• Aucun résultat trouvé

Reduced order modelling: towards tractable computational homogenisation schemes

N/A
N/A
Protected

Academic year: 2021

Partager "Reduced order modelling: towards tractable computational homogenisation schemes"

Copied!
48
0
0

Texte intégral

(1)

&  Advanced  Materials  

Reduced  order  modelling:  towards  tractable  

computa5onal  homogenisa5on  schemes  

Pierre  Kerfriden1,*,      

   

Olivier  Goury1,  Chi  Hoang1,    

Juan  José  Ródenas2,  Timon  Rabczuk3,  Stéphane  Bordas4,1  

1  Cardiff  University,  UK  

2  Bauhaus-­‐Universität  Weimar,  Germany   3  Universidad  Politecnica  de  Valencia,  Spain  

(2)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Efficient  numerical  predic$on     of  material  and  structural  failure  

• Characterisa$on  and  op$misa$on  of  composites  

Team  in  Cardiff:  main  research  topics  

 

[Silani  et  al.,  2013]   Initial crack

distribution Final  fracture    [Sutula  et  al.,  2013]    

[Kerfriden  et  al.,  2010]  

S.P.-­‐A.  Bordas  

(3)

Ins$tute  of  Mechanics   &  Advanced  Materials  

 

• Interac$ve  simula$ons  of     biological  structures  

 

• Simplified  Link  between     CAD/CT  scans  and  analysis  

Team  in  Cardiff:  main  research  topics  

A 4.30 A 10 7 2.6 U Q 0 0.02 0.04 0.06 0.08 0.1 0 20 40 60 80 100 120 140 U Q 15% 3.4 U Q xc Wc 1% 25 U  

[Courtecuisse  et  al.,  2013]  

 

[Sco`  et  al.,  2013]  

show the flexibility of the non-conforming coupling, the solid part was moved slightly to the right and the deformed configuration is given in Fig. 34. The same discretisation for the plate is used. This should serve as a prototype for model adaptivity analyses to be presented in a forthcoming contribution.

Figure 33: Square plate enriched by a solid: transverse displacement plot on deformed configurations of plate model (left) and solid-plate model (right).

Figure 34: Square plate enriched by a solid: transverse displacement plot where the solid part was moved slightly to the right .

7. Conclusions

We presented a Nitsche’s method to couple (1) two dimensional continua and beams and (2) three dimensional continua and plates. A detailed implementation of those coupling methods was given. Numerical examples using low order Lagrange finite elements and high order B-spline/NURBS isogeometric finite elements provided demonstrate the good performance of the method and its versatility. Both classical beam/plate theories and first order shear beam/plate models were addressed. Conforming coupling where the continuum mesh and the beam/plate mesh is not overlapped

37

 

[Nguyen  et  al.,  2013]  

 

Local  3D   analysis    

(4)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Advanced  discre$za$on  techniques  for  complex  PDEs  

§  XFEM/meshfree  

§  Isogemetric     analysis  

Toolkit  1:  advanced  discre$sa$on  methods  

 

[Bordas  et  al.,  2008]   Taylor  bar  problem  

(dynamic  fragmenta$on)  

b)

Figure 5 Two main trivariate NURBS patches with parametric directions: a) brick to represent beam; b) cylinder to represent added mass

Modelling the six patches with their own dimensions to represent the beams and the added masses, rigid roto-translation of the control points allow the patches to be oriented and repositioned in order to compose the desired configuration of the assembly (Figure 6). The same roto-translation process will be used to orient the second beam to represent the different parametric configurations.

Figure 6 IGA model

In Figure 7 is intended to underline the geometrical comparison among the CAD model, the LUPOS model and the IGA model, to check for geometric consistency.

the minimum number for representing with enough accuracy the bending of higher modes. The functions are cubic in all the three parametric dimensions.

For the added masses, a single element would be enough, considering that the they can be considered infinitely rigid with negligible contribution to the elasticity. Due to Nitsche coupling, a finer discretization is necessary for better let the method distribute the coupling entries on more elements. The patches have cubic functions for all the parametric dimensions.

Figure 9 Refined model used to perform the simulation

In Figure 10 it is shown the comparison of Mode 3 and Mode 6 using LUPOS, a tri-dimensional standard FEM and IGA, for the 30° configuration.

single element through the thickness and one element along the width are enough, while for the length five elements are the minimum number for representing with enough accuracy the bending of higher modes. The functions are cubic in all the three parametric dimensions.

For the added masses, a single element would be enough, considering that the they can be considered infinitely rigid with negligible contribution to the elasticity. Due to Nitsche coupling, a finer discretization is necessary for better let the method distribute the coupling entries on more elements. The patches have cubic functions for all the parametric dimensions.

Figure 9 Refined model used to perform the simulation

In Figure 10 it is shown the comparison of Mode 3 and Mode 6 using LUPOS, a tri-dimensional standard FEM and IGA, for the 30° configuration.

  Model   simplifica$on   (CAD)     IGA    

(5)

Ins$tute  of  Mechanics   &  Advanced  Materials  

 

[Akbari  et  al.,  2013]  

• Mul$level  methods  to  reduce  CPU  $me  by  orders  of  magnitude  and   devise  robust,  efficient  code/model  coupling  

§  HPC  Adap$ve  mul$scale     models/solvers    

with  controlled  accuracy  

Toolkit  2:  mul$level  methods  

cohesive interfaces (damage model)

orthotropic linear plies

laminate (carbon/ epoxy) bolt (steel)

 

(6)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Mul$level  methods  to  reduce  CPU  $me  by  orders  of  magnitude  and   devise  robust,  efficient  code/model  coupling  

 

§  Virtual  chart  with  controlled  

accuracy  via  ROM  for  mul$scale    

modelling  and  real-­‐$me  op$misa$on  

Toolkit  2:  mul$level  methods  

 

[Kerfriden  et  al.,  2013]  

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 x y z Sampling “Online” (evaluation) for a particular parameter Optimal linear combination “Offline” (training) for all parameters

SVD

Direct evaluation

KA KA0

“offline”  /  “online”  strategy  

above calculations are thus multiplied by

M times. In summary, for the offline stage, the

operation counts depend on N and hence, its computational cost is very expensive.

In the online stage – performed many times, for each new parameter µ – we first assemble the

RB primal matrices in (53), this requires O!Npr2(Qm+ Qc+ Qa)

"

operations. We then solve the RB

primal equation (51), the operation counts are O(Npr3 + KNpr2 ) as the RB matrices are generally full.

Finally, we evaluate the output displacement sN(µ, tk) from (52) at the cost of O(KNpr). Therefore,

as required in real-time context, the online complexity is independent of N , and since Npr ! N we

can expect significant computational saving in the online stage relative to the classical FE approach.

5 Numerical example

In this section, we will verify both POD–Greedy algorithms by investigating an numerical example which is a three-dimensional dental implant model problem in the time domain. This model problem is similar to that in the work of Hoang et al. [5]. The details are described in the following.

5.1 A 3D dental implant model problem

(a) Z Y X X Y Z (b)

Figure 1: (a) The 3d simplified FEM model with sectional view, and (b) meshing in ABAQUS. We consider a simplified 3D dental implant-bone model in Fig.1(a). The geometry of the simplified dental implant-bone model is constructed by using SolidWorks 2010. The physical domain Ω consists

of five regions: the outermost cortical bone Ω1, the cancellous bone Ω2, the interfacial tissue Ω3, the

dental implant Ω4 and the stainless steel screw Ω5. The 3D simplified model is then meshed and

analyzed in the software ABAQUS/CAE version 6.10-1 (Fig.1(b)). A dynamic force opposite to the

x−direction is then applied to a prescribed area on the body of the screw as shown in Fig.2(a). As

mentioned in Section 3.3, all computations and simulations will be performed for the unit input loading case, since other input loading cases can be easily inferred from the Duhamel’s convolution. We show on Fig.2(b) the time history of an arbitrary loading case which we will show its Duhamel’s convolution later. The output of interest is defined as the average displacement responses of a prescribed area on

the head of the screw (Fig.2(a)). The Dirichlet boundary condition (∂ΩD) is specified in the

bottom-half of the simplified model as illustrated in Fig.2(a). The finite element mesh consists of 9479 nodes and 50388 four-node tetrahedral solid elements. The coinciding nodes of the contact surfaces between

16

 

(7)

&  Advanced  Materials  

 

•  Introduc$on:  computa$onal  homogenisa$on   •  Virtual  charts  for  parametrised  homogenisa$on  

in  linear  elas$city  

(8)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Bo`om-­‐up  view:  replace  heterogeneous  

subscale  model  by  an  equivalent,  smoother,     model  at  the  scale  where  predic$ons  are    

required  (i.e.  macroscopic  scale)    

• When  is  scale-­‐bridging  necessary?  

§  Derive  predic$ve  macroscopic  models  that     are  difficult  to  obtain  using  phenomenological   approaches  

§  Op$mise  subscale  proper$es  to  obtain  be`er   overall  characteris$cs  

§  Observa$ons  at  microscale  but  approxima$ons   required  away  from  region  of  interest  to  

remain  tractable  

Mul$scale  modelling  

(9)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Examples  

18

Fig.12 Optimal distribution of reinforcing ingredients considering area of interest #2 (a), objective

function versus iterations (b)

Fig.13 Shear stress profile for area #2 considering homogeneous and optimal distribution of

reinforcements

In the next case, area of interest #3 is defined on the core of the beam and includes central elements of the core as illustrated in Fig.9. The same types of results are presented in Fig.14 (a) and 14(b).

Fig.14 Optimal distribution of reinforcing ingredients considering area of interest #3 (a), objective

function versus iterations (b)

Op$misa$on  of  fiber  content  in   sandwich  beams  to  minimise   interfacial  stress  in  

Approxima$on  of  the  

behaviour  of  polycrystalline   materials  away  from  

(10)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Knowing  the  governing  equa$ons  at  the     microscale,  can  we  find  homogeneous    

governing  equa$ons  at  the  macroscale  s.  t.:  

§  The  solu$on  of  the  macroscale  problem  converges     to  the  solu$on  of  the  microscale  problem  when   the  scale  ra$o  tends  to  zero  

 

• Hopefully:  the  solu$on  of  the  macroscale    

problem  is  a  good  approxima$on  of  the  solu$on     of  the  microscale  problem  (in  some  sense)    

even  when  the  scale  ra5o  is  not  very  small.  

Mathema$cal  formula$on  

Homogenisa$on   (Or  discrete   model)   Heterog.  con$nuum   PDE  with   constant  coeff.  

Error  in  QoI  macroscopic  <  Tolerance  

(11)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Heterogeneous  microstructure  undergoing   moderate  deforma$ons,  observa$ons  at     macroscale,  slow  loading,  scale  separability   • Macroscale  candidate  model:  lin.  elas$city  

§  Equilibrium  

§  Kinema$c  equa$ons    

§  Cons$tu$ve  rela$on  by  classical  micromechanics    

Classical  homogenisa$on  in  linearised  elas$city  

(12)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• A`ach  a  representa$ve  volume  element  to  the   material  point:  volume  of  material  large  enough   to  represent  the  sta$s$cs  of  the  distribu$on  

of  material  proper$es  (unit  cell  in  periodic  case)  

• Suppose  that  the  RVE  is  mechanically     equilibrated:  

 

• The  effec$ve  cons$tu$ve  law  the/a  rela$onship   between  average  stress  and  average  strain  

     

Classical  homogenisa$on  in  linearised  elas$city  

(13)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Obtain                                                                                                by  solving  RVE  problem  numerically  

 

§  Ill-­‐posed,  requires  BC  for  fluctua$on  compa$ble  with  

§  One  possibility:  Dirichlet  problem,  fluctua$on  vanishes  on  boundary   →  Very  expensive  too  solve  

Computa$onal  homogenisa$on  

Elas$city,  constant  

coefficients   +

Homogeneous  strain  

(macroscopic  part)   “micro”  fluctua$on  

< m >= SM < ✏m >

< ✏(eu(y) > ¯

(14)

&  Advanced  Materials  

 

•  Introduc$on  

•  Virtual  charts  for  parametrised  homogenisa$on   in  linear  elas$city  

(15)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Homogenisa$on  

• Dirichlet  localisa$on  problem  

(16)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Homogenised  Hooke  tensor  (assuming  major  and  minor  symmetries)  

(17)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Response  surface  method:  interpolate  the  quan$$es  of  interest  

Virtual  charts  

0 1 2 3 4 5 6 7 8 9 10 0.5 1 1.5 2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 0.5 1 1.5 2 0 1 2 3 4 5 6 7 8 9 10 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 P1  response  surface   Elas$c  contrast   Elas$c  contrast  

Elas$c  contrast  (log)  

Elas$c  contrast  (log)  

(18)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Interpolate  the  state  variables  instead:  reduced  order  model  

§  For  any  applied  macroscopic  field,  and  any  elas5c  contrast  

 

ROM-­‐based  Virtual  charts  

1⇤ + 2⇤ + 3⇤ “Macro   field”   “Micro   fluctua$on”   u(µ) +↵1(µ)⇥ +↵2(µ)⇥ +... 1 2

Generalised  coordinate:  minimise  an  error  measure  (Galerkin)  

Kr(µ) ↵(µ) = Fr(µ)

K(µ) U(µ) = F(µ)

Krij(µ) = Ti K(µ) j

Reduced  s$ffness  

(19)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Interpolate  the  state  variables  instead:  reduced  order  model  

§  For  any  applied  macroscopic  field,  and  any  elas5c  contrast  

 

→  Osen,  state  variables  belong  to  a  low-­‐dimensional  vector  space   §  Then,  post-­‐process  the  quan55es  of  interest  

→  (Sub-­‐)  op$mal  surrogates  can  be  constructed   →  Error  es$mates  available  

ROM-­‐based  Virtual  charts  

(20)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Separa$on  of  variables:  

• Example  of  op$mal  decomposi$on:  POD  

 

§  Not  computable  without  approxima$on   →  Galerkin  Empirical  POD  

→  Reduced  Basis  method   →  PGD  

Reduced  order  model  

(21)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Subop$mal  surrogate  in  two  steps:  

§  Empirical  POD  “offline”:  

-  Compute  sampling  (Snapshot):   -  Spectral  analysis  (SVD)  

 

§  “Online”  op5mal  coordinates  by  Galerkin  

Galerkin-­‐POD  with  QRandom  sampling  

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 x y z Sampling “Online” (evaluation) for a particular parameter Optimal linear combination “Offline” (training) for all parameters

(22)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Key  issue  1:  Empirical  POD  

§  Hierarchical  sampling  too  expensive  (curse  of  dimensionality)   →  Quasi-­‐random  sampling  

→  Error  evaluated  by  cross-­‐valida$on  es$mates  and  stagna$on  criteria  

Key  issue  1:  choice  of  samples  

(23)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Convergence  es$mate  

0 2 4 6 8 10 −6 −5 −4 −3 −2 −1 0 1 0 2 4 6 8 10 −6 −5 −4 −3 −2 −1 0 1 Max  Re la$ ve  e rr or  in     Max  Re la$ ve  e rr or  in    

Order  of  POD   surrogate  

Order  of  POD   surrogate  

˜ Q 1 ˜ Q 1

LOOCV   LOOCV  reduced  training  set  

LOOCV  reduced  valida$on  set  

(24)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Greedy  sampling  (RBM)  (see  the  work  of  Maday,  Patera,  …)  

§  Evaluate  the  error  of  a  Galerkin-­‐surrogate  of  order  N  on  a  fine  grid  of  the   parameter  domain  

§  Add  to  the  basis  the  sample  for  which  the     predic$on  error  (in  QoI)  is  the  largest  

→  Efficient  when  sharp  es$mate  available   →  But  limited  to  small  number  of  

parameters  

• QRandom-­‐based  Greedy-­‐sampling  (see  [Rozza  et  al.  2011])   • Op$misa$on-­‐based  Greedy  sampling  

 (work  of  Volkwein,  Willcox,  …)  

§  Look  for  a  new  sample  to  add  to  a  basis  N     such  that  the  error  of  the  surrogate  of  order     N+1  is  minimised  

→  Localisa$on  of  local  minima  is  difficult  

Alterna$ve  methods  for  snapshot  selec$on  

µ1

µ2

µ1

(25)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Kr(µ) ↵(µ) = Fr(µ)

• “online”  cost:  

But  assembly  cost  needs  to  be  small!  

 

• OK  if  data  is  separable:  

→           

→  Otherwise,  one  needs  further  approxima5ons  (force  data  separa$on)  

Key  issue  2:  efficient  assembly  of  ROM  

(26)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Aim:  Bound                                                                                                                        from  above  and  below                                                                                                                             • Adjoint  problem  for  each  QoI:  

→  Galerkin-­‐POD:  

 

§               is  minus  the  residual  of  the  forward  problem  in                                (computable)     §               is  the  error  in  the  ith  adjoint  problem  

• Special  case:    compliant  problem  (adjoint  and  forward  solu$ons  i  are   collinear)  

→     

Goal-­‐oriented  error  es$ma$on  

(27)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Upper  bound  in  energy  norm:  Error  in  the  cons$tu$ve  rela$on   [Ladevèze  ’85][Ladevèze  and  Chamoin  ‘11]  

§  The  recovered  stress  must  be  sta$cally   admissible  in  the  FE  sense  

 

→  More  effec$ve  as  the  recovered  stress  approaches  the  FE  stress  

Error  bounding  by  duality  

(28)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Construc$on  of  the  sta$s$cally  admissible  stress:  POD-­‐surrogate:  SVD   from  stress  snapshot:  

§  “Offline:”  Empirical  POD  on  stress  samples  

→  Basis                      such  that  average  projec$on  error  over  snapshots  is   minimised.  

 

§  “Online:”  Minimisa$on  of  CRE  upper  bound:  

Local  error  es$ma$on  

(29)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Schema$c  of  duality-­‐based  ROM  

proposed to estimate this quantity whilst retaining the bounding property. However, coercivity lower bounds can be pessimistic in the case of elasticity. In this paper, we propose to proceed di↵erently by using the concept of the Constitutive Relation Error (CRE) [32], which only requires to manipulate the concepts of displacement and stress admissibilities. In particular, no coercivity bound is required. The CRE is a widely used technique to bound the error associated to a displacement-based approxi-mation of elasticity problems. In particular, it has been applied to the evaluation of discretisation errors in a finite element context [33], where it coincides in practical implementations with the Equilibrated Residual approach (see for instance [52, 3, 50, 14]). Conceptually, the CRE proposes to construct a recovered stress field that is statically admissible, or equilibrated. Applying the constitutive relation to the kinematically admissible finite element solution that needs to be verified, one obtains a non-equilibrated stress field, called finite element stress field. The distance (in energy norm) between the recovered stress field and the finite element stress field is a bound for the discretisation error. All the technical difficulty resides in the construction of the equilibrated stress field [45].

... ... ... −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 x y z Sampling (Snapshot) Constitutive relation U p p er b ou n d Er ror FE Solution to approximate ``online” Minimisation Potential energy Minimisation complementary energy ⇣ uhs ns), hs ns) ⌘ ⇣ uhs 1), hs 1) ⌘ ⇣ uh(µs2), h(µs2)⌘ 3 1 2 e nt+nb e 1 e2 e 1 e2 en˜ n 1 2 uh(µ), h(µ) r(µ) µ ur(µ) = n X i=1 i ↵i(µ) + nw X i=1 i w i(µ) ... FE problem parametrised by Expl icit eva lua tion

Explicit eva

luation b(µ) = ˜ n X i=1 e i↵ei(µ) +D e(µ0) : ✏ nt X i=1 e i t i(µ) + nb X i=1 e i+nt b i(µ) Re duc ed s pa ce for t he di spl ac em ent SVD SVD FE pre-computations Re duc ed s pa ce for t he s tre ss

Figure 1: Schematic representation of the Galerkin-POD error bounding method based on the Consti-tutive Relation Error.

We extend this idea to the certification of the Galerkin-POD, which will provide a bounding tech-nique that is conceptually simple to understand, implement and control. Here, the reference is the finite element solution. Therefore, we first redefine the notion of statical admissibility, and require the recovered stress field to verify the equilibrium in the finite element sense. Then, at any point of the parameter domain, we can upper bound the reduced order modelling error by measuring a

(30)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Illustra$on  for                                                        and                                                      (compliant  problem)  

 

→  Lower  bound  necessary  to  control  the  sharpness  of  the  upper  bound   as  no  a  priori  convergence  es$mate  available  

Results  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 0.8 1 1.2 1.4 1.6 1.8 2 100 101 102

Surrogate  order  ra$os  

Eff ec $v ity  inde x  (log)   Re la$ ve  e rr or  in                   (lo g)   ˜ Q 1

Elas$c  contrast  (log)    

✏M = ✓ 1 0 0 0 ◆ ˜ Q1 ⌘ D e ? 1111 Increasing  order     of  stress  surrogate  

(31)

Ins$tute  of  Mechanics   &  Advanced  Materials  

 

• (Sub-­‐)  op$mal  virtual  charts  for  parametrised  homogenisa$on   problems,  based  on  Galerkin-­‐POD  

• No  a  priori  assump5on  on  fluctua5on  fields:  smooth  transi$on  

between  approximate  RVE  problem  and  fully  resolved  (FEM),  by  just   enriching  the  reduced  basis  

• Guaranteed  accuracy  

• We  are  working  on  op$mal  sampling  of  displacement  versus  stress   surrogates  to  reach  the  desired  level  of  accuracy  on  QoI  

→  Goal-­‐oriented,  hybrid  reduced  basis  strategy  

(32)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Reduced  basis  sampling  technique  

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −10 −9 −8 −7 −6 −5 −4 −3 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −10 −9 −8 −7 −6 −5 −4 −3 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −10 −9 −8 −7 −6 −5 −4 −3 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −10 −9 −8 −7 −6 −5 −4 −3 Re la$ ve  e rr or  in  e ne rg y   no rm  (l og )  

Elas$c  contrast  (log)     Elas$c  contrast  (log)     Max  error  

Max  error  

(33)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Interpreta$on  of  error  bound  as  uncertainty  on  QoI   • Illustra$on  for  a  compliant  problem  (if                        ):  

 

→  uncertainty  reduced  by  error  reduc$on  (increase  displacement  

accuracy)  or  increase  in  bound  effec$vity  (increase  accuracy  of  stress)   →  Hybrid  reduced  basis  

GO  hybrid  reduced  basis  approach  

(34)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Start  with  one  random  sample  at                and  ini$alise  the  surrogates  

§  KA  Displacement:   §  Equilibrated  stress:  

 

• Max  uncertainty  over  parameter  domain  detected  at  

§  Check  which  of  the  enrichments  create  maximum  reduc$on  in  uncertainty  

§  Proceed  un$l  max  uncertainty  is  small  enough  

GO  hybrid  reduced  basis  approach  

8 µ 2 P, b(µ) = e1 ↵e1(µ) 8µ 2 P, ur(µ) = 1 ↵1(µ) + uh,p(µ) µ0 fluctua$on  at  µ0 stress  at   µ0 µ1 ur(µ) = 2 X i=1 i ↵i(µ) + u h,p(µ) or  

(35)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Illustra$on  for  compliant  problem  

Worst  uncertainty,  best  reduced  by   enriching  stress  surrogate  

(36)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Guaranteed  accuracy  limited  to  ellip$c  and  parabolic  (e.g.   viscoelas$city)  problems,  with  a  priori  separa$on  of  variables  

(problems  with  parametrised  geometry  or  nonlineari$es  rarely  respect   this  condi$on)  

• Open  ques$ons  /  remarks  

§  Error  bounds  can  be  obtained  for  “smooth”  problems,  in  which  case   empirical,  more  general  es$mates  seem  to  give  reliable  results.  

§  How  to  choose  the  QoI  in  imbricated  problems  (chains  of  approxima$ons)?  

(37)

&  Advanced  Materials  

 

•  Introduc$on  

•  Virtual  charts  for  parametrised  homogenisa$on   in  linear  elas$city  

(38)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Implicitly  defined  nonlinear  homogenised  cons$tu$ve  rela$ons     • Macro  problem:  

§  Equilibrium:    

§  CR:                                                                                          (not  specified  explicitly)  

• Micro  problem:   §  Equilibrium:     §  CR:                                                                      (known,  non-­‐linear)                                                             • Scale  linking   §  DBC   §  Stress  average:  

Nonlinear  comput.  homogenisa$on  by  FE

2  

(39)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Damageable  elas$c     heterogeneous  

• Modelled  by  a  network  of  Euler-­‐Bernouilli  beams  with  CR:  

 

• Proper$es  of  resul$ng  problem:  

§  Damage  depends  on  deforma$on  -­‐>  Nonlinear  

§  Irreversibility  of  damage  -­‐>  pseudo-­‐$me  dependent  

Damageable  RVE  

Severe   damage   0 2 4 6 8 10 12 14 16 18 20 −6 −4 −2 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 20 −6 −4 −2 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 20 −6 −4 −2 0 2 4 6 8 10 0 2 4 6 8 10 12 14 16 18 20 −6 −4 −2 0 2 4 6 8 10

Realisation 1

Realisation 2

Particle

distribution

Projection of

the material

properties

Figure 5: Two realisations of the random distribution of the material properties. The inclusions

are spherical, and their projection onto the lattice structure is represented in black. The grey bars

correspond to the matrix of the particulate composite, while the light grey ones define the weak

interface between aggregates and matrix.

In order to describe the randomness of the model formally, we introduce the probability space

H = (⇥, F, P ) for the random distribution of the material properties of the lattice network. ⇥ is the

ensemble of outcomes of the random generation,

F is the corresponding Sigma-algebra of subsets of ⇥

and P is the associated probability measure. Any random distribution is characterised by distribution

function (26), a fixed maximum inclusion diameter D

Max

, a fixed phase ratio, fixed material properties

for each of the phases, and a given lattice network.

Two realisations of the random distribution of material properties are illustrated in figure 5.

2.4

Discretisation

We now present briefly the discretisation technique of the lattice balance equations (15). The

displace-ment of a point of the neutral fibre of beam (b) is approximated using a unique finite eledisplace-ment, of first

order degree for the normal displacement, and third order degree for the deflection:

v

(b)

w

(b)

(⇠) =

(b) v

(⇠)

(b) w

(⇠)

!

0

B

B

B

B

B

B

@

v

(b)

(0)

w

(b)

(0)

(b)

(0)

v

(b)

(L

(b)

)

w

(b)

(L

(b)

)

(b)

(L

(b)

)

1

C

C

C

C

C

C

A

(28)

v

(b)

w

(b)

(⇠) =

(b)

(⇠) V

(b)

,

where the matrix of shape functions is given by:

(⇠) =

0

B

B

B

B

B

B

@

v,1

(⇠)

0

0

w,1

(⇠)

0

w,2

(⇠)

v,2

(⇠)

0

0

w,3

(⇠)

0

w,4

(⇠)

1

C

C

C

C

C

C

A

T

with

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

v,1

(⇠) = 1

1

L

v,2

(⇠) = ⇠

w,1

(⇠) =

2

L

3

3

3

L

2

2

+ 1

w,2

(⇠) =

1

L

2

3

2

L

2

+ ⇠

w,3

(⇠) =

2

L

3

3

+

3

L

2

2 w,4

(⇠) =

1

L

2

3

1

L

2

.

(29)

11

where t is the depth of the continuous structure, which is not necessarily equal to the depth of the

beams t(b).

Unfortunately, this theory, as far as the authors know, has not been extended to damage mechanics. It su↵ers the limitation of classical homogenisation to non-softening behaviours. In the literature, the elastic constants are used as a starting point for a phenomenological damage model, whose parameters then need to be fitted to experimental results. We follow the same approach. The damage model used in our simulations is described in the next subsection.

2.2.3 Elastic-damage law

The model presented here is based on classical damage mechanics [37], applied to lattice structures. We introduce two di↵erent damage mechanisms, one acting in traction and the other one acting in bending. This assumption is consistent with the model used in [5], where it is argued that damage in traction corresponds to damage due to hydrostatic deformations, while damage due to bending corresponds to shear damage.

We postulate the following Helmholtz free energy per unit length of beam (b):

(¯✏, d) = 1 2 ✓ E(b)S(b)(1 dn) < v,⇠ >+ v,⇠ v,⇠2 +E(b)I(b)(1 dt)✓,⇠2 ⌘ . (21)

dn and dt are two damage variables ranging from 0 to 1. They account for the non-reversible softening

of the beam with increasing load, in respectively tension and bending. Compression in this model does not dissipate energy, which is mathematically introduced by making use of the positive part extractor

< . >+. We introduce the compact notation d = (dn dt)T.

The relationship between generalised stress and strain in beam (b) is obtained as follows: ✓ N M ◆ = @ @¯✏ = 0 @E(b)S(b)(1 dn) < v,⇠ >+ v,⇠ 0 0 E(b)I(b)(1 dt) 1 A✓v,⇠ ✓,⇠ ◆ . (22)

This state law is the nonlinear counterpart of the linear state law (19).

The second state law, which links the damage variables to dual driving thermodynamic forces, reads: ✓ Yn Yt ◆ = @ @d = 1 2 0 @E (b)S(b)< v,⇠ >+ v,⇠ v,⇠2 E(b)I(b)✓,⇠2 1 A . (23)

At last, an evolution law is defined to fully define the damage evolution: Y (t) = max ⌧t ((Yn(⌧ )) ↵ + ( Yt(⌧ ))↵) 1 ↵ , (24) dn = dt = min ✓✓ n n + 1 < Y Y0 >+ Yc Y0 ◆n , 1 ◆ . (25)

This damage law is inspired by the model described in [1] for composite laminates. We refer to this work for a comprehensive interpretation of the di↵erent parameters. We will just notice that Y is an equivalent damage energy release rate which governs the evolution of damage with traction and

banding. The critical value Yc is therefore the “strength” of the beam section.

2.3 Randomly distributed material properties

The damageable lattice model is used to derive a three-phase model for concrete. Such models consider three di↵erent entities: matrix (cement), inclusions (hard particles, assumed spherical) and an interface between these two entities (see [6] for an evidence of the existence of such interface). Plane (O, x, y) is a section of the three dimensional particulate composite structure. A projection of the material properties onto the lattice model is performed as follows:

9

“d”  Damage  variable  represents  the   extent  of  subscale  networks  of  cracks  

(40)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Homogenisa$on  using  Dirichlet  localisa$on  on  RVE:  

§  Fully  discrete  equilibrium,  for  any  load  history:  

§  Uniform  displacement  boundary  condi$ons  

Parametrised  RVE  problem  

Parameters  

 (“  Dimension  3N  “)  

U(t) = ¯U(t) + eU(t) N (x) ¯U(t) =

✓ ✏M11(t) ✏M12(t) ✏M12(t) ✏M22(t) ◆ · (x xc) Such  that   Fluctua$on   vanishes  on   boundary   =   +  

Full  micro  solu$on,  used  to  

extract  average  stress  

8 t 2 {t1, t2, ... , tN}, U? T Fint

⇣ e

(41)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Approxima$on  for  the  fluctua$on  field  for  any  load  history  

• Galerkin:  

• Solu$on  by  Newton:  

Galerkin-­‐ROM  

Modal  coordinates  associated  with  POD  basis  vectors  

8i

Requires  integra5on,  complexity    depends  

on  the  underlying  discre$sa$on  

U(t) ⇡ Ur(t) :=

n

X

i=1

i ↵i(t) + ¯U(t)

Global  basis  func$ons  for  fluctua$on  field  (obtained  by  Snapshot  POD)  

(42)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Only  the  contribu$ons  of   sample  points  are  required  

• Affine  approximate  of  the  nonlinear  force  vector  

• Coefficients  of  the  expansion  obtained     op$mally  w.r.  to  sample  points:  

   

Gappy  approxima$on  of  nonlinear  term  

Any  varia$on  around  the  Galerkin     solu$on   Fint (↵(t) + ↵) ⇡ eFint = ˜ n X i=1 e i i = ˜

= arg minkFint ˜ kX

e Fint = P Fint = ✓ ˜ ⇣˜TX ˜⌘ 1 ˜TXF int 4 System Approximation

Constraining the displacement in a low-dimensional space does not provide a significant computational gain, even if the systems to be solved are of smaller dimension. This is because the material of study is nonlinear and history-dependent, and its sti↵ness varies not only in di↵erent areas of the material but also with time. This requires to evaluate the sti↵ness everywhere in the material and this at each time step of the simulation. This means that the numerical complexity remains despite the simplification on the displacement. Hence, to decrease the numerical complexity, the domain itself need to be approximated. Several authors have looked into that. Notable contributions include the Hyperreduction method [15], the missing point estimation [16], or system approximation [17]. Those methods share the idea that the material properties will be evaluated only at a small set of points or elements within the material domain. They di↵er in the way of selecting those points and in the treatment of that reduced information. In this paper, we will use the ”gappy” method, very much like in [17, 18].

4.1 Gappy Method

The internal forces generated by the reduced displacement Fint( ↵) will be evaluated only in a small

subset of the degrees of freedom I of the domain ⌦. All the elements in contact with those degrees of freedom have to be considered. We refer to those as the controlled elements. The internal forces will then be reconstructed by writing the internal forces as a linear combination of a few basis vectors themselves (just like it was made for the displacement).

Fint( ↵)⇡ nXgap 1 i i= , (29) whereh 1,· · · , ngap i

= is the forces basis of size ngap and the associated scalar coefficients.

(a) Original structure (b) Example of a surrogate structure

Figure 5: Example of a surrogate structure. The sti↵ness of the structure is evaluated on controlled elements only, while the other ones are just like ghosts

The coefficients of the expansion are found so that to minimise the norm of the di↵erence between the linear expansion and the nonlinear term over the subsetI:

argmin

? kFint( ↵)

?

kP, (30)

9

Constraining the displacement in a low-dimensional space does not provide a significant computational gain, even if the systems to be solved are of smaller dimension. This is because the material of study is nonlinear and history-dependent, and its sti↵ness varies not only in di↵erent areas of the material but also with time. This requires to evaluate the sti↵ness everywhere in the material and this at each time step of the simulation. This means that the numerical complexity remains despite the simplification on the displacement. Hence, to decrease the numerical complexity, the domain itself need to be approximated. Several authors have looked into that. Notable contributions include the Hyperreduction method [15], the missing point estimation [16], or system approximation [17]. Those methods share the idea that the material properties will be evaluated only at a small set of points or elements within the material domain. They di↵er in the way of selecting those points and in the treatment of that reduced information. In this paper, we will use the ”gappy” method, very much like in [17, 18].

4.1 Gappy Method

The internal forces generated by the reduced displacement Fint( ↵) will be evaluated only in a small

subset of the degrees of freedom I of the domain ⌦. All the elements in contact with those degrees of freedom have to be considered. We refer to those as the controlled elements. The internal forces will then be reconstructed by writing the internal forces as a linear combination of a few basis vectors themselves (just like it was made for the displacement).

Fint( ↵)⇡ nXgap 1 i i= , (29) where h 1,· · · , ngap i

= is the forces basis of size ngap and the associated scalar coefficients.

(a) Original structure (b) Example of a surrogate structure

Figure 5: Example of a surrogate structure. The sti↵ness of the structure is evaluated on controlled elements only, while the other ones are just like ghosts

The coefficients of the expansion are found so that to minimise the norm of the di↵erence between the linear expansion and the nonlinear term over the subsetI:

argmin

? kFint( ↵)

?

kP, (30)

(43)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Basis  func$ons:  consistent  approach  

§  Basis  obtained  by  standard  empirical  POD  for    

→  In  prac$ce,  solve  the  snapshots  a  second  $me  using  standard  Galerkin-­‐ POD  and  use  the  residuals  of  the  Newton  solver  

§  Truncate  the  POD  expansion  at  an  order  such  that  displacement  and  stress   errors  are  of  the  same  order  of  magnitude  

• Interpola$on  points  minimise  reconstruc$on  error  (EIM  [Barrault  ‘04],   MPE  [Astrid  ‘08])  

Choosing  the  parameters  of  the  Gappy  approx  

Fint (↵(t) + ↵)

Mode 1

Mode 2

Figure 9: Regions of interest selected by the system approximation procedure. Those regions (circled in the Figure) are matching the areas of higher displacement found in the POD bases. This is intuitively good, since those elements have to give enough information to be able to reconstruct the internal forces over the entire domain. Those are the elements whose behaviour vary the most when changing the loading path (which is the parameter of the reduced model), hence containing the core information necessary to build up an accurate reconstruction.

5.4 Numerical results

In this section, we will test the performance of the method by comparing the relative error between the ”truth“ solution of the RVE problem, which is the solution obtained when using the full order model, and the reduced model. We will focus on the simulation of the RVE problem only, and not consider the complete computational homogenisation framework (the macroscale problem will not be solved). For the first test, the load path is set using the following e↵ective strain: ✏M(t) = Tt .

 1 1

1 1 . Note that this case is not in the snapshot. First, the relative error is plotted with various numbers of POD basis vectors. See Figure 10.

(44)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Snapshot:  

Test  case  

1 2 3 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

100  QR  sampling  in  the   macro  strain  space  

SVD  

The basis is selected using the POD method explained in section 3.2. The first few modes are

displayed in Figure 7. We will test the results using various number of basis vectors. Procedures to select the optimal number of modes according to a robust cross-validation procedures can be found in [11].

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 7: First 3 modes obtained through the POD. The damage localises between pairs of inclusions.

5.3 System approximation

We follow the procedure described in 4. The basis is extracted from the same snapshot space

as used for the displacement basis . The set of controlled elements is selected using the DEIM

[18]. The amount of vectors in the basis is chosen so that the system approximation does not

increase the global error of the reduced order model. The error ⌫totbetween the exact solution and

the reduced model solution with system approximation can be decomposed in the following way (with

uex(t) the exact solution, ur(t; ), the reduced order solution without the system approximation using

the dynamic basis , and ur,sa(t; , ) the complete reduced order model with system approximation

12

5.2 POD basis

The basis is selected using the POD method explained in section 3.2. The first few modes are

displayed in Figure 7. We will test the results using various number of basis vectors. Procedures to select the optimal number of modes according to a robust cross-validation procedures can be found in [11].

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 7: First 3 modes obtained through the POD. The damage localises between pairs of inclusions.

5.3 System approximation

We follow the procedure described in 4. The basis is extracted from the same snapshot space

as used for the displacement basis . The set of controlled elements is selected using the DEIM

[18]. The amount of vectors in the basis is chosen so that the system approximation does not

increase the global error of the reduced order model. The error ⌫totbetween the exact solution and

the reduced model solution with system approximation can be decomposed in the following way (with

uex(t) the exact solution, ur(t; ), the reduced order solution without the system approximation using

the dynamic basis , and ur,sa(t; , ) the complete reduced order model with system approximation

12

5.2 POD basis

The basis is selected using the POD method explained in section 3.2. The first few modes are

displayed in Figure 7. We will test the results using various number of basis vectors. Procedures to select the optimal number of modes according to a robust cross-validation procedures can be found in [11].

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 7: First 3 modes obtained through the POD. The damage localises between pairs of inclusions.

5.3 System approximation

We follow the procedure described in 4. The basis is extracted from the same snapshot space

as used for the displacement basis . The set of controlled elements is selected using the DEIM

[18]. The amount of vectors in the basis is chosen so that the system approximation does not

increase the global error of the reduced order model. The error ⌫totbetween the exact solution and

the reduced model solution with system approximation can be decomposed in the following way (with

uex(t) the exact solution, ur(t; ), the reduced order solution without the system approximation using

the dynamic basis , and ur,sa(t; , ) the complete reduced order model with system approximation

(45)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Valida$on  for  one     par$cular  loading  

Speed-­‐up  

2   Speed-­‐up  15  

Last  $me  step  before   localisa$on:  

15   SU  10  

(46)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Op$mal  sta$c  vs  kinema$c  surrogate  sizes  

Figure 10: Relative error when using the reduced model without system approximation. As the number of POD basis vectors increases, the error decreases. Using more than 4 basis vectors does not have a strong e↵ect. The error reaches a threshold. That threshold corresponds to the projection error of the exact solution onto the snapshot space.

2 4 6 8 10 0 20 40 60 80 100 10⌥5 10⌥4 10⌥3 10⌥2 10⌥1 100 Rel ati ve e rr or in energy no rm Number of vectors in the stati

c basis Number of vector

s in the displacement

basis

Figure 11: Evolution of the error varying the number of displacement and static basis vectors.

Several remarks can be made:

(47)

Ins$tute  of  Mechanics   &  Advanced  Materials  

Automa$sed  snapshot  selec$on  

✏11

✏12

Ini$alisa$on   (propor$onal   loading)  

Load  history  that  maximises  the  ROM  error   (obtained  by  numerical  op$misa$on)  

(48)

Ins$tute  of  Mechanics   &  Advanced  Materials  

• Numerical  solu$on  of  RVE  problems  avoids  assump$ons  on  microscale   fields,  but  too  expensive  

• Reduced  order  modelling  permits  to  alleviate  this  problem,  but  

providing  error-­‐controlled  approxima$ons  that  seamlessly  span  from     full-­‐FE  solu$on  to  highly-­‐reduced  RVE  problems  

• Open-­‐ques$on:  mul$scale  modelling  and  reduced  order  modelling  do   the  same  thing:  look  for  and  use  invariances  in  solu$on  sets.  Is  there  a   more  formal  way  to  couple  them?  

Références

Documents relatifs

To obtain such a field, a snapshot-POD is performed for the finite element stress field, which permits to ensure that the numerical complexity of evaluating the reduced order model

CONCLUSIONS AND FUTURE WORKS A new method for the fast prediction of the static characteristic of an electrostatically actuated torsional micromirror, taking into

Finally, the upper bound for the “online” error associated with the Galerkin-POD is obtained by comparison of the recovered stress field σ(µ) to the stress field b σ r (µ) obtained

To the knowledge of the authors, there does not exist proof of error estimates in the literature for a projection method in the context of Finite Element with a reduced order when

Upper bounding techniques for the reduced modelling error have been obtained for such problems in the context of the Reduced Basis Method.. In [16], the error estimation relies on

Approach based on FEniCS | Work flow - multiphenics Geometry Mesh Gmsh API + Read xdmf file or xml Multiple domains Multiple fields.. Next

The reduced-order model presented here is valid for flexible structures and large displacements, the only hypothesis made being small pressure variations.. In

6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 11 – 15 June 2018, Glasgow, UK.. Reduced-order model of