• Aucun résultat trouvé

Carbohydrate-resorcinarene complexes involved in the facilitated transport of alditols across a supported liquid membrane

N/A
N/A
Protected

Academic year: 2021

Partager "Carbohydrate-resorcinarene complexes involved in the facilitated transport of alditols across a supported liquid membrane"

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal of Membrane Science

j our na l h o me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / m e m s c i

Carbohydrate–resorcinarene complexes involved in the facilitated transport of alditols across a supported liquid membrane

MiloudiHlaïbia,b,∗,NabilaTbeura,b,AbdelkhalekBenjjara,OussamaKamala,LaurentLebrunb

aLaboratoired’InterfaceMatériauxetChimiedel’Environnement(LIME),UniversitéHassanII,FacultédesSciencesd’AïnChock,BP5366,Maârif,Casablanca,Morocco

bLaboratoire“Polymères,Biopolymères,Surfaces”,UMR6270CNRS,UniversitédeRouen,FacultédesSciences,76821Mont-Saint-Aignan,France

a r t i c l e i n f o

Articlehistory:

Received5May2010 Receivedinrevisedform 24December2010 Accepted27April2011 Available online 5 May 2011

Keywords:

Facilitatedtransport Resorcinarene

Supportedliquidmembrane Molecularrecognition Permeability Flux

Stabilityconstants

Apparentdiffusioncoefficients cisortransconfigurationsite

a b s t r a c t

Asupportedliquidmembrane(SLM)containingaresorcinarenecarrierhasbeenusedfortheselective transportsofarabinitolandperseitolfromconcentratedaqueoussolutions(0.2–0.025M).Maltitoland lactitol,twoalditolsderivedfromdisaccharides,werealsostudied.Themembraneismadeofamicro- porouspoly(tetrafluoroethylene)filmimpregnatedwitha0.01MsolutionofthecarrierinCCl4.The permeabilitiesoftheSLMforallalditolswerecalculated.Foreachalditol,theinitialfluxisrelatedto initialconcentrationinthefeedphasebyasaturationlaw,indicatingthattherate-determiningstepin thetransportmechanismisthemigrationofa(1/1)carrier–carbohydratecomplexintheimmobilized organicphase.Usingamodelpreviouslypublished,theapparentdiffusioncoefficientsD*andthestability constantsKofthecarrier–alditolcomplexesweredetermined.Themagnitudesofthestabilityconstants arerelatedtothestructuresofthealditols,particularlytothenumberandorientationofhydroxylgroups thatinteractwiththecarrier.Insmallalditolsthatcontainanarabinotriolsystem,thesiteofbindingto thecarrieristheerythrodiolgroup.Inthelargemoleculesofdisaccharidesandperseitolinwhichmore OHgroupsareavailable,morestablecarrier–alditolcomplexesareformed:itisbelievedthattworemote sitesofbindinginteractwithtwoindependentrecognitionsitesofthecarrier.

Aim:Tounderstandthenatureofchemicalrecognitionbetweenthecarrierandpolyols.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Noveltechniquesrecentlyintroducedfortheseparationofmix- turesofcarbohydratesarebasedonmembraneprocesses[1a].A discussionoftheirpotentialitieshasbeenreportedearlier [1b].

Selectivetransportofcarbohydratesacrossamembraneisachieved whenthemembranecontainsareagent(thehostorcarrier)that canformhost–guestcomplexeswithcarbohydrates(the guests).

Thefluxofeachcarbohydrateacrossthemembranedependson thestrengthofthehost–guestcomplex,allowingtheseparationof mixturesofcarbohydratesbasedondifferenttransferrates.This processisnamed:facilitated transport,oralsocarrier-mediated transport.

Severaltypesofmembraneshavebeendevelopedandadapted fortheseparationofcarbohydrates[1a].Thefirstgenerationwas basedonion-exchangemembranesfortheselectivetransportof boratecomplexes[2–4].Then,supportedliquidmembranes(SLMs)

Corresponding author at: Laboratoire d’InterfaceMatériaux et Chimie de l’Environnement(LIME),UniversitéHassanII,FacultédesSciencesd’AïnChock,BP 5366,Maârif,Casablanca,Morocco.Tel.:+212522230680;

fax:+212522230674.

E-mailaddress:miloudi58@hotmail.com(M.Hlaïbi).

wereproposed,becausetheyallowlargefluxesofcarbohydrates due tothe diffusion of the carrier complexes within their liq- uidorganiclayer.Themostusedcarriersarephenylboronicacids thataresolubleintheorganicsolventofthosemembranes[5–9].

Recently, Smith designed polymer inclusion membranes(PIMs) madeofplasticizedcelluloseacetate,inwhichthecarrierisimmo- bilizedinthepolymericnetwork.Thesemembranesdonotallow largefluxes,butpresentabetterstabilitythanSLMsthatfrequently sufferfromleakingofsolventorcarrierintothesurroundingaque- ousphases[10,11].

RenewedinterestwasfoundinSLMswiththeintroductionof amphiphilic,neutralmacrocyclesascarriers.Whenthesecarriers havealargelipophilicmoiety,theirextractionintotheaqueous phases is negligible,and thecorresponding membranesexhibit outstandingstabilities withrespecttoleakage ofcarrier orsol- vent [12,13].Moreover,these carriers maybedesigned sothat host–guestbindinginvolveselaborateinteractionbetweenthesug- arsand thecarrier thatis thebasis formolecular recognition.A suitablecarrierfortheextractionofunderivatizedcarbohydrates intoanorganicsolventisthelipophiliccompound1(Fig.1)discov- eredbyAoyamaetal.[14–16].

Thishostbelongstothefamilyofresorcinarenes,thatareana- loguesofcalix[4]arenesinwhichthefourphenolunitsarereplaced by resorcinolunits [17,18].Resorcinarene 1 selectively extracts 0376-7388/$seefrontmatter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.memsci.2011.04.055

(2)

OH HO

R H

OH

OH R

H HO

HO

R H

HO R

H

OH

Fig.1.Structureofresorcinarene1(R=CH3(CH2)10).

severalsugarsfromconcentratedaqueoussolutionsintoananhy- drousCCl4layer.Whentheorganicsolventissaturatedwithwater, theextractionisstillselective,butthedissolvedspeciesarelikely ternarycarrier–sugar–watercomplexesratherthancarrier–sugar complexes. Selective extraction of sugars with reagent 1 was demonstrated[19].Theadvantagesofusingtheneutralcarrier1 insteadofacidiccompoundssuchasarylboronicacidshavebeen discussedelsewhere[20,7,21,22].

SLMsaremadeofahydrophobicandporouspolymerfilm(the support)impregnatedwithanorganicsolutionofthelipophiliccar- rier.SLMsrequirelittleenergybecausethetransportmechanism isfundamentallyaliquid–liquidextractionprocess.Sincethemain problemassociatedwithliquid–liquidextractionisthemanipula- tionoflargequantitiesofharmfulorganicvolatilesolvents,SLMs, thatusesmallamountsofsolvent,areapreferredoption,because theyareagoodanswertopresentconcernsaboutprotectionofthe environment.

ASLMcontainingcarrier1waspreviouslyusedforthetrans- portofsugars[12]andsmallalditols[13].Akineticstudyindicated thattherate-determiningstepisthemigrationofthecarrier–sugar complex(CS)withintheorganicsolvent.Amodelderivedfromthe Michaelis–Mentenschemeallowedthecalculationoftheapparent diffusioncoefficientD*ofthecomplexandofitsstabilityconstant K.

ThestabilityconstantKreferstotheheterogeneousinterfacial equilibrium:

S(aq)+C(org)CS(org)

whereaqandorgstandforaqueousandorganicphases,respec- tively,CisthecarrierandSisthecarbohydrate(substrate).The magnitudeofthestabilityconstantKofthecomplexesisause- fultoolinordertospecifythenatureofthecarrier–carbohydrate complexes.Thestabilitiesofthecomplexesaregovernedbysev- eralaspectsofthesubstratestructure.Themainoneisthenumber ofhydroxylgroupsofthesugarthatcaninteractwiththoseofthe carrier.Theotheroneistheorientationofthesegroups.Itmay beassumedthatstronginteractiontakesplacewhenbothsetsof hydroxylgroupsofthesugarandcarriercloselymatch.

Ourlong-termprojectisaimingattheseparationofcarbohy- dratesbymeansofSLMprocesses.Forthispurpose,themembrane shouldcontainalipophiliccarrierthatcanspecificallyrecognize sugarsby forminghost–guestcomplexes. Continuing ourprevi- ousstudies ofthe facilitated transport ofcarbohydrates bythe resorcinarene1carrierthroughaSLM,thecaseofhigheralditols wasinvestigated.Resultsforthetransportofsimplealditols[23]

showedthatthetransport isselective,ifthestability constants and/orapparentdiffusioncoefficientsofthecarrier–alditolcom-

Fig.2.Fischerrepresentationofstudiedalditols.

plexes vary with the structure of carbohydrates. The studied alditolswerechosenbasedontheconfigurationoftheirhydroxyl groups.Initially,theresearchfocusedonsmallalditolswithasin- glesite,threoorerythro.Theresultsgavevaluableinformationon thesiteofcomplexation,thestability oftheformedcomplexes, andthefactorsthatcontrolthetransport[13].Thesiteofinter- actionofsmallalditolswithresorcinarene1wasreportedtobe aninternaldiolsystem.Theorderofstabilityofthealditolcom- plexesofcarrier1was:pentitols<tetritolsandthreo<erythro[23].

Thestabilityconstantofthearabinosecomplexwasmuchlower, probablybecausethestiffpyranosering isless flexiblethanan alditolacyclicchain[12].Thedifferencebetweenthealditolsused inthepresentstudy(arabinitol,maltitolis4--d-glucopyranosyl-d- glucitol,lactitolis4--d-galactopyranosyl-d-glucitolandperseitol isd-glycero-d-galacto-heptitol)(Fig.2)andthosepreviouslyused, is that the molecules now contained both erythro and threo diol systems, allowing a competition between severalpossible sites of binding. Our aim was to specify the characteristics of thesites responsiblefor binding withresorcinarene1, through determinationofthestabilityconstantsKandapparentdiffusion coefficients D*of thecomplexes involved inthe transportpro- cess.

2. Experimental

The alditolsand otherchemicals werecommercial products (AldrichorFluka)ofthepurestavailablegradeandwereusedas received.Resorcinarene1wassynthesizedaccordingtoapublished procedure[15,19,24].Its1Hand13CNMRspectra,measuredwith a BrukerARX-400spectrometer,wereidenticalwiththoseof a commercialsample(purchasedfromFluka).

TheSLMsupportwasamicroporousPTFEfilm(Goodfellow)of thickness63m.Characteristicvaluesareporosity84%andpore diameter0.45m.Themembranesampleswerediscswithdiam- eterlargerthan 5cm, typically about6cm. They wereinserted betweenthecellhalf-compartments,usingtwoTeflonrings,the

(3)

internaldiameterofwhichwasexactly5cm.Hence,theeffective membraneareaavailablefordiffusionwas19.6cm2.

Thetransportcell[12,13],ismadeoftwocompartmentsofequal volumes(100mL)separatedbytheSLMpreparedbysoakingdur- ing15hasquareportionofthepolymerfilm(8cm×8cm),into a0.01Msolutionofresorcinarene1inpurecarbontetrachloride.

Thecellwasimmersedintoathermostatedbath(T,298K).The solutionsinbothcompartmentswerestirredwithmagneticbars, usingaVariomagapparatus.

TheSLMwasconditioned,during16h,byequilibratingthetwo compartmentsfilledwithpurewaterwiththeSLM,beforereplac- ingwaterbythecarbohydratesolutioninthefeedcompartment.

Webelievethatthisconditioningprocedurewassufficientforequi- libratingwaterofthereceivingcompartmentwithCCl4,together withsaturatingtheliquidmembranewithwater.

Initially,thefeedcompartmentcontainedthealditolsolution (c0=0.20–0.0125M) and the receiving compartment contained purewater.Twodifferentprocedureswereused:

-Inthefirstone,mode(A),forthestudyofthelifetimeofthemem- braneandthereproducibilityofresults,weusedforeachofthe experimentsanewalditolsolution.Withthisprocedure,weveri- fiedthattheresultswerereproduciblewhenthesamemembrane samplewasusedduring10days,withoutshowinganysignof failure.

-Inthesecondone(mode(B),thiswork),tostudytheeffectofthe concentrationofthestudiedalditolontheparametersoftrans- port,thesamemembranesampleandthesamesolutionwere usedthroughoutallruns.Atequilibrium,whenthesugarconcen- trationsareequalineachcompartment,attheendofeachrun, thecontentsofbothcompartmentswerewithdrawnandmixed together.Then,100mLoftheresultingsolutionwereintroduced inthefeedcompartmentand100mLofwaterinthereceiving compartmentandthefollowingrunwasstarted.Thisprocedure, thatsaveslargequantitiesofexpensivesubstrates,wastypically repeatedfourorfivetimes.

Inbothprocedures,smallaliquots(v=1.0mL)ofthereceiving phasewerewithdrawnatknownintervals.Someexperimentswere continuedfor24h,when samplesofboth aqueousphaseswere withdrawnandanalyzedtoensurethatequalconcentrationswere present,indicatingthatequilibriumwasreached.

ThesampleswereanalyzedusingaHPLCapparatusequipped witha30-cmPhenomenexRezexcolumnincalciumform,main- tainedinanovenat85C.Theeluentwaspurewater,degassed andfiltratedwithacelluloseestermembrane(Millipore,poresize 0.45m). Theflow rate was0.6mL/min. Thepump wasa Shi- madzuLC-9Amodel.DetectionwasachievedwithaVarianRI-4 refractometer. Typical retention times (inmin) for the alditols were13.5min(lactitol), 16.0min(maltitol), 20.0min(arabinitol) and22.0min(perseitol).Theconcentrationsofalditolsweredeter- minedbyanalyzing chromatographicdata withtheVarianStar software.Allexperimentswereduplicatedandwerereproducible with3%asrelativestandarddeviation.

3. Experimentalprocessesandresults 3.1. ConditioningoftheSLM

WhentheSLM wasusedfor transport immediatelyafterits preparation,thefluxoftransportedalditolremainedsmallfora longinitialperiod,typically8–10h.Afterthistime,therateoftrans- portincreased andtheconcentrationof alditolin thereceiving phasecR increasedrapidlyoverseveralhours.Thisbehaviorwas observedpreviouslywithaSLMcontainingthisresorcinarenecar-

rier[12,13]andwasattributedtotheslowincorporationofwater intothemembranetoformpresumablyacarrier–watercomplex.

Afterthisinitialperiod(inductionperiod),thetransportofalditols increased,probablybecausethesubstraterapidlyexchangedwith water at the interfaces to form the carrier–substrate complex, or possibly a ternary carrier–substrate–water complex that is theactivespeciesforthetransportprocess.Suchaphenomenon appearstobecommonwithmembranesusedforthetransportof carbohydrates.Forexample,thepresenceofwaterinthePIMwas reportedtobeimportantforthetransportofcarbohydratesthrough plasticizedcellulosetriacetatemembranescontainingion-paircar- riers[10,25].Theexistenceofthisinductionperiodcomplicatesthe analysisofthekineticstudies,becauseitmakesdifficulttoapproxi- matetheexactvalueoftheslopeoftheplotsdrawnforafirst-order reaction[13].Inthisstudy,inordertosuppressthisperiodofslow transport,theSLMwasconditionedfor16hinthecellbetween two phasesofpurewater.Afterthis time,theinductionperiod wasnotobservedandthetransportofalditolsbeganjustafterits introductioninthefeedphase.

3.2. Transportexperiments

Variouscausesformembraneinstabilityhavebeendiscussed elsewhere[26].Specifically,theyconsistinlossofcarrierorsolvent, thatareinsufficientlyretainedintheporesofthesupport.However, theSLMstudiedinthisworkseemstorepresentanidealcase,since thetransportedcarbohydratesarealmostinsolubleintheorganic phase(unlessascomplexeswiththecarrier),whereasthecarrieris insolubleinaqueousmedium,avoidingthusitswashing-outfrom theorganiclayer.Thestabilityofthismembranewaspreviously demonstrated:theSLMcouldbeusedfor10daysforthetransport ofsugars[12,13].Inthepresentstudywithalditols,mostexperi- mentswerecarriedoutduring5dayswiththesamemembrane, withoutanyobservationofleaking.AnotheradvantageofthisSLM isthatonlyfacilitatedtransportofthealditolstookplace,aspassive diffusionofthesubstratesacrosstheSLMcouldnotbedetectedin theabsenceofcarrier.Thisresultisconsistentwiththehydropho- bicnatureofthePTFEfilm,andwiththefactthatuncomplexed alditolsarenotdissolvedincarbontetrachloride.

3.2.1. Modeoftransport

Theexperimentsonthetransportofstudiedalditolswerecar- riedoutusingamembraneconsistingofathinandmicroporous polymerfilm,impregnatedwithanorganicsolventcontainingthe lipophiliccarrier.TheSLMispreparedfromasolution(0.01M)of resorcinarene1dissolvedinCCl4,confinedinamicroporoussup- portofpoly(tetrafluoroethylene)(PTFE).Thestabilityofthissystem hasbeencontrolled[12].Itsreproducibilityhasbeenverifiedfrom theresultsobtainedforthetransport ofxylitoland ribitol[13].

Inthiswork,wehaveimprovedthequalityandaccuracyofour experimentsbyeliminatingtheinductionperiod,usingthemode (B)for thetransport ofalditols [13].Thisprocedureconsistsin allowinguptake ofwater bytheSLM for16h, beforeintroduc- ingin thesourcecompartmentthealditoltobetransported.In thiscase,thetransportstartsimmediatelyaftertheintroduction ofthesubstrateandextendstoequalconcentrationsbetweenthe twoaqueousphases,indicatingthatequilibriumwasreached.After reachingequilibriumandasaprevioussteptothenextexperiment, thesolutioninthereceivingphaseisreplacedbypurewaterand thetransportphenomenonstartsagain.Thisproceduremode(B) isrepeatedduringfourtofivedaysusingthesameSLMfortrans- portingthesamealditol,atdecreasingconcentrations(example:

0.2–0.1–0.05–0.025–0.0125M).Becausetheinitialsolutionisstep- wisediluted,thisprocedurealsosaveslargequantitiesofexpensive substrates.

(4)

Thismethodhasseveraladvantages.First, itallowstomini- mizelossofsolvent,duringthepreparationoftheSLM,andsmall quantitiesofmembranesandsubstratesareused,whichisparticu- larlyeconomicalinthecaseofrarecompounds.Ontheotherhand, itreducesthetimerequiredtocompletestudyofeach ofstud- iedalditolsto4or5days,whileimprovingthequalityofresults asweproceededin thesameexperimentalconditions.In addi- tion,theeliminationoftheinductionperiodmakesitpossibleto obtainaccurateexperimentaldatanecessaryfordeterminingthe permeabilitiesandthefluxesforthefacilitatedtransportofstudied alditols.

3.3. Determinationofpermeabilities(P)andfluxes(J) (macroscopicparameters)

Theprincipleofthecalculationofpermeabilitiesandfluxeshas beendevelopedelsewhere[12,13].Thetransportrateismeasured bydeterminingtheincreaseofthealditolconcentrationcRinthe receivingphaseversustimet.ThisrateisrelatedtothefluxJof alditolbyEq.(1)

dcR

dt =JS

V (1)

whereSisthemembraneareaandVisthevolumeofthereceiving phase.

Thereportedvalueswerecalculatedusingthemembranearea calculatedfromthediameteroftheTeflonringsthatheldtheSLM andcorrespondtotheoperationalproperties ofthemembrane.

Normalizeddata,usefulforcomparisonwithothertypesofSLMs, wouldrequiretakingintoaccounttheporosityandtortuosityofthe membranesupport.Sincetheaimofthepresentworkwasmainly astudyofthenatureofthecomplexesinvolvedinthetransportof carbohydrateswithresorcinarenecarriers,datanormalizationwas notconsiderednecessary.

Whenthesystem reachesa quasi-steadystate, theflux J is relatedtoc,thedifferencebetweentheconcentrationsofalditol inthefeed(cF)andthereceivingphases(cR),andthemembrane thicknesslbyEq.(2)derivedfromFick’sFirstLaw

J=Pc

l (2)

wherePisthepermeabilityofthemembrane.

Sincethefluxofalditolsisverylarge,theconcentration(cR)of thereceivingphaseisnotnegligibleversustheconcentration(cF) ofthefeedphase.Thus,ciscalculatedusingEq.(3)wherec0is theinitialconcentrationofalditolinthefeedphase:

cF=c0cR and c=c02cR (3) CombiningEqs.(1)–(3)yieldsdifferentialEq.(4):

Pdt= (lV/S)dcR

c02cR (4)

IntegrationofbothtermsofEq.(4)yieldsEq.(5):

P(ttL)=

lV S

1

2

ln

c

0

c02cR

(5) whichshowsthat,afteraninductionperiod(tL)thatmaylastupto severalhours,theterm

ln(c02cR)isalinearfunctionoftime(t).Ontheotherhand,if themembranewasequilibratedwithwaterfor16hbeforestarting theexperiment,theinductionperiodcompletelydisappeared.This resultdemonstratesthattheinductionperiodisduetouptakeof waterbythemembraneandtheplots(ln(c02cR)=f(t))forthe transportofthealditolswereindeedstraightlines.Thepermeabil-

2 2,5 3 3,5 4 4,5 5

10 8

6 4 2

0 t(h)

[Arabinitol]=0,1M [Lactitol]=0,1M [Maltitol]=0,1M [Perseitol]=0,08M

–Ln (C0-2 CR)

– Ln (C0- 2 CR) = f(t)

Fig.3.Plotsof−ln(c02cR)vs.timetforthetransportofarabinitol,lactitol,maltitol andperseitolacrosstheSLM.

ityPvaluesforthevariousalditolswerecalculatedfromtheslopes aoftheplots,usingEq.(6):

P=a

lV 2S

(6) Attheinitialtime, thealditolconcentrationsintheaqueous phasesarecFc0andcR0.Atthisinstant,theinitialvalueofthe flux,Ji,canbecalculatedbyEq.(7)derivedfromEq.(2).

Ji=Pc0

l (7)

3.3.1. Calculationofthepermeabilitiesandfluxes

Asforsimple alditols[13],thepermeabilities andthefluxes weredeterminedandcalculatedfromchangesinconcentrationcR inthereceivingphase,versustimetforeachalditol.Anexampleof theevolutionofthefunctionln(c02cR)”versustimet,ispre- sentedbythediagraminFig.3forarabinitolandthreeotherstudied alditols.TheobtainedstraightlinesareinagreementwithEq.(5), drawnfromtheproposedkineticmodelforthetransportofthese compoundsthroughtheSLM.Thus,thepermeabilitiesandfluxes arecalculatedfromtheslopesofthelines,representedbythedia- graminFig.3,accordingtoEqs.(6)and(7).Theobtainedresults fordifferentinitialconcentrationsofstudiedalditolsaregrouped inTables1and2.

Theseresultsclearlyshowthatthepermeabilitiesdecreasewith increasinginitialconcentrationsofalditolsinthefeedphase.Con- sequently,thesaturationlawdescribedinthetransportofsugars [12],alsoappliestoallstudiedalditols.

3.4. Modelinganddeterminationofmicroscopicparameters(D*

andK)

ThemechanismfortheoveralltransportofasubstrateS(alditol) bythecarrierCacrosstheliquidmembraneisknowntoinvolvefive consecutivesteps[12,13].Thereactionbetweenanalditolandthe carrieratthefeedphase-SLMinterface,yieldsacomplexsoluble inthemembraneorganicphase.Thiscomplexwasassumedtobe a(1:1)alditol-resorcinarene1species.Thestoichiometryofsuch complexescouldnotbefoundintheliterature.However,inthecase ofribose,theexistenceofa(1:1)complexwithresorcinarene1in CCl4wasreportedbyAoyamaetal.[15].Theextractionofsugars

Références

Documents relatifs

Finally, it should be noted that the poor intrinsic transactivation activity of acidic and basic domain mutants (Fig. 4) prevented examination of their translocation activity

The housing is situated near the top of the most prominent wasterock butte as seen from the valley, and its orientation mirrors that of the school on an east- west

acetic acid rejection b dissociation rate of formic acid according to pH c and influence of the feed.. solution pH on the formic acid rejection d binary carboxylic acid-water

these high osmotic pressure levels, the kinetic of dehydration influenced the morphological evolution of the plasma membrane as progressive dehydrations did not conduct

The observed difference in values of association constants is very important, it has identified the interaction sites adopted by each of the substrates for this facilitated

However, by combining the results for studied methyl gly- copyranosides and correspondent alditols, we can conclude that the chelation site is a diol OH groups and the complexation

Incidence and risk factors for acquired colonization and infection due to extended spectrum beta-lactamase-producing Gram-negative bacilli: a retrospective analysis in three ICUs

À travers le contexte institutionnel décrit ci-dessus, nous pouvons remarquer que les travailleurs et travailleuses sociales de Pro Senectute peuvent vraisemblablement me permettre