• Aucun résultat trouvé

Microscopic Modelling of the Non-Linear Gap Junction Channels

N/A
N/A
Protected

Academic year: 2021

Partager "Microscopic Modelling of the Non-Linear Gap Junction Channels"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01418665

https://hal.inria.fr/hal-01418665

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Microscopic Modelling of the Non-Linear Gap Junction Channels

Anđela Davidović, Yves Coudière, Thomas Desplantez, Clair Poignard

To cite this version:

Anđela Davidović, Yves Coudière, Thomas Desplantez, Clair Poignard. Microscopic Modelling of the Non-Linear Gap Junction Channels. 2015 Computing in Cardiology Conference, Sep 2015, Nice, France. �hal-01418665�

(2)

Microscopic Modelling of non-linear GJ channels

Anđela Davidović

1, 2, 3, 4

, Yves Coudière

1, 2, 3, 4

, Thomas Desplantez

2, 4

, Clair Poignard

1, 2, 3

1

INRIA Bordeaux Sud-Ouest,

2

University of Bordeaux,

3

Institut de Mathématiques de Bordeaux,

4

IHU-Liryc

On Gap Junctions

What is a Gap Junction?

Cluster of gap junction channels

Linking structure between neighbouring cells

Provides direct passage of molecules and ions

Figure : Schematic diagrams of a standard connexin molecule and gap junction channel. (Del Corso et. al., 2006)

What are they made of?

Proteins connexins.

6 connexins = 1 connexon (hemichannel)

2 connexons = 1 gap junction channel

Cardiac cell proteins: Cx43, Cx45 and Cx40.

Figure : Predicted configurations of connexons and gap

junction channels for two different connexins. (Desplantez, 2004)

Where are they located in cardiac cells?

Mostly on the longitudinal ends where they compose the intercalated disks

The behaviour of transversal GJ channels is not well understood

Figure : Immunohistochemical analysis of Cx43.

Left: Bar = 10µm. (Beauchamp, 2004) Right: top view(A), lateral view(B). Bar = 5µm. (Beauchamp, 2012)

What about electrical behaviour?

The dual voltage patch clamp

Non-linear behaviour

Time dependence

Dependent on connexin arrangement.

Figure : GJ currents in time, fixed Vj. Left: Homotypic Cx43/Cx43 cell pairs. Right: Cx43KO/Cx43KO cell pairs.

Macroscopic effects

Primary cultures of Cx43 and Cx43KO ventricular myocytes.

Macroscopic velocity calculated from the difference in activation times

Figure : Left: A mixed patterned cell culture at low

magnification. Right: Decrease in velocity of propagation w.r.t.

presence of Cx43 cells.

Non linear GJ model - 0D

GJ current:

Ij = Gj(t, Vj)Vj, where:

Vj transjunctional voltage.

Conductance: Gj(t, Vj) = gj,0gj(t, Vj).

The amplitude of the junctional conductance:

gj,0 = 68nS for Cx43 cells, i.e. gj,0 = 2nS for Cx43KO.

Gating variable: gj = gj(t, Vj) dgj

dt = g(Vj) gj τ(Vj)

Fit experimental data to find normalised g(Vj).

Homotypic GJC made of mCx43 transfected in HeLa cells

Vj (mV - stimulating the left cell)

-150 -100 -50 0 50 100 150

gj normalized

0,2 0,4 0,6 0,8 1,0

Col 1 vs Col 2 Col 1 vs Col 4 Col 6 vs Col 7 Col 6 vs Col 9 Plot 3

x column 2 vs y column 2 x column 3 vs y column 3

Vj (mV)

-150 -100 -50 0 50 100 150

gj normalized

0,2 0,4 0,6 0,8 1,0 1,2

Homotypic Cx45 channels Homotypic Cx43 channels

Dual voltage clamp recordings performed in stably transfected (single transfection) HeLa cells

Fit experimental data to find τ(Vj).

0 1000 2000 3000

40 60 80 100 120 140

time constant (ms)

Vj (mV)

Homotypic Cx43 cells

0 1000 2000 3000

40 60 80 100 120 140

time constant (ms)

Vj (mV)

Homotypic Cx45 cells

Numerical simulation

Assume uniform distribution of GJ channels over given area (see 2D model)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

0 500 1000 1500 2000

current (muA/cm2)

time (ms) Current Cx43 0D model

-100mV -80mV -50mV -20mV 100mV 80mV 50mV 20mV

-0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008

0 500 1000 1500 2000

current (muA/cm2)

time (ms) Current Cx45 0D model

-100mV -80mV -50mV -20mV 100mV 80mV 50mV 20mV

Figure : Simulated GJ current per unit area w.r.t. the time for the fixed Vj.

Assumptions

Use only homotypic Cx43 and Cx45 GJ channels.

GJ channels are at the perimeters of the cells, on the membrane.

The rest of the membrane has only ionic channels. Use Beeler Reuter ionic model.

2D microscopic model

e Γgr

Γapp

ii

Γj

Γj Γion

e

Main problem:

σi∆ui =0, in Ωi, σe∆ue =0, in Ωe. Ionic model:

tVm + Iion(Vm, h) = −σi∇ui · n,

tVm + Iion(Vm, h) = −σe∇ue · n,

th = fion(Vj, h),

on Γion.

GJ model:

Gj(Vj, gj) · Vj = −σi∇ui · n,

tgj = fj(Vm, gj),

on Γj. Boundary conditions and stimulus:

σe∇ue · n =0, on e \ Γion, ue =0, on Γgr,

for t ∈ [t0, t0 + tstim],

ue =Uapp, on Γapp.

σi, σe intra and extracellular conductivities

h gating variables for ionic model

Vm = uiue transmembrane potential

Vj = [ui] transjunctional potential

Numerical analysis - 2D test case

Domain: 2 × 1 cells, cell size 100 × 20µm, distance 1µm. Mesh and time step: dx = 1µm, dt = 0.02ms.

BR ionic model. Semi-implicit time scheme. FEM. Iterative method. Test: no gap junctions.

(a) time: 0.0ms (b) time: 5.0ms (c) time: 15.0ms

(d) time: 23.0ms (e) time: 27.0ms (f) time: 35.0ms

On going work

Current observations: without GJ there is no AP propagation from cell to cell.

To be tested: finer mesh, smaller cell distances.

Include different types of GJCs on larger domains.

Compare velocities with the experimental observations.

Future work:

Move to homogenised model.

References

[1] Beauchamp et al. Circulation research 95.2 (2004): 170-178.

[2] Beauchamp et al. Circulation research 110.11 (2012):

1445-1453.

[3] del Corsso et al, Nature protocols 1.4 (2006): 1799-1809.

[4] Desplantez et al. Pflugers Arch. 2004 Jul;448(4):363-75 [5] Desplantez et al. J Membr Biol. 2007 Aug;218(1-3):13-28 [6] L Harris. Quarterly reviews of biophysics 34.03 (2001):

325-472.

[7] Hand and Peskin. Bulletin of mathematical biology 72.6 (2010): 1408-1424.

Références

Documents relatifs

This work is constituted of two main parts, the first (§I), dedicated to the asymptotic and numeric treatment of the steady basic flow, allows us to get the unperturbed

Cette confusion a probablement alerté quelques stratèges de la haute hiérarchie, mais comment faire savoir à ses troupes que non seulement la bataille en cours est perdue, mais que

3 plots the BER performance for four turbo-iterations for both the time and frequency domain MMSE equalizers: the exact MMSE linear equalizer, the time domain MMSE equalizer

Yves Coudière 1, 2, 3, 4 , Anđela Davidović 1, 2, 3, 4 (andjela.davidovic@inria.fr) and Clair Poignard 1, 2, 3.. 1 INRIA Bordeaux Sud-Ouest, 2 University Bordeaux, 3 Institut

falciparum a été significativement favorisée par le séchage au four à micro-ondes avec une prévalence de 8 % en séchage normal contre 12 % En conclusion, l'usage du four à

For the whole clear sky data set a mean relative difference (with respect to the ground-based columns) of −7% with a standard deviation of 40% is found, with GOME NO 2 VTCs

With GPS tomography, both the moist and the drier layers tighten between 00 and 05 UTC which is consistent with the decrease of the integrated water vapor (Fig. Between 05 and 12

Jahrhundert verändert hat und was für eine Bedeutung Krisendiskursen für die Entwicklung von kollektiven Leitbildern oder das Verhalten unterschiedlicher Akteure in