• Aucun résultat trouvé

Introduction `a la m´ethode de sensibilit´e topologique pour l’identification de d´efauts. Aspects th´eoriques et num´eriques

N/A
N/A
Protected

Academic year: 2022

Partager "Introduction `a la m´ethode de sensibilit´e topologique pour l’identification de d´efauts. Aspects th´eoriques et num´eriques"

Copied!
148
0
0

Texte intégral

(1)

Introduction ` a la m´ ethode de sensibilit´ e topologique pour l’identification de d´ efauts.

Aspects th´ eoriques et num´ eriques

Marc Bonnet1

1UMA (Dept. of Appl. Math.), POems, UMR 7231 CNRS-INRIA-ENSTA ENSTA, PARIS, France

mbonnet@ensta.fr

Formation Probl`emes inverses - Contrˆole des EDP, Amiens, 5-6 septembre 2011

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 1 / 148

(2)

Plan

1. Introduction

2. Time-independent (Laplace, elasticity)

3. Waves, frequency domain (Helmholtz, elastodynamics) 4. Waves, time domain

5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

(3)

To-do list

champ total dans lippmann-schwinger

estimations au moyen deδa

separer inner and outer expansions

definir¯v mais pas¯u

define polarization tensor from far-field representation

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 3 / 148

(4)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) Helmholtz

Elastodynamics

Heuristics and partial justification for limiting situation Numerical examples

4. Waves, time domain Numerical examples

Experimental studies (Dominguez and Gibiat, Tixier and Guzina) 5. Crack identification

Numerical examples

6. Higher-order topological sensitivity Numerical examples

7. Further reading

(5)

Forward and inverse problems

true= Ω\Btrue

S

q Sobs

Sobs

Γtrue Btrue

JLS(ΩΓ) = 1 2

Z

Sobs

|uΓ−uobs(ξ)|2 dΩξ

J(ΩΓ) = Z

Sobs

ϕ(uΓ(ξ),ξ) dΩξ

where uobs(ξ) =utrue(ξ)|Sobs+ (noise)

Insulated or conductive inhomogeneities (heat transfer, electrostatics)

Sound-hard or penetrable objects (linear acoustics)

Cavities, inclusions or cracks (elasticity)

Electromagnetic inverse scattering ...

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 5 / 148

(6)

Background

Extensive literature on (acoustic, electromagnetic, elastic) inverse scattering e.g. books by Colton & Kress (93), Ramm (92), Cakoni & Colton (06), Kirsch (96), Kirsch and Grinberg (08)

Iterative solution techniques (optimization-based, Newton): facilitated by sensitivity formulae, e.g.:

δJ = Z

Γ

b(u,ˆu;C, ρ)vndS (shape sensitivity) withˆu: adjoint solutionsuch thatσ[ˆu].n=∂uϕ

vn: normal perturbation of unknown surface Γ

Extension to combined shape-material sensitivity: b(u,u;ˆ C, ρ,∆C,∆ρ)

Combined optimization and level-set approaches (Dorn and Lesselier 06, topical review)

MBEng. Anal. with Bound. Elem.(1995)

S. Nintcheu Fata, B. Guzina, MB,Comput. Mech.(2003) MB and B. Guzina,J. Comput. Phys. (2008)

(7)

Optimization-based identification: example (inclusion, elastodynamics)

0 10 20 30 40 50

Iteration k 0

0.2 0.4 0.6 0.8 1

Parameter

c1/c1true c2/c2true c3/c

3 true J/J0 Centroidal coordinates

0 10 20 30 40 50

Iteration k 0

0.2 0.4 0.6 0.8 1 1.2

Parameter

α1 1 true α22true α33true J/J0 Semi-axes

0 10 20 30 40 50

Iteration k -2

-1 0 1 2 3 4

Parameter

µ/µtrue ν/νtrue ρ/ρtrue J/J0

Material properties

^

−3

−1 −2

0 ξ1/d

−2

−1 ξ3/d 1.5

2 2.5

3 3.5

0 1 ξ2/d

Initial

True 0 True Initial

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

µ/µ

M. Bonnet, B. B. Guzina,J. Comput. Phys (2009)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 7 / 148

(8)

Background

Iterative solution techniques:

Computationally expensive: ≥1forward solution(s) per iteration;

Success strongly depends on choice of initial guess.

Non-iterative, fast preliminary ‘probing’ (or ‘sampling’) methods (Potthast 06, IP topical review):

(a) Linear sampling (Colton, Kirsch 96)

Extension to near-field elastodynamic data (Guzina, Nintcheu Fata 04);

(b) Topological sensitivity

Mathematical studies (Sokolowski-Zochowski 97, Guillaume-Sid Idris 04) Asymptotic methods (Maz’ya-Nazarov-Plamenevskij 91, Il’in 92,

Vogelius-Volkov 00, Ammari-Kang 04...)

Initially proposed for topological optimization (Eschenauer et al. 1994);

Inverse problems (Guzina, MB 04, Feijoo 04, Masmoudi 05, MB 06...)

(9)

Linear sampling

Sobs

S

B f

Scattering operator:

uobs(x) = [R(B)f](x) (x∈Sobs)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 9 / 148

(10)

Linear sampling

z Sobs

S

B g

Linear sampling equation (withG: Green’s tensor):

∃?g(ξ), kG(z;x).e−[R(B)gεz](x)k ≤ε (x∈Sobs) z∈B =⇒ lim

z→∂BkgεzkL2(S)=∞ z6∈B =⇒ lim

ε→0kgεzkL2(S)=∞

Defect indicator function: z7→1/kgεzkL2(S)

(11)

Topological sensitivity

Sobs

S

B f

Ba(z) z z

Small-obstacle expansion of cost function:

J(Ba(z)) =J(∅) +δ(a)T(z) +o(δ(a)) whereδ(a)quantifies the perturbation behavior abouta= 0;

T(z)is thetopological derivativeofJ; zacts as a sampling point.

Heuristic idea: find regions inΩwhere field T ismost negative.

Proposed defect indicator function:

z7→ T(z)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 11 / 148

(12)

Concept of topological sensitivity

Sensitivity analysis toolinitially proposed for topological optimization (Eschenaueret al94; Sokolowski, Zochowski 99; Garreauet al01; Allaireet al05. . . )

Allaire, de Gournay, Jouve, Toader (2005)

(13)

Example (Topological optimisation)

0 20 40 60 80 100

Iterations

4 4.5 5 5.5 6

Compliance

Th`ese X-EADS “Optimisation g´eometrique et topologique du drapage des composites” (2010–

2013, G. Delgado, dir. G. Allaire) — Algorithm combining topological and shape derivatives

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 13 / 148

(14)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) Helmholtz

Elastodynamics

Heuristics and partial justification for limiting situation Numerical examples

4. Waves, time domain Numerical examples

Experimental studies (Dominguez and Gibiat, Tixier and Guzina) 5. Crack identification

Numerical examples

6. Higher-order topological sensitivity Numerical examples

7. Further reading

(15)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) 4. Waves, time domain

5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 15 / 148

(16)

Background problem (BP)

Media endowed with scalar (thermal, electrostatic...) conductivityκ Generalization to anisotropic (tensorial) conductivity not addressed, but relatively straightforward

Primary field variableuis scalar (temperature, electrostatic potential...) Background problem (κ: background conductivity): defines the physical state in the absence of inclusion

div (κ∇u) +f = 0 inΩ, κ∂nu=g onSN, u=uDon SD

i.e., in weak form:

Findu∈W(uD), hu,wiκ=F(w), ∀w∈W0

withW(uD) =

w∈H1(Ω), w=uDonSD . W0=W(0)and hu,wiκ:=

Z

κ∇u·∇w dV, F(w) :=

Z

fw dV+ Z

SN

gwdS

(17)

Generic transmission problem (TP)

Generic (possibly multiple) inclusionB⊂Ωand conductivityκB: κB = [1−χ(B)]κ+χ(B)κ=κ+χ(B)∆κ

Transmission problem:

div (κB∇uB) +f = 0inΩ, κ∂nu=g on SN, u=uDonSD

i.e., in weak form:

FinduB∈W(uD), huB,wiκ+huB,wi∆κB =F(w), ∀w∈W0

Both formulations implicitly enforce the transmission conditions uB |+=uB | and κ∂nuB |+nuB | on∂B

TP in terms of solution perturbationvB :=uB−u:

FindvB∈W0, hvB,wiκ+hvB,wi∆κB =−hu,wi∆κB , ∀w∈W0

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 17 / 148

(18)

Free-space transmission problem (FSTP)

Auxiliary TP for an inclusionBembedded in an infinite mediumΩ =R3 subjected to a given remote uniform gradientE∈R3 through the background solutionu(ξ) =E·ξ=:ψ[E](ξ), i.e.:

( div (κB∇uB[E]) = 0inR3,

uB[E](ξ)−ψ[E](ξ) =O(kξk−2)askξk → ∞ withκB:=κ+χ(B)∆κ.

Weak formulation for the solution perturbationvB:=uB−ψ[E]:

FindvB∈H1(R3), hvB,wiκR3 =−hψ[E],wi∆κB , ∀w∈H1(R3)

(19)

Cost functional

Consider generic cost functionals of the form J(κB) =J(uB) with J(w) :=

Z

ϕV(·,w) dV + Z

∂Ω

ϕS(·,w) dS with twice-differentiable densitiesw 7→ϕV(·,w)andw 7→ϕS(·,w)

Example 1: weighted least-squares output residuals (identification based on overdetermined datag,uobs onSN)

J(w) = 1 2

Z

SN

Q|w−uobs|2dS

Example 2: potential energy (expressed as boundary integrals) J(w) = 1

2 Z

SD

(κ∂nw)uDdS−1 2

Z

SN

gwdS

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 19 / 148

(20)

Concept of topological sensitivity

SN

SD

Ba

RD

(κ) Ba z

)

Ba(z) =z+aB

Definition (Topological derivative)

Assume thatJ(ua)can be expanded in the form

J(κa) =J(κ) +δ(a)T(z) +o(δ(a))

whereδ(a)is such thatδ(a) =o(1)asa→0 and characterizes the small-inclusion behavior ofJ(κB).

Then, the coefficientT(z)is called the topological derivative ofJ atz∈Ω.

T(z)also depends on shapeB and conductivity contrastβ:=κ/κ;

Terminology forT varies, with “gradient” or “sensitivity” sometimes used instead of “derivative”.

(21)

Small-inclusion asymptotic behavior of

ua

Established using a domain integral equation (DIE) formulation of supportBa

The Green’s functionG is defined by div κ∇G(·,x)

+δ(· −x) = 0 in Ω G(·,x) = 0 on SD κ∂nG(·,x) = 0 on SN





(x∈Ω)

and verifies

hG(·,x),wiκ=w(x) x∈Ω, ∀w∈W0∩C0(Ω)

SplitG into singular and nonsingular parts:

G(ξ,x) =G(ξ−x) +GC(ξ,x)

whereG(r) = 1/(4πkrk)is the (singular) full-space fundamental solution and the complementary Green’s functionGC is bounded atξ=x (and in factC forξ,x∈Ωby virtue of solving a BVP with regular boundary data).

Note thatG and∇G are homogeneous of degree -1 and -2, respectively:

G(λr) =|λ|−1G(r), ∇G(λr) =|λ|−2sgn(λ)∇G(r)

(r∈R3\ {0}, λ∈R\ {0})

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 21 / 148

(22)

Small-inclusion asymptotic behavior of

ua

Domain integral equation (DIE) for the TP:

combine weak formulations for the TP (withw =G(·,x)) and the Green’s function (withw =va):

(hva,G(·,x)iκ+hva,G(·,x)i∆κBa =−hu,wi∆κBa

hG(·,x),vaiκ=va(x) (x∈Ω) to obtain

La[va](x) =−hu,G(·,x)i∆κBa

x∈Ba (integral equation forva) x∈Ω\B¯a (integral representation forva) with the linear operatorLa defined by La[w](x) :=w(x) +hw,G(·,x)i∆κBa i.e. (in expanded form):

La[w](x) =w(x) + Z

Ba

∆κ∇w·∇G(·,x) dV

DIE for the FSTP:(similarly)

LB[vB](x) =−hψ[E],G(·,x)i∆κB with LB[w](x) :=w(x) +hw,G(·,x)i∆κB

(23)

Small-inclusion asymptotic behavior of

ua

Perturbation due to small inclusion governed by domain integralof supportBa

La[va](x) =−hu,G(·,x)i∆κBa Facilitates investigation of limiting behavior asa→0

Introduce normalized coordinates

(a) (ξ,x) =z+a(¯ξ,¯x), (b) dVξ =a3d ¯Vξ¯ (ξ∈Ba,¯ξ∈ B)

Asymptotic behavior of va asa→0: InsideBa, one has (inner expansion) va(x) =avB[∇u(z)](¯x) +o(a) ξ∈Ba,ξ¯∈ B

Moreover, at any fixed locationx6=z (outer expansion), one has va(x) =−a31G(z,x)·A·∇u(z) +o(a3) x6=z

whereA=A(κ, κ,B)is the (second-order) polarization tensor, defined by A·E=

Z

B

∆κ∇uB[E] dV = Z

B

∆κ(E+∇vB[E]) dV ∀E∈R3 (uB[E] =ψ[E] +vB[E]: solution to the FSTP)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 23 / 148

(24)

Small-inclusion asymptotic behavior of

ua

(proof sketch 1/2)

Proof based on seeking and exploiting the limiting form of the DIE, and using scaled coordinates.

(i) Asymptotic behavior of the Green’s function:

1G(ξ,x) =a−2∇G(¯ξ−¯x) +∇1GC(z,z) +o(1) (ii) Defining¯va(¯ξ) :=va(z+a¯ξ), ¯u(¯ξ) :=u(z+a¯ξ), one finds

∇va(ξ) =a−1∇v¯a(¯ξ), ∇¯u(¯ξ) =∇u(z) +o(1) (iii) Substitute above expansions and rescale coordinates in DIE:

La[va](x) =LB[¯va](¯x) +aO(k∇v¯ak2,B) hu,G(·,x)i∆κBa =ahψ[∇u(z)],G(·,¯x)i∆κB +o(a) (iv) Make ansatz ¯va(¯ξ) =aV(¯ξ) +o(a)and isolate lowest-order (ina)

contributions in DIE, which correspond to the FSTP:

LB[V](¯ξ) =−hψ[∇u(z)],G(·,¯x)i∆κB Hence: V(¯ξ) =vB[∇u(z)](¯ξ) ¯ξ∈ B

(25)

Small-inclusion asymptotic behavior of

ua

(proof sketch 2/2)

(v) Now, considerx6=zandasmall enough. In that case, one has

1G(ξ,x) =∇1G(z,x) +o(1), ξ∈Ba,x6∈Ba. (vi) Substitute¯va(¯ξ) =aV(¯ξ) +o(a)and the above into the integral

representation outsideBa, to obtain va(x) =−a31G(z,x)·

Z

B

∆κ∇vB[∇u(z)](¯ξ) d ¯Vξ¯+o(a3)

=−a31G(z,x)·A·∇u(z) +o(a3)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 25 / 148

(26)

Topological derivative of cost functionals

(i) Expand cost functional w.r.t. va:

J(κa) =J(κ) +J(u;va) +o(kvak2,Ω+kvak2,∂Ω) with J(u;w) :=

Z

2ϕV(·,u)w dV+ Z

SN

2ϕS(·,u)wdS (ii) Interpret J(u;va)as component of a weak formulation with test function va

and define theadjoint solutionˆuby

Find ˆu∈W0, hˆu,wiκ=J(u;w), ∀w∈W0

(iii) Reciprocity between transmission and adjoint problems:

hva,uiˆ κ+hva,ˆui∆κBa =−hu,uiˆ ∆κBa , hˆu,vaiκ=J(u;va) to obtain J(u;va) =−hˆu,ui∆κBa − hˆu,vai∆κBa =−hˆu,uai∆κBa (iv) Exploit known limiting behavior ofva in Ba (inner expansion), yielding

J(u;va) =−hˆu,uai∆κBa =−a3∇u(z)·A·ˆ ∇u(z) +o(a3) Topological expansion ofJ: The topological expansion ofJ is given by

J(κa) =J(κ) +a3T(z) +o(a3), T(z) =−∇ˆu(z)·A·∇u(z)

(27)

Remarks on topological derivative and polarization tensor

(i) Ais symmetric and has the same sign as∆κ(Cedyo-Fengya, Volkov,

Vogelius, 1998);

(ii) By superposition:

V(¯x) =vB[∇u(z)](¯x) = X3

i=1

ei·∇u(z)

vB[ei](¯x) One thus needs only compute thevB[ei], which are independent onz.

(iii) Spherical inclusion(i.e. Bis unit sphere): FSTP solution is given by vB[E](¯x) = 3

2 +βE·¯x withβ:=κ/κ (¯x∈ B).

Hence:

A(κ, κ,B) = 4πκ(β−1) β+ 2 I ;

(iv) Analytical FSTP solutions available for other shapes (e.g. ellipsoids);

otherwise, solve numerically (once and for all) the normalized DIE with E=ei (i= 1,2,3);

(v) Special caseβ= 0: insulated(i.e. impenetrable) inclusion.

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 27 / 148

(28)

Remarks on topological derivative and polarization tensor

(vi) Similar analysis available for (penetrable or insulated) inclusions in 2D

media, yielding cost function asymptotics of the form J(κa) =J(κ) +a2T(z) +o(a2)

(vii) If homogeneous Dirichlet conditions are instead considered on∂Ba, one finds cost function asymptotics of the form (e.g. Guillaume, Sid Idris, 2002)

J(κa) =J(κ) +aT(z) +o(a) (three-dimensional case)

=J(κ)− 1

lnaT(z) +o−1 lna

(two-dimensional case) (viii) Cost function example 1 (output least squares): adjoint loads are (as usual)

measurement residuals, since J(uB) =1

2 Z

SN

Q|uB−uobs|2dS =⇒ J(u;w) = Z

SN

Q(w−uobs)wdS (ix) Cost function example 2 (potential energy, withuD= 0):

J(uB) =−1 2

Z

SN

guBdS =⇒ J(u;w) =−1 2

Z

SN

gwdS

=⇒ uˆ=−u/2 =⇒ T(z) = (1/2)∇u·A·∇u Use sign properties ofAfor interpretation

(29)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) 4. Waves, time domain

5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 29 / 148

(30)

Background solution

Background solution (C: background elasticity tensor):

div (C:ε[u]) +f=0in Ω, t[u] =gonSN, u=uDonSD

where

ε[u] = 1

2(∇u+∇uT) (linearized strain tensor), t[u] = (C:ε[u])·n (traction vector)

In weak form:

Findu∈W(uD), hu,wiC=F(w), ∀w∈W0 withW(uD) :=

v∈H1(Ω;R3),v=uDonSD . W0=W(0)and hu,wiCD :=

Z

D

ε[u] :C:ε[w] dV = Z

D

∇u:C:∇wdV, F(w) =

Z

f·wdV+ Z

SN

g·wdS

(31)

Generic transmission problem (TP)

Generic TP:(possibly multiple) inclusionB⊂Ωand elasticity tensor CB = [1−χ(B)]C+χ(B)C=C+χ(B)∆C

div (CB:ε[uB]) +f=0in Ω, t[uB] =gonSN, uB =uDonSD

i.e., in weak form:

Findua∈W(uD), hua,wiC+hua,wi∆CBa =F(w), ∀w∈W0

Both formulations implicitly enforce the perfect-bonding conditions ua|+=ua| and t

ua|+

=t ua|

on∂B TP in terms of solution perturbationvB :=uB−u:

FindvB ∈W0, hvB,wiC+hvB,wi∆CB =−hu,wi∆CB , ∀w∈W0

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 31 / 148

(32)

Free-space transmission problem (FSTP)

Auxiliary TP for an inclusionBembedded in an infinite mediumΩ =R3 subjected to a given remote uniform strainE∈R3,3 through the background solutionu(ξ) =E·ξ=:ψ[E](ξ), i.e.:

( div (CB:∇uB[E]) =0 inR3, uB[E](ξ)−ψ[E](ξ) =O(kξk−2) askξk → ∞ withCB:=C+χ(B)∆C.

Weak formulation for the solution perturbationvB:=uB−ψ[E]:

FindvB∈H1(R3;R3), hvB[E],wiCR3 =−hψ[E],wi∆CB , ∀w∈H1(R3;R3)

(33)

Cost functional

Cost functional:

J(CB) =J(uB) with J(w) :=

Z

ϕV(·,w) dV + Z

∂Ω

ϕS(·,w) dS with twice-differentiable densitiesw7→ϕV(·,w)andw7→ϕS(·,w)

Topological derivative ofJ: sought by considering the limiting behavior of j(a) :=J(Ca) =J(ua).

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 33 / 148

(34)

Small-inclusion asymptotic behavior of

ua

The elastostatic Green’s tensor is defined by div C:ε[G(·,x)]

+δ(· −x)I=0 in Ω G(·,x) =0 onSD

t[G(·,x)] =0 onSN





(x∈Ω)

and verifies

hG(·,x),wiC=w(x) x∈Ω, ∀w∈W0∩C0(Ω)

SplitG into singular and nonsingular parts:

G(ξ,x) =G(ξ−x) +GC(ξ,x)

whereG(r)is the (singular) full-space (Kelvin) fundamental solution and the complementary Green’s tensorGC is bounded atξ=x (and in factCfor ξ,x∈Ωby virtue of solving a BVP with regular boundary data).

(35)

Small-inclusion asymptotic behavior of

ua

Applying 3-D Fourier transform, one has in fact G(r) = 1

(2π)3 Z

R3

exp(iη·r)N(η) dV(η) (r∈R3\ {0}) withN(η) =K−1(η)in terms of theacoustic tensorK(η), defined by Kik(η) =Cijkℓηjη

This implies that∇G is homogeneous of degree -2:

∇G(λr) =|λ|−3λ∇G(r) =|λ|−2sgn(λ)∇G(r)

(r∈R3\ {0}, λ∈R\ {0})

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 35 / 148

(36)

Small-inclusion asymptotic behavior of

ua

Domain integral equation (DIE) for the TP:

combine weak formulations for the TP (withw =G(·,x)) and the Green’s function (withw =va):

(hvB,G(·,x)iC+hvB,G(·,x)i∆CBa =−hu,G(·,x)i∆CBa

hG(·,x),vaiC=va(x) (x∈Ω) to obtain

La[va](x) =−hu,G(·,x)i∆CBa

x∈Ba (integral equation forva) x∈Ω\B¯a (integral representation forva) with the linear operatorLa defined by La[w](x) =w(x) +hw,G(·,x)i∆CBa i.e. (in expanded form):

La[w](x) =w(x) + Z

Ba

∇w: ∆C:∇G(·,x) dV

DIE for the FSTP:(similarly)

LB[vB](x) =−hψ[E],G(·,x)i∆CB with LB[w](x) :=w(x) +hw,G(·,x)i∆CB

(37)

Small-inclusion asymptotic behavior of

ua

Asymptotic behavior of va asa→0: InsideBa, one has (inner expansion) va(x) =avB[∇u(z)](¯x) +o(a) x∈Ba,¯x∈ B

Moreover, at any fixed locationx6=z (outer expansion), one has va(x) =−a31G(z,x) :A:∇u(z) +o(a3) (x6=z)

whereA=A(C,C,B)is the (fourth-order) elastic moment tensor, defined by A:E=

Z

B

∆C:∇uB[E] dV = Z

B

∆C: (E+∇vB[E]) dV ∀E∈R3,3 (uB[E] =ψ[E] +vB[E]: solution to the FSTP)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 37 / 148

(38)

Small-inclusion asymptotic behavior of

ua

(proof sketch 1/2)

Proof based on seeking and exploiting the limiting form of the DIE, and using scaled coordinates.

(i) Asymptotic behavior of the Green’s tensor:

1G(ξ,x) =a−2∇G(¯ξ−¯x) +∇1GC(z,z) +o(1) (ii) Defining¯va(¯ξ) :=va(z+a¯ξ),¯u(¯ξ) :=u(z+a¯ξ), one finds

∇¯va(¯ξ) =a−1∇va(ξ), ∇¯u(¯ξ) =∇u(z) +o(1) (iii) Substitute above expansions and rescale coordinates in DIE:

La[va](x) =LB[¯va](¯x) +aO(k∇¯vak2,B) hu,G(·,x)i∆CBa =ahψ[∇u(z)],G(·,¯x)i∆CB +o(a) (iv) Make ansatz ¯va(¯ξ) =aV(¯ξ) +o(a)and isolate lowest-order (ina)

contributions in DIE, which correspond to the FSTP:

LB[V](¯ξ) =−hψ[∇u(z)],G(·,¯x)i∆CB Hence: V(¯ξ) =vB[∇u(z)](¯ξ) ξ¯∈ B

(39)

Small-inclusion asymptotic behavior of

ua

(proof sketch 2/2)

(v) Now, considerx6=zandasmall enough. In that case, one has

1G(ξ,x) =∇1G(z,x) +o(1), ξ∈Ba,x6∈Ba. (vi) Substitute¯va(¯ξ) =aV(¯ξ) +o(a)and the above into the integral

representation outsideBa, to obtain va(x) =−a31G(z,x) :

Z

B

∆C:∇uB[∇u(z)](¯ξ) d ¯Vξ¯+o(a3)

=−a31G(z,x) :A:∇u(z) +o(a3)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 39 / 148

(40)

Topological derivative of cost functionals

(i) Expand cost functional w.r.t. va:

J(Ca) =J(C) +J(u;va) +o(kvak2,Ω+kvak2,∂Ω) with J(u;w) :=

Z

2ϕV(·,u)·wdV + Z

SN

2ϕS(·,u)·wdS (ii) Interpret J(u;va)as component of a weak formulation with test functionva

and define theadjoint solutionˆuby

Find ˆu∈W0, hˆu,wiC=J(u;w), ∀w∈W0

(iii) Reciprocity between transmission and adjoint problems:

hva,uiˆ C+hva,ˆui∆CBa =−hu,uiˆ ∆CBa , hˆu,vaiC=J(u;va) to obtain J(u;va) =−hˆu,ui∆CBa − hˆu,vai∆CBa =−hˆu,uai∆CBa (iv) Exploit known limiting behavior ofva in Ba (inner expansion), yielding

J(u;va) =−hˆu,uai∆CBa =−a3∇ˆu(z) :A:∇u(z) +o(a3) Topological expansion ofJ: The topological expansion ofJ is given by

J(Ca) =J(C) +a3T(z) +o(a3), T(z) =−∇u(z) :A:∇u(z)ˆ

(41)

Elastic moment tensor (anisotropic elastic inclusion)

1. The EMTAhas major and minor symmetries: for any (E,E)∈R3,3×R3,3, one has

E:A:E=E:A:E (major symmetry) E:A:E=E:A:ET =ET:A:E (minor symmetry) 2. By superposition, one has

VB[∇u(z)] = X

1≤i≤j≤3

Eij:∇u(z) VB[Eij]

with Eij=ei⊗ei (i=j), Eij= 2−1/2(ei⊗ej+ej⊗ei) (i6=j) One thus needs only compute thevB[Eij](6 auxiliary solutions independent onz) once and for all.

3. C=0, i.e. ∆C=−C, corresponds to atraction-free cavity.

Thus, small-cavity asymptotics is special case of small-inclusion asymptotics.

Beretta, Bonnetier, Francini, Mazzucato (2011); B, Delgado (in preparation, 2011) Isotropic case: Ammari, Kang, Nakamura, Tanuma (2002); Guzina, Chikichev (2006)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 41 / 148

(42)

Elastic moment tensor (anisotropic elastic inclusion)

4. LetBbe an ellipsoid (of principal semiaxesa1,a2,a3). The Eshelby tensor S(a1,a2,a3)ofBis given by (Mura, 1987):

Sijmn(a1,a2,a3) = 1 8πCpqmn

Z 1

−1

du Z

0

Gipjq(η(u, θ)) +Gjpiq(η(u, θ)) dθ

Gijkℓ(η) :=ηkηNij(η), η(u, θ) :=p

1−u2[a−11 cosθe1+a−12 sinθe2] +a−13 ue3

Then,Ahas the explicit expression (valid for arbitrary anisotropicC andC) A(C,C,a1,a2,a3) =C:

C+ ∆C:S(a1,a2,a3)−1

: ∆C

S(a1,a2,a3)known in closed form forisotropicC (elliptic integrals involved in the case of ellipsoids).

5. For ellipsoidal cavities, one has A(C,a1,a2,a3) =

S(a1,a2,a3)−I−1

:C

6. Closed-form expression for spherical cavity (i.e. whenBis unit sphere):

A=−2µh 3(1 +ν)

2(1−2ν)2J +15(1−ν) 7−5ν Ki

(3J =I⊗I, K=I−J)

(43)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) 4. Waves, time domain

5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 43 / 148

(44)

Numerical example

Ba

ΓD g

ΓN

L= 2 H= 1

α= arctan(0.5) O

z= (1/3,2/3)

J(Ba) =−1 2

Z

SN

g·uadS (compliance)

Isotropic tests: C=

1.34 0.57 0.

0.57 1.34 0.

0. 0. 0.38

, C= 10−9C

Anisotropic tests: C=

1. 0.5 0.

0.5 2. 0.

0. 0. 0.04

, C=

3. 0.4 0.

0.4 1.5 0.

0. 0. 0.03

.

B, Delgado (in preparation, 2011)

(45)

Numerical example

0 0.02 0.04 0.06 0.08 0.1 0.12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Characteristic size a

Relative error e(a)

Anisotropic, a1/a2=2, angle = pi/4

Isotropic, a1/a2=1

Anisotropic, a1/a2=2, angle = 0 Isotropic, a1/a2=2, angle = 0 Isotropic, a1/a2=2, angle = pi/4

e(a) = |J(Ca)−J(C)−a2T(z)|

|a2T(z)|

B, Delgado (in preparation, 2011)

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 45 / 148

(46)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) 4. Waves, time domain

5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

(47)

Energy-based cost functional

’Neumann’ and ’Dirichlet’ background fields:

FinduN∈WN(uD), huN,wiC=Fno(w) +Fo(w), ∀w∈W0N. FinduD∈WD(uD), huD,wiC=Fno(w), ∀w∈W0D. whereWN(uD) =W(uD),W0N=W0and

WD(uD) :=

v∈H1(Ω;R3),v=uDonSD, v=uobson So , W0D:=WD(0)

’Neumann’ and ’Dirichlet’ fields for small trial inclusion:

FindvNa ∈W0N, hvNa,wiC+hvNa,wi∆CBa =−huN,wi∆CBa, ∀w∈W0N. FindvDa ∈W0D, hvDa,wiC+hvDa,wi∆CBa =−huD,wi∆CBa , ∀w∈W0D.

Energy discrepancy functional:

E(Ca) =E(uNa,uDa,Ca) = 1

2huNa−uDa,uNa−uDaiCa

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 47 / 148

(48)

Energy-based cost functional

Topological derivative ofE: it is given by TE(z) = 1

2ε[uN](z) :A:ε[uN](z)−1

2ε[uD](z) :A:ε[uD](z)

Energy-based cost functionals are very useful for identification of (possibly heterogeneous) material parameters, see e.g. Kohn, Vogelius (1987), Kohn, McKenney (1989), Constantinescu (1995), Chavent, Kunisch, Roberts (1996).

Specific treatment needed to findTE, because (i)ϕV(·,∇w,CB)rather than ϕV(·,w), and (ii) va=O(a)butva =O(1)insideBa (so care needed in doing expansions abouta= 0).

B, Delgado (in preparation, 2011)

(49)

1. Introduction

2. Time-independent (Laplace, elasticity) Scalar (conductivity) problems

Elasticity

Numerical example

Energy-based cost functional

3. Waves, frequency domain (Helmholtz, elastodynamics) Helmholtz

Elastodynamics

Heuristics and partial justification for limiting situation Numerical examples

4. Waves, time domain Numerical examples

Experimental studies (Dominguez and Gibiat, Tixier and Guzina) 5. Crack identification

Numerical examples

6. Higher-order topological sensitivity Numerical examples

7. Further reading

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 49 / 148

(50)

1. Introduction

2. Time-independent (Laplace, elasticity)

3. Waves, frequency domain (Helmholtz, elastodynamics) Helmholtz

Elastodynamics

Heuristics and partial justification for limiting situation Numerical examples

4. Waves, time domain 5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

(51)

Acoustic transmission problem

Scattering of an acoustic wave by a penetrable inclusionB (ρ,c) embedded in an acoustic mediumΩ(ρ,c).





β:=ρ/ρ mass density ratio γ:=c/c velocity ratio η:= (ρc2)/(ρc2) bulk modulus ratio Letm:= 1 + (β−1)χ(B)andn:= 1 + (η−1)χ(B).

Field equation (assuming homogeneous inclusion and background) on acoustic pressurep:

div (m∇uB) +nk2uB+f = 0 (in Ω)

Transmission conditions implied (continuity of pressure and normal velocity across∂B)

uB |+=uB | and ρ−1nuB |+= (ρ)−1nuB | on∂B

Martin, P.A. (2003), Acoustic scattering by inhomogeneous obstacles. SIAM J. Appl. Math.

64:297-308

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 51 / 148

(52)

Weak formulation of TP

Notations: LetW(uD) :=

w∈H1(Ω), w=uDonSD . W0=W(0)and hu,wimD :=

Z

D

m∇u·∇w dV (u,w)nD:=

Z

D

nuw dV hu,wiD :=

Z

D

∇u·∇w dV (u,w)D:=

Z

D

uwdV F(w) =

Z

fw dV+ Z

SN

gwdS

Background solution(weak formulation):

Findu∈W(uD) hu,wi−k2(u,w)=F(w), ∀w∈W0

For unbounded-media idealizations (Ω =R3),uis an arbitrary solution to (∆ +k2)u= 0(e.g. a plane wave), in particular not constrained by radiation conditions.

TP(weak formulation), in terms of the solution perturbation (scattered field) vB :=uB−u:

FindvB∈W0, hvB,wimB−k2(vB,w)nB =−hu,wi∆mB +k2(u,w)∆nB , ∀w∈W0

(53)

Cost functional

J(mB,nB) =J(uB) with J(w) :=

Z

ϕV(·,w) dV+ Z

∂Ω

ϕS(·,w) dS with twice-differentiable real-valued densitiesw 7→ϕV(·,w)andw 7→ϕS(·,w).

Example (output least-squares for defect identification):

ϕV(·,w) = 0, ϕS(·,w) =1

2(w−uobs)Q(·)(w−uobs)

Topological derivative ofJ: sought by considering the limiting behavior of j(a) :=J(ma,na) =J(ua)

withma:= 1 + (β−1)χ(Ba)andna:= 1 + (η−1)χ(Ba)

Ba(z)

z p

SN SD

Sobs

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 53 / 148

(54)

Small-inclusion asymptotic behavior of

ua

Green’s function: defined, forx∈Ω, by (∆ +k2)G(·,x;k) +δ(· −x) = 0 (in Ω),

G(·,x;k) = 0 (onSD), ∂nG(·,x;k) = 0 (onSN)

SplitG into singular and nonsingular parts:

G(ξ,x;k) =G(ξ−x;k) +GC(ξ,x;k)

whereG(r;k)is the (singular) Helmholtz full-space fundamental solution:

G(r;k) = eikr

4πr (r =krk)

Moreover, one has

G(r;k) =G(r) +GC(r;k)

whereG(r) = 1/(4πr)is the Laplace fundamental solution andGC(r;k)is nonsingular forr=0

(55)

Small-inclusion asymptotic behavior of

ua Domain integral equation (DIE) for the TP:

Combining weak formulations for the TP (withw =G(·,x;k)) and the Green’s function (withw =va) yields a DIE of Lippmann-Schwinger type:

Lka[va](x) =−hu,G(·,x;k)i∆mBa +k2(u,G(·,x;k))∆nBa

x∈Ba (integral equation forva) x∈Ω\B¯a (integral representation forva) with the linear operatorLka defined by

Lka[w](x) =w(x) +hw,G(·,x;k)i∆mBa −k2(w,G(·,x;k))∆nBa i.e. (in expanded form):

La[w](x) =w(x) + Z

Ba

(β−1)∇w·∇G(·,x;k)−(η−1)k2wG(·,x;k) dV

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 55 / 148

(56)

Small-inclusion asymptotic behavior of

ua

Lka[va](x) =−hu,G(·,x)i∆mBa +k2(u,G(·,x))∆nBa (LS)

Coordinate scaling:

ξ=z+a¯ξ, x=z+a¯x, dVξ =a3d ¯Vξ¯, ∇ξ=a−1ξ¯

Scaling properties ofG(ξ,x;k)(by homogeneity properties ofG(ξ−x)):

G(ξ,x;k) =a−1G(¯ξ−¯x) +O(1)

1G(ξ,x;k) =a−2∇G(¯ξ−¯x) +O(1)

Leading contribution in (LS) using ansatz va(ξ) =aV(¯ξ) +o(a) inBa : Lka[va](x) =aLB[V](¯x) +o(a1)

hu,G(·,x)i∆mBa −k2(u,G(·,x))∆nBa =ahψ[∇u(z)],G(·,¯x)i∆mB +o(a1) Hence, retaining only theO(a)terms,V solves again thestatic FSTP for the normalized inclusion:

LB[V](¯x) =−hψ[∇u(z)],G(·,¯x)i∆mB (¯x∈ B)

(57)

Small-inclusion asymptotic behavior of

ua InsideBa, one has (inner expansion)

va(x) =avB[∇u(z)](¯x) +o(a) x∈Ba,¯x∈ B wherevB[E]is again the solution of thestaticFSTP.

Moreover, at any fixed locationx6=z (outer expansion), one has va(x) =−a3

1G(·,x;k)·A·∇u−k2(η−1)|B|G(·,x;k)u

(z) +o(a3) (x6=z) whereA=A(β,B)is again the polarization tensor associated with the normalized staticFSTP.

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 57 / 148

(58)

Topological derivative of cost functionals

(i) Expand cost functional w.r.t. va:

J(ma,na) =J(1,1) +J(u;va) +o(kvak2,Ω+kvak2,∂Ω)

(ii) Interpret J(u;va)as component of a weak formulation with test function va and define theadjoint solutionˆuby

Find ˆu∈W0, hˆu,wi−k2(ˆu,w)=J(u;w), ∀w∈W0

(iii) Reciprocity between transmission and adjoint problems:

hva,ˆuima−k2(va,u)ˆ na =−hu,ˆui∆mBa +k2(u,u)ˆ ∆nBa hˆu,vai−k2(ˆu,va)=J(u;va)

to obtain J(u;va) =−hˆu,uai∆mBa +k2(ˆu,ua)∆nBa

(iv) Exploit known limiting behavior ofva in Ba (inner expansion), yielding J(u;va) =−a3

∇u(z)·A·ˆ ∇u(z)−k2(η−1)|B|ˆu(z)u(z)

+o(a3) Topological derivative of J:

T(z) =−∇ˆu(z)·A·∇u(z) +k2(η−1)|B|ˆu(z)u(z)

(59)

Comments

SinceA(β,B)is associated with the normalizedstaticFSTP, the following hold:

Ais symmetric;

By superposition:

V(¯x) =vB[∇u(z)](¯x) = X3

i=1

ei·∇u(z)

vB[ei](¯x) One thus needs only compute thevB[ei], which are independent onz.

Spherical vanishing inclusion(i.e. Bis unit sphere): The FSTP solution is given by

vB[E](¯x) = 3

2 +βE·¯x withβ :=κ/κ (¯x∈ B).

Hence:

A(β,B) = 4π(1−β) 2 +β I;

FSTP solutions analytically available for other shapes (e.g. ellipsoids);

otherwise, solve numerically (and once and for all) the normalized DIE with E=ei (i= 1,2,3);

The special caseβ= 0, i.e. ρ=∞, corresponds to theimpenetrable inclusion.

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 59 / 148

(60)

1. Introduction

2. Time-independent (Laplace, elasticity)

3. Waves, frequency domain (Helmholtz, elastodynamics) Helmholtz

Elastodynamics

Heuristics and partial justification for limiting situation Numerical examples

4. Waves, time domain 5. Crack identification

6. Higher-order topological sensitivity 7. Further reading

(61)

Background solution

Background solution (C, ρ: background elasticity tensor and mass density):

div (C:ε[u]) +ρω2u+f=0in Ω, t[u] =gon SN, u=uDonSD

In weak form:

Findu∈W(uD), hu,wiC−ω2(u,w)ρ=F(w), ∀w∈W0

withW(uD) :=

v∈H1(R3;C3),v=uDonSD . W0=W(0)and hu,wiCD :=

Z

D

ε[u] :C:ε[w] dV = Z

D

∇u:C:∇wdV, (u,w)ρ:=

Z

D

ρu·wdV F(w) =

Z

f·wdV + Z

SN

g·wdS

For unbounded-media idealizations,uis an arbitrary solution to the Navier PDE (e.g. a plane wave), which in particular is not constrained by radiation conditions.

Marc Bonnet (POems, ENSTA) Sensibilit´e topologique et identification 61 / 148

(62)

Transmission problem (TP)

(possibly multiple) inclusionB⊂Ωwith

CB = [1−χ(B)]C+χ(B)C =C+χ(B)∆C (elasticity tensor) ρB = [1−χ(B)]ρ+χ(B)ρ =ρ+χ(B)∆ρ (mass density) TP:

div (CB:ε[uB]) +ρBω2u+f=0in Ω, t[uB] =g onSN, uB =uDonSD i.e., in weak form and in terms of the solution perturbationvB :=uB−u:

FindvB∈W0, hvB,wiCB−ω2(vB,w)ρB =−hu,wi∆CB2(u,w)∆ρB , ∀w∈W0

This weak form is also applicable to scattering in unbounded media.

Références

Documents relatifs

Building on the results in shape optimization obtained for Laplace (Sokolowski and Zochowski, 1999; Garreau et al., 2001) and Helmholtz (Samet et al., 2004; Pommier and Samet,

On montrera la convergence de ces arbres daux vers un certain arbre infini al´eatoire qu’on in- troduira, appel´e l’arbre de Galton–Watson conditionn´e `a survivre, et on

Int´ erˆ ets simples et compos´ es On dispose d’un capital de 1 000 euros que l’on peut placer de deux fa¸cons diff´erentes :.. — `a int´erˆets simples au taux annuel

Rep´erer les diff´erents points d’´equilibre et les trajectoires p´eriodiques. Discuter de leur stabilit´e. On simule ce probl`eme `a l’aide d’une m´ethode d’Euler.. Exercice

Un ensemble X est fini ssi il existe un entier naturel n et une bijection de l’ensemble des entiers compris entre 0 et n − 1 dans X. Le nombre d’´ el´ ements (cardinal) de X est

Average waiting period between fracture and arthroscopic surgery 2 days (range 0-5 days)!. Dry technique

On peut y voir l’ensemble des ´el´ements du montage ` a savoir le circuit switch r´ealisant l’´echantillonnage, puis l’ensemble condensateur-suiveur et enfin l’utilisation

Si le probl` eme de la simulation est r´ esolu pour la loi de Y ainsi que pour toutes les lois conditionnelles L(X|Y = y), alors il est r´ esolu pour la loi du couple (X, Y ) ainsi