• Aucun résultat trouvé

VIBRATIONAL DENSITY OF STATES OF AMORPHOUS AND CRYSTALLINE LIQUID CRYSTAL SUBSTANCES

N/A
N/A
Protected

Academic year: 2021

Partager "VIBRATIONAL DENSITY OF STATES OF AMORPHOUS AND CRYSTALLINE LIQUID CRYSTAL SUBSTANCES"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221158

https://hal.archives-ouvertes.fr/jpa-00221158

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

VIBRATIONAL DENSITY OF STATES OF

AMORPHOUS AND CRYSTALLINE LIQUID

CRYSTAL SUBSTANCES

A. Bielushkin, I. Natkaniec, V. Dolganov, E. Sheka

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, supp2dment au n012, Tome 42, ddcembre 1981

V I B R A T I O N A L D E N S I T Y OF STATES OF AMORPHOUS AND CRYSTALLINE L I Q U I D CRYSTAL SUBSTANCES

A.V. B i e l u s h k i n , I. ~ a t k a n i e c * , V.K. ~ o l ~ a n o v * a n d E.F. ~ h e k a *

Joint I n s t i t u t ~ ; for NLlcZear Research, 141980, Eubna, USSR

* ~ n s t i t u t e of Solid State Physics, Acad. of Sciences of the USSR, 142432 Chernogo Zovka, USSR

A b s t r a c t .

-

We h a v e measured by t h e TOF n e u t r o n s p e c t r o s c o p y method t h e am- p l i t u d e - w e i g h t e d f r e q u e n c y d i s t r i b u t i o n f u n c t i o n o f t h e g l a s s y a n d c r y s t a l l i n e p h a s e s o f t h e EBBA, MBBA a n d PAA compounds. E v i d e n t c h a n g e s i n t h e v i b r a t i o - n a l d e n s i t y o f s t a t e s i n t h e f r e q u e n c y r a n g e up t o 300 cm-l a r e o b s e r v e d when p a s s i n g from t h e amorphous t o o r d e r e d c r y s t a l l i n e p h a s e s . The p a r t l y d e u t e r a - t e d d6-PAA s p e c t r u m h a v e shown t h a t t h e s e v i b r a t i o n s a r e due t o t r a n s l a t i o n a l and l i b r a t i o n a l m o t i o n s o f t h e whole m o l e c u l e a n d d u e t o low f r e q u e n c y o s c i l - l a t i o n s o f t h e end g r o u p s o f t h e m o l e c u l e .

L i q u i d c r y s t a l (LC) s u b s t a n c e s d e p e n d e n t o n t h e i r t h e r m a l h i s t o r y may form d i f f e r e n t s o l i d m o d i f i c a t i o n s . The PAA, MBBA a n d EBBA compounds a r e t h e most f r e q u e n t l y s t u d i e d LC s u b s t a n c e s and t h e y are known t o h a v e d i f f e r e n t p o l i m o r p h i c c r y s t a l l i n e p h a s e s ,

s e e r e f . ( l - 3 ) a n d r e f s t h e r e i n

.

By t h e f a s t c o o l i n g o f t h e mesophase o f t h e s e s u b - s t a n c e s a g l a s s y s t a t e (GLC) i s formed. The X-ray and n e u t r o n d i f f r a c t i o n methods a s well a s o p t i c a l s p e c t r o s c o p y o n e s were u s e d t o i n v e s t i g a t e t h e s e GLC I t h a s been shown t h a t t h e m o l e c u l a r s t r u c t u r e a n d o r d e r p a r a m e t e r o f t h e GLC a r e s i m i - l a r a s i n t h e n e m a t i c p h a s e o f LC. The GLC s t a t e is m e t a s t a b l e a t low t e m p e r a t u r e s a n d may b e t r a n s f o r m e d i n t o t h e o r d e r e d c r y s t a l l i n e p h a s e s w i t h o u t t h e m e l t i n g o f t h e s u b s t a n c e . T h i s t r a n s f o r m a t i o n c a n b e s t o p p e d by t h e l o w e r i n g o f t h e t e m p e r a t u r e . So, a n y i n t e r m e d i a t e p a r t l y o r d e r e d s t a t e may b e s t u d i e d . S i n c e t h e GLC s y s t e m s e x i s t a t low t e m p e r a t u r e s , where t h e a n h a r m o n i c e f f e c t s a n d m u l t i p h o n o n s c a t t e r i n g p r o c e s - s e s a r e s t r o n g l y r e d u c e d , t h e y a r e more s u i t a b l e f o r d y n a m i c a l s t u d i e s , , t h a n LC sys- tems. Here we p r e s e n t t h e a m p l i t u d e - w e i g h t e d f r e q u e n c y d i s t r i b u t i o n f u n c t i o n G H ( & ) ( 7 ) o f t h e GLC a n d c r y s t a l l i n e states o f t h e most p o p u l a r LC s u b s t a n c e s .

The i n e l a s t i c i n c o h e r e n t n e u t r o n s c a t t e r i n g ( I I N S ) s p e c t r a h a v e b e e n measured u s i n g t h e KDSOG i n v e r t e d geometry t i m e - o f - f l i g h t s p e c t r o m e t e r a t t h e IBK p u l s e d re- a c t o r o f t h e JINR ~ u b n a ' ~ ) . The s a m p l e s of EBBA, MBBA and PAA were p o u r e d i n t h e aluminum c o n t a i n e r s o f a b o u t 0 . 8

mm

t h i c k and w i t h t h e 1 8 0 x 1 6 0 mm r e c t a n g u l a r c r o s s s e c t i o n . The GLC p h a s e s were p r o d u c e d by t h e d i p i n l i q u i d n i t r o g e n o f t h e c o n t a i n e r p l a c e d a t t h e bottom o f t h e h e l i u m c r y o s t a t . The IINS s p e c t r a have been measured a t 5 K a t s e v e n s c a t t e r i n q a n g l e s from 30' t o 150' e v e r y 20' s i m u l t a n e o u s l y . R e c e n t l y

( 9 )

some o f t h e IINS s p e c t r a from t h e MBBA s a m p l e were p u b l i s h e d

.

The measured IINS s p e c t r a h a v e b e e n t r a n s f o r m e d i n t o t h e GH(E) f u n c t i o n a c c o r - d i n g t o t h e one-phonon i n c o h e r e n t s c a t t e r i n g c r o s s s e c t i o n f o r m u l a . Such approxima- t i o n i s j u s t i f i e d by t h e f a c t t h a t IINS s p e c t r a o f m o l e c u l a r c r y s t a l s below 300 cm-1 X

(3)

measured a t 5 K agree w e l l w i t h c a l c u l a t e d ones (10711). The r e s o l u t i o n f u n c t i o n o f t h e KDSOG spectrometer i n t h e mentioned frequency range does n o t d i s t u r b s i g n i f i c a n t - l y t h e GH(&) f u n c t i o n . The s i n g u l a r i t i e s o f t h i s f u n c t i o n correspond t o those o f t h e f u n c t i o n o f phonon d e n s i t y o f s t a t e s (10-12). So, we b e l i e v e t h a t t h e s p e c t r a p r e - sented h e r e r e f l e c t t h e behaviour o f t h e v i b r a t i o n a l d e n s i t y o f s t a t e s i n d i f f e r e n t phases o f t h e LC substances.

Fig.1: The hydrogen-amplitude weighted d e n s i t y o f s t a t e s

-

GH(E) f u n c t i o n s o b t a i n e d

.

from t h e I I N S s p e c t r a o f d i f - f e r e n t s o l i d m o d i f i c a t i o n s o f t h e MBBA (p-methoxybenzy- l i d e n e p, n

-

b u t y l a n i l i n e ) A i s t h e GLC sample o b t a i n e d

.

from t h e i s o t r o p i c l i q u i d by t h e f a s t c o o l i n g . ' B i s t h e GLC sample o b t a i n e d from t h e nematic LC phase by t h e f a s t c o o l i n g . C and D a r e t h e s t a b l e and . metastable c r y s t a l l i n e modi- f i c a t i o n s , r e s p e c t i v e l y (see r e f s . 1 and 3).

E

i s t h e n e u t r o n energy - t r a n s f e r i n cm-l

.

H o r i z o n t a l b a r s correspond t o t h e FWHM o f t h e r e s o l u t i o n f u n c t i o n o f t h e KDSOG spec-

The G,,(E) f u n c t i o n s o f t h e MB6A and EBBA compounds a r e shown i n Figs.1 and 2, r e s p e c t i v e l y . One can see t h a t t h e t r a n s i t i o n from t h e GLC s t r u c t u r e t o c r y s t a l l i n e o r d e r does n o t change s i g n i f i c a n t l y t h e GH(E) f u n c t i o n s . Thus t h e l a r g e changes i n v i b r a t i o n a l s p e c t r a o f t h e d i f f e r e n t s o l i d m o d i f i c a t i o n s measured by t h e o p t i c a l spectroscopy methods ( 3 - 6 ) a r e due t o t h e l o s s o f s p a t i a l coherency o f v i b r a t i o n s and n o t t o s i g n i f i c a n t changes o f t h e v i b r a t i o n a l d e n s i t y o f s t a t e s .

Fig.2: The GH(E) f u n c t i o n s o f t h e EBBA (p-ethoxybenzylidene p,n

-

b u t y l a n i l i n e ) compound:

A i s t h e GLC sample o b t a i n e d from t h e nematic LC phase by t h e f a s t c o o l i n g .

(4)

JOURNAL DE PHYSIQUE

20

-

PAA

15

0 ~ ' ~ ~ " " ' ~ " ' 100 200 300 400 500 EICKII

Fiq. 3.: The

G

(E)

functions of H

the PAA (p-azoxyanizo le) compo- und:

A is the sample obtained from the nematic LC phase of the nor- mal d -PAA (CH3-PAA) by the fast cooliZg.

B is the stable crystalline sample of the d -PAA and part- ly deuterated dz-PAA (CD3-PAA). The PAA spectra will be discus- sed in detail in the separate publication by A.V.Bielushkin, E.L.Bokhenkov, A.I.Kolesnikov, I.Natkaniec, E.F.Sheka and S.Urban.

The essential changes of GH(&) after the transition to the crystalline state occur in low frequency region ( E

<

300 em-'). Vibrational density of states of the

GLC

substances seems to be a linear function of frequency at

E - r

0 . In Fig.1 the slope of this function fitted to the spectrum of the sample cooled from isotropic liquid is compared with the spectra of other solid modifications. The distinct maxi- ma in the spectra of crystalline samples at the &

>

100 cm-' should correspond to the internal molecular vibrations. These low frequency bands undergo a considerable broa- dening when passing to the GLC state.

The comparison of the spectra of normal and partly deuterated samples of crys- talline PAA (see Fig.3) show us that the lattice vibrations of this substance cut-

1

off at about 140 cm-

.

The internal vibrations of this molecule in the frequency range below 300 cm-l belong mainly to the oscillations of the end-CH groups. We ho-

3

pe that the study of the IINS spectra of partly deuterated LC substances will help in the assignment of these oscillations and will serve to the better understandiny of molecular conformations in different modifications of these substances.

References

1. J.A.Janik, J.M.Janik, J.Mayer, E.Sciesinska, J.Sciesinski, T.Twardowski, T.Waluga, and W.Witko, J.de Phys., 36, C1-159 (1975).

2. L.Bata, V.L.Broude, V.G.Fedotov, L.Rosta, N.Kroo, J.Szabon, K.M.Umarov and I.Visi, Mol.Cryst.Liq.Cryst.,

2,

71 (1978).

3. N.Kirov, M.P.Fontana and F.Cavatora, Mol.Cryst.Liq.Cryst.,

54,

207 (1979).

4.

J.E.Lydon and J.O.Kessler, J.de Phys.,

Zf?,

C1-153 (1975).

5.

V.K.Dolganov, Fiz.Tverd.Tela, Z l , 2629 (1979).

6. V.K.Dolganov, N.Kroo, L.Rosta and E.F.Sheka, Mol.Cryst.Lett.,

64,

115 (1981). 7. S.H.Chen and S.Yip, Phys.Today,~~~, 32 (1976).

8. I.M.Frank, Sov.J.Part.Nucl.,2, 805 (1973).

9. ~.~.Bielushkin, V.K.Dolganov, I.Natkaniec, E.F.Sheka, Pis'ma ZhETF,33, 497 (1981). lO.I.Natkaniec, A.V.Bielushkin and T.Wasiutynski, Phys.Stat.Sol.(b),ET 413 (1981). ll.A.V.Bielushkin, E.L.Bokhenkov, A.I.Kolesnikov, I.Natkaniec, R.Righini and E.F.She-

ka, Fiz.Tverd.Tela, 23, 2607 (1981).

Références

Documents relatifs

&#34;adequate importance to the utilisation of their traditional systems of medicine , with appropriate regulations as suited to their national health systems.&#34;

3, R-sulfur shows an exponential Raman spectrum in contrast to many kinds of molecular liquids, which show non-exponential spectra approximated by wl2l7 X exp(- h w / ~ ) ,4)

In microsatellite analysis, moderate genetic diversity values were found for Madagascar, together with low mean number of alleles ranging from 2.47 to 3.88 compared to South

Abstract.- Inelastic neutron scattering measurements are reported on polycrys- talline orthorhombic black phosphorous (0-black P) and on amorphous red phos-.. phorous (a-red

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Indeed, neutron scattering theory shows 181 that the differential cross section for inelastic incoherent one-quantum scat- tering is proportional to the density of

A NEUTRON SCATTERING STUDY OF THE DENSITY OF VIBRATIONAL STATES OF FRACTAL SILICA AEROGELS.. Ces resultats concernent les modes de particules et la region de haute

mation quasi linear vibrational structure analogous to that of the absorption (luminescence) spectra : in the absence of local modes the spectrum consists of a