p a s t e t o s t e e l . A l l l a t e x e s t e s t e d e x c e p t p o l y ( v i n y 1 i d e n e c h l o r i d e

-

v i n y l c h l o r i d e ) and p o l y ( a c r y l i c u i n y 1 a c e t a t e ) copolymers i n c r e a s e d t h e bond s t r e n g t h .

3. The maximum bond s t r e n g t h of l a t e x modified cement was g e n e r a l l y

(13)

V o l . 1 7 , N o . 4 571 BOND STRENGTH, LATEX, CEMENT PASTE, STEEL

FIG. 4

SEM micrographs of debonded surfaces:

( a ) s t e e l s u r f a c e , SBR, 24 h hydration

( b ) cement surface, EVA(I), 2 4 h hydration

( c ) s t e e l s u r f a c e , PVA, 7 2 h hydration

( d ) s t e e l s u r f a c e , EVA(II), 7 2 h hydration

( e ) cement s u r f a c e , AVA, 7 2 h hydration ( f ) d i f f e r e n t magnification of ( e )

(14)

Vol.

1 7 , No.

4

M. Nakayama and J . J . Beaudoin

t o h y d r a t i o n of cement h a s b e e n produced a t t h i s time.

4. Bond s t r e n g t h g e n e r a l l y i n c r e a s e s w i t h non-evaporable w a t e r c o n t e n t i n t h e f i r s t 24 he

5. Bond f a i l u r e of l a t e x - m o d i f i e d cements g e n e r a l l y o c c u r s i n a zone o r i n t e r f a c e l a y e r 5-10 pm from t h e s t e e l s u b s t r a t e s u r f a c e .

6. The i n t e r f a c e l a y e r c o n s i s t s mainly o f C-S-H and CH. L a t e x f i l m i n some l a t e x cements c a n be d e t e c t e d i n t h i s l a y e r . T h i s f i l m may c o n t r i b u t e t o i n c r e a s e d bond s t r e n g t h .

7. There

i r

a t e a d e n c y f o r l a r g e amounts o f CH t o form i n t h e i n t e r f a c e zone r a t h e r t h a n i n t h e b u l k of t h e cement system. Bond s t r e n g t h d e c r e a s e s a t L a t e r a g e s , p o s s i b l y d u e t o growth o f CH c r y e t a l s p r e s e n t i n t h e i n t e r f a c e zone.

8. C a u t i o n s h o u l d b e e x e r c i s e d i n u s i n g t h e e s t i m a t i o n o f t o t a l a w u n t of CH a s a n i n d i c a t o r ~f t h e d e g r e e of h y d r a t i o n i n latex-cement systems.

Acknowledgementr

The a u t h o r s acknowledge t h e a s s i s t a n c e of Messrs. R.E. Myers and EIG. Quinn w i t h t h e e x p e r i m e n t a l r o r k .

R e f e r e n c e s

Y. Ohama, C h a p t e r 7 i n C o n c r e t e Admixtures Handbook, Ed.

V.S. Ramachandran, Noyes Publ., P a r k Ridge, N.S., U.S.A., 626 (1984). M. Nakayama and J. Beaudoin, Cem. Conc. Res.,

17,

T h i s i s s u e (1987).

S.G. C r o l l , J. O i l and Col. Chem. Assoc.,

63,

271 (1980). E.M. Corcoran, J. P a i n t Tech.,

41

( 5 3 8 ) , 635 (1969).

H.B. Wagner, Ind. Eng. Chem. Res. and Dev.,

2

( 2 ) , 149 (1966).

V. Z i v i c a , RILEM B u l l . No. 28, 121 (1965).

E.E. P r e s s l e r , S. Brunauer, and D.L. K a n t t o , Analyt. Chem.,

28,

896 (1956).

R.K. Ghosh and C.S. Pant., RILEM Symp., S y n t h e t i c R e s i n s i n B u i l d i n g C o n s t r u c t i o n , P a r i s , 91-104 (1967).

J.G. G e i s t , S.V. Amagna and B.B. M e l l o r , Ind. Eng. Chem.,

5

(41, 759 (1953).

10. R. Zimbelmann, Cem. Conc. Res.,

15

( 5 ) , 801 (1985).

11. P.J.M. Monteiro, J.C. Maso and J.P. O l l i v i e r , Cem. Concr. Res.,

15,

953 (1985).

12. P.K. Mehta, C o n c r e t e S t r u c t u r e , P r o p e r t i e s and M a t e r i a l s , P r e n t i c e H a l l , I n c . , p. 36-41 (1986).

(15)

This paper is being distributed in reprint

form by the Institute for Research in

Construction.

A

list of building practice

and research publications available from

the Institute may be obtained by writing to

the Publications Section, Institute for

Research in Construction, National Research

Council of Canada, Ottawa, Ontario,

K I A

0R6.

Ce document est distribug sous forme de

ti&-a-part

par l11nst

itut de recherche en

construction.

On

peut obtenir une liste

des publications de llInstitut portant sur

les techniques ou les recherches en matisre

de bdtiment en dcrivant

3 la Section des

publications, Institut de recherche en

construction, Conseil national de

recherches du Canada, Ottawa (Ontario),

Références

Documents relatifs

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Quantum circuits based on coded qubits encoded in chirality of electron

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

The experimental data is shown by the black diamond symbols, whereas the blue and red symbols are from the numerical solution: the red squares indicate the prediction of the

Open-plan offices must be designed to have appropriate ambient/masking noise levels (≈45 dBA) and should attenuate the propagation of speech as much as possible to ensure

The study will show that in the planning of the housing for low- income families, successful implementation of social and physical objectives are peculiarly tied

A series of calcium silicate hydrate (C–S–H)-polymer nanocomposite (C–S–HPN) materials were prepared by incorporating poly(acrylic acid) (PAA) into the inorganic layers of

Experimental and FEM results demonstrate that concerning the charge injection mechanism the radial electric field influences the charge lateral spreading whereas the

Also, a term is added to the cost function, that expresses the di fference between the prices computed by the model though equations (2.7) and (2.8), and the values of the